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Abstract- A universal upper bound on the MIMO architecture 
capacity, which is not limited to a particular scenario, is derived 
in this paper using the correlation matrix approach and the 
Jensen’s inequality. This bound accounts for both transmit and 
receive branch correlation in such a way that the impact of these 
branches can be estimated separately, which simplifies the 
procedure substantially and also allows to decide which site is 
responsible for capacity reduction, which is not easy to do using 
traditional approaches. Further, using the results above and the 
Salz-Winters model of fading spatial correlation, it is  
demonstrated that the correlation has no impact on the MIMO 
capacity provided that the two-element antenna array 
beamwidth is smaller than the angle spread of the incoming 
multipath signals. A fundamental tradeoff between MIMO 
capacity and diversity order is also pointed out. 
 

I. INTRODUCTION 
Multiple-input multiple-output (MIMO) communication 

architecture, which employs multiple antennas at both the 
transmitter and the receiver, has recently emerged as a new 
paradigm of extremely spectrum-efficient wireless 
communications in rich multipath environment [1]. Suffice it 
to say that unprecedented wireless spectral efficiencies, 
ranging from 20 - 40 bit/s/Hz, have been demonstrated in a 
laboratory environment [2], which are simply unattainable 
using traditional techniques. Even higher spectral efficiencies 
may be achieved in certain environments when the system 
design is optimal. However, in real-life conditions the MIMO 
channel capacity may be limited due to several factors. One 
of the most important such factors is the correlation between 
sub-channels of the matrix channel [3-5]. The MIMO 
capacity achieves its maximum for completely uncorrelated 
matrix channel. The correlation between individual receive 
and/or transmit branches results in capacity decrease. Several 
models have been used to study this phenomenon. Their 
application is typically limited to some specific scenarios. 

In this paper, using Jensen’s inequality, we derive the 
universal upper bound on the MIMO channel capacity, which 
is not limited to some specific cases. We also demonstrate 
how to apply the results obtained for diversity combing to the 
MIMO system analysis using the upper bound above. This 
upper bound accounts for both transmit and receive branch 
correlation in such a way that the impact of these branches 
can be estimated separately, which simplifies the 

computational procedure substantially and allows to decide 
which site is responsible for capacity reduction. 

We further use the results above and the Salz-Winters 
model of the fading spatial correlation [7] in order to predict 
the MIMO capacity in a realistic electromagnetic 
environment. We study the upper bound on the MIMO 
capacity as a function of the antenna spacing, the average 
angle and angular spread of the incoming multipath and 
demonstrate that the correlation has no impact on the capacity 
provided that the two-element array beamwidth is smaller 
than the angle spread of the incoming multipath signals. 

The new compound upper bound and simple 
approximations of the MIMO capacity, derived in this paper, 
may be used as an efficient design tool because they do not 
require extensive statistical simulations involving large 
matrix operations. Thus, efficient optimization procedures are 
possible. 

II. UPPER BOUND ON MIMO CHANNEL CAPACITY 

For a fixed linear n×n matrix channel with additive white 
gaussian noise and when the transmitted signal vector is 
composed of statistically independent equal power 
components each with a gaussian distribution, the channel 
capacity is [1]: 
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where n is the number of transmit/receive antennas (we 
consider here the case when the number of transmit and 
receive antennas are equal), ρ is the signal-to-noise ratio 
(SNR), I is n×n identity matrix, H is the normalized channel 
matrix, which is considered to be frequency independent over 
the signal bandwidth, and “+” means transpose conjugate. We 
adopt here the following normalization condition: 
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where hik denotes the components of H ( ijh  is the transfer 

factor between jth transmit antenna and ith receive antenna). 
Hence, nρ  is the average per-branch SNR, i.e. ρ is the ratio 
of total received power (in all branches) to the per-branch 
noise level. Some other kinds of the normalization can also 



 

be used, but in this case nρ  will have a slightly different 
meaning. All the results in this paper hold true for other 
normalizations as well. 

