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ABSTRACT 
 
In this paper, we derive a universal upper bound on the 
MIMO channel capacity, which is not limited to a 
particular scenario, using the correlation matrix approach 
and the Jensen’s inequality. This bound accounts for both 
transmit and receive branch correlation in such a way that 
the impact of these branches can be estimated separately, 
which simplifies the procedure substantially. Some simple 
analytical results, which quantify the impact of correlation 
on the MIMO capacity in an explicit way, are given. We 
show that correlation increase is equivalent to SNR 
decrease in some cases. Finally, we discuss the paradox of 
zero correlation and provide a statistical explanation for it. 
We demonstrate why zero mean correlation is not a 
guarantee of high capacity. Mean magnitude or RMS 
correlation should be used for the capacity estimation of 
degenerate MIMO channels. 
 

1. INTRODUCTION 
 
Multiple-input multiple-output (MIMO) communication 
architecture (also known as BLAST - Bell Labs Layered 
Space Time), which uses multiple antennas at both the 
transmitter and the receiver, has recently emerged as a 
new paradigm of extremely spectrum-efficient wireless 
communications in rich multipath environments [1-4]. 
Suffice it to say that unprecedented wireless spectral 
efficiencies, ranging from 20 - 40 bit/s/Hz, have been 
demonstrated in a laboratory environment [4], which are 
simply unattainable using traditional techniques. Even 
higher spectral efficiencies may be achieved in certain 
environments when the system design is optimal. 

The central paradigm behind MIMO/BLAST is to use 
rather than to suppress multipath. Using a special signal 
processing algorithm at the receiver, the matrix wireless 
channel can be transformed into a virtual set of 
independent parallel channels in rich multipath 
environment. However, in real-life conditions the MIMO 

channel capacity may be limited due to several factors. 
One of the most important such factors is the correlation 
between sub-channels (i.e., links between one transmit 
and one receive antenna) of the matrix channel [5-7]. The 
MIMO capacity achieves its maximum for completely 
uncorrelated matrix channel. The correlation between 
individual receive and/or transmit branches results in 
capacity decrease. Several models have been used so far 
to study this phenomenon. Their application is typically 
limited to some specific scenarios. 

In this paper, we derive the universal upper bound on 
the MIMO channel capacity, which is not limited to some 
specific cases, using Jensen’s inequality and concavity of 
log det function, and apply the recent results obtained for 
static channels to the case of a stochastic (random) 
channel. We also demonstrate how to apply the results 
obtained for diversity combing to the MIMO system 
analysis using the upper bound