When the channel is random (stochastic), then the 
capacity is random, too. The mean (ergodic) capacity can be 
defined in this case as [13]: 
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where ijr  is “instantaneous” correlation matrix, 

∑=
k

jkikij hhr *  ,                               (4) 

ijδ  is Kroneker's delta, < > is the expectation over the 

channel matrix. Note that (3) does take into account 
correlation occurring at both the transmit and receive ends. 
This equation can be used for statistical (Monte-Carlo) 
simulations to evaluate C  for some specific models of the 
channel matrix. However, these matrix numerical 
computations can be very lengthy, especially when the 
number of antennas is very large. Here we propose to use 
Jensen’s inequality to obtain an upper bound on C . 
According to this inequality and concavity of log det function 
[9], one obtains: 





 ⋅

ρ
+δ=≤ R

ijijR r
n

CC detlog2               (5) 

where R
ijr  is the correlation matrix of receive branches, 

∑=
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R
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Note that this correlation matrix does not capture the 
correlation of transmit branches (since k in (6) represents the 
transmit antenna index and it is the same for both factors). 
Thus, the upper limit in (5) can be close to the mean capacity 
when the correlation of receive branches is much higher than 
the correlation of transmit branches and, consequently, the 
effect of transmit branch correlation can be ignored. 
However, if the transmit correlation is higher than the receive 
one, then the upper bound in (5) is not an accurate 
approximation of the mean capacity. Therefore, in order to 
have an upper bound that is as close as possible to the mean 
capacity, one must also account for transmit correlation. To 
this end, the reciprocity of (1) can be used in the following 
way. First, we note that the MIMO capacity given by (1) is 

invariant under the transformation THH →  (“T” means 
transpose). This in effect is equivalent to reversing the 
direction of information transmission by interchanging 
transmit and receive ends. Thus, (3) still holds true if we 
define ijr  as: 

∑=
k

kjkiij hhr *  ,                          (7) 

Hence, one obtains the second upper bound (the transmit 
bound), 
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where T
ijr  is the correlation matrix of transmit branches, 

∑=
k

kjki
T
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Note that the upper bound in (8) does not capture the receive 
correlation. Therefore, this upper bound will be close to the 
mean capacity when the transmit correlation is higher than 
the receive one. However, if the opposite is true, then this 
upper bound is not an accurate approximation of the mean 
capacity. 

From inequalities (5) and (8) it is clear that a tighter upper 
bound of the mean channel capacity can be obtained by 
combining them. Thus, we form the compound upper bound 
by taking minimum of the two bounds defined above, 

[ ]TRcmp CCC ,min=                       (10) 

This upper bound is much tighter than the receive or transmit 
bound considered separately when the transmit and receive 
branch correlations are significantly different. 

Let us now consider an illustrative example of correlated 
Rayleigh channel. The components of H are taken to be 
identically distributed complex gaussian variables (real and 
imaginary parts are identically distributed and independent, 
i.e. the phase is uniformly distributed over [ ]π2,0 ) with zero 
mean and unit variance. The correlation matrix of H is 
assumed to be of the following form: 
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where R
ijR  and T

ijR  are uniform correlation matrixes of the 

receive and transmit branches correspondingly, 
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where 10 ≤≤ r . In fact, (11) assumes that the receive and 
transmit branches are correlated independently on each other 
(which may be justified by the presence of local scatterers 
near both ends). Fig. 1 shows the mean capacity of this 
channel, obtained by extensive numerical simulations (Eq. 3), 
and the receive (Eq. 5), transmit (Eq. 8) and compound (Eq. 
10) bounds.  In this example, 0=r corresponds to 
uncorrelated receive branches and full correlation of the 
transmit ones; 1=r  corresponds to full correlation of receive 
branches and uncorrelated transmit ones. The compound 
bound provides a good approximation to the mean capacity 
while the receive or transmit bounds alone are not accurate 
for the whole range of r. It is also interesting to note that the 
maximum capacity is achieved for 5.0=r . This indicates 



 

that decrease in capacity is usually due to that side (transmit 
or receive) which has higher correlation. Thus, a rough 
estimation of the capacity may be obtained by considering 
only the higher correlated side. 

III. MIMO CAPACITY IN MULTIPATH ENVIRONMENT 
Following the approach proposed in [12], we employ the 

spatial correlation matrix model presented in [7] in order to 
estimate the MIMO capacity in multipath environment. In 
this model, each user generates many independent multipath 
signals arriving to the adaptive array within ∆±  of the mean 
angle of arrival (AOA) ϕ (see Fig. 2). 

The AOA probability density function is assumed to be 
uniform and all users are assumed to be statistically 
independent and to have the same statistics. The normalized 
signal correlation coefficient between the i-th and k-th 
antenna array elements is: 
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∆
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                     (13) 

where λπ= /2 dz , d is the inter-element distance, λ is the 
wavelength, 2∆ is the angle spread of the incoming 
multipaths, ϕ is the average angle of arrival, and j is the 
imaginary unit. Without loss of generality, we assume that 

1=λ . For π=∆ , eq. (13) reduces to the classical 
expression: 

( )[ ]kizJRik −= 0                                        (14) 

where J0 is the zero-order Bessel function of the first kind. 
For π<∆  a Bessel series expansion was derived for Rik in 
[7]. However, as detailed analysis shows, for small ∆ (a few 
degrees) this expansion converges very slowly and, 
consequently, a large number of terms must be used in order 
to estimate Rik accurately. The computational efficiency of 
this procedure is very low, especially when matrix 
computations are involved, as is the case for MIMO systems. 
A simple but still accurate approximation of (13) for small ∆ 
and ϕ=0 can be derived using β≈βsin  (valid for small β), 
and performing integration in (13): 
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The smaller ∆, the better the accuracy is. Thus, this 
approximation works exactly where it is needed. The upper 
bound of its validity is approximately 4/π . Hence, one may 
use (14) for large values of ∆ and (15) for small. 

In order to study the effect of correlation in an explicit 
way and to separate it from the effect of unequal received 
powers, we further assume that all the received powers are 

equal, i.e. 1
2def

==σ ∑ j iji h . Then, rij in (6) is the 

normalized correlation matrix, i.e. 1≤ijr . Hence, one can 

apply (13)-(15) to model it in the multipath environment of 
Fig. 2 and (5) gives an upper bound on the mean capacity of 
such a channel. As detailed analysis shows, the upper bound 
estimated in this way is quite close to the mean capacity 
when all the correlation is due to the receive part of the 
system (i.e., when 0* =imikhh  for mk ≠ ) and when the 

channel is not a degenerate one [9,10]. Thus, RC  may be 

used as a rough estimation of C  in this case. Note that RC  

is simple to evaluate numerically (for a given R) while C  
requires lengthy Monte-Carlo simulations. Due to the 
reciprocity of (1), the effect of transmit branch correlation 
can be analyzed in a similar way.  

In order to estimate the mean capacity by Monte-Carlo 
simulations, we employ some additional assumptions: (i) 
there are N multiple paths arriving to each receive antenna 
from a given transmit antenna, (ii) the angles-of-arrival 
(AOA) of these paths are uniformly distributed within ∆±  of 
ϕ , (iii) the gains of these multiple paths are i.i.d. complex 
Gaussian variables (i.e., Rayleigh fading) with zero mean and 
unit variance, (iv) each transmit antenna launches an 
independent set of N multiple paths (i.e., independent set of 
AOAs and path gains) with the same statistical 
characteristics. According to the assumption of independence 
and of equal statistical characteristics of all the transmit 
branches, all the terms in (6) are equal. Thus, we use (13)-
(15) to evaluate RC  and Monte-Carlo simulations to evaluate 

C  for different ∆, ϕ and d. First, the case of 0=ϕ  is 
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Fig. 2. Incoming multipath signals arrive to the linear antenna 

array within ∆±  of mean angle ϕ 



 

considered (the capacity is maximum under this condition). 
Fig. 3 shows RC  and C  versus d for different ∆. Note that 
there is good agreement between (13) and (15) when 
estimating the MIMO capacity. Fig. 3 indicates that the 
function )(dCR  consists of two regions: (1) for small d 

(d<dmin) RC  increases almost linearly as d increases, (2) for 

larger d (d>dmin) RC  saturates and does not change 
significantly with d. Detailed analysis shows that dmin 
corresponds approximately to the first zero of Rik(d) for 
i=k±1. Using (15), we obtain: 

∆
=

2
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Cmax is the channel capacity of an uncorrelated matrix 
channel, 
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Further we observe that ( ) 00 CdCR ==  where 
( )ρ+= 1log20C  is the single-input single-output channel 

capacity (with the same total radiated power). Thus, )(dCR  
can be approximated by the following piecewise-linear 
function: 
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Fig. 3 shows that (18) provides quite a good approximation 
when Cmax>>C0 . For 4π>∆  the accuracy of (15) and, 
consequently, of (16) degrades. In this case the following 
estimation is more accurate: 5.0min ≈d  which 
approximately corresponds to the first zero of (14). Thus, in a 
general case one may use the following estimation: 

( )[ ]5.0,21maxmin ∆=d . It should be noted that the mean 
capacity follows the same dependence on d as the upper 
bound except that it is 15% lower in the saturation region. 

Thus, the upper bound provides quite an accurate estimation 
of the mean capacity when the effect of correlation is 
substantial, i.e. when mindd < . When N increases, the 
maximum value of the mean capacity increases too, but by a 
small amount only. When nN <  and each transmit antenna 
generates the same set of AOAs, the mean capacity reduces 
substantially, which is in good agreement with [11]. The 
general dependence of C  on d shown in Fig. 3 is quite 
stable with respect to the assumptions (i)-(iv) above. For 
example, if the path gains are assumed to be of equal 
magnitudes and of independent uniformly distributed phases, 
the maximum capacity is less than 10% lower than that 
shown in Fig. 3. The same is true when each transmit antenna 
generates the same set of AOAs ( nN ≥ ) and the path gains 
are i.i.d. complex Gaussians. Of course, the assumption of 
full transmit branch correlation will result in a substantial 
capacity decrease (see (10)). 

Let us now consider the case of 0≠ϕ . Using an analogy 
with the phased array theory, one may guess that (16) should 
be generalized to 

ϕ∆
=

cos2
1

mind                                  (19) 

Detailed analysis using extensive numerical simulations 
shows that this equation is indeed accurate provided that two 
constraints are satisfied: 

2,2 π≤ϕ+∆π<ϕ                           (20) 

A general form of the function )(dCR  in this case is the 
same as in (18). It should be noted that the results of this 
section can be obtained using the recent results of eigenvalue 
analysis of diversity combining [8]. 

IV. TRADEOFF BETWEEN CAPACITY AND DIVERSITY ORDER 
In the discussion so far we considered the MIMO channel 
capacity. However, this architecture can also provide 
substantial reduction in fade depth, like conventional 
diversity combining systems. In this respect, diversity order is 
an important parameter. Unfortunately, it is not possible to 
achieve the maximum capacity and diversity order at the 
same time. The recently-proposed space-time codes [14] may 
achieve diversity order n2 only at the expense of low capacity 
(i.e., much lower than in (17)). Here we give a simple 
explanation to this tradeoff, which is general enough to cover 
any space-time code. In fact, this tradeoff is a feature of the 
MIMO architecture itself regardless of which space-time 
code is implemented in the architecture. 

Let us consider the MIMO architecture shown on Fig. 4. 
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Fig. 4. High-level MIMO architecture, n=3. 
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In order to achieve the maximum diversity order (n2), each Tx 
antenna must launch the same information bits (however, not 
necessarily at the same time) simply because diversity means 
that the bit-bearing signal travels along many paths and its 
copies are combined at the receiver. Thus, diversity order n2 
means that the signal travels along n2 different paths, which is 
possible only when each Tx antenna launches the same 
information bits (possibly at different time instants). Note 
that the total number of paths in Fig. 4 is n2 (by “path” we 
mean a link between each Tx and each Rx antenna, i.e. we do 
not count multipath components). On the other hand, in order 
to achieve the maximum capacity, each Tx antenna must 
launch an independent bit stream [2]. Hence, the maximum 
diversity order n2 is not possible in this mode. In fact, a 
diversity order of at most n is only possible simply because 
each bit-bearing signal travels along only n different paths. 
Note also that the Rx signal-processing algorithm does not 
allow to achieve even this diversity order for every bit [2]. 
From the argument above, we conclude that the maximum 
diversity order nD and the maximum channel number nC 
(channel number is the number of virtual parallel channels 
created by the Rx signal processing) are related as: 

nmnn CD ≤                           (21) 
where n is the number of Rx antennas and m is the number of 
Tx antennas ( mn ≥ ). Fig. 5 illustrates this tradeoff. Any 

actual diversity order and channel number created by using a 
space-time code must be within the shadowed area. In fact, 
(21) constitutes a fundamental tradeoff in the space-time code 
performance since nC may be roughly viewed as a factor in 
front of the log in (17) (it is very similar to the capacity slope 
[11], the number of effective degrees of freedom [3] and the 
effective dimensionality [10]). Thus, the channel number 
limitation transforms to the capacity limitation and, 
consequently, to the bit rate limitation. For example, for the 
maximum diversity order nmnD = , 1=Cn  and, 
consequently, the MIMO capacity is low, i.e. the same as 
SISO capacity. 

V. CONCLUSIONS 
A new compound upper bound on the mean (ergodic) 

MIMO channel capacity, which accounts for both transmit 
and receive branch correlation in such a way that their impact 
can be estimated separately and a conclusion can be made as 

to which site contributes more to capacity reduction (which is 
not easy to do using the mean or outage capacity), has been 
derived in this paper using the correlation matrix approach. 
The compound upper bound is tighter than the Tx or Rx 
bounds alone and it is not limited to some particular 
scenarios. Using the bound above, we estimated the MIMO 
capacity in a correlated multipath environment and 
demonstrated that the impact of channel correlation on the 
MIMO capacity is negligible when the two-element array 
beamwidth is smaller than the angular spread of the incoming 
multipath signals, which agrees well with the results in [7]. 

A fundamental tradeoff between the MIMO capacity and 
diversity order has also been discussed. This tradeoff limits 
achievable capacity (bit rate) for a given diversity order (or 
vise versa) for any space-time code. 
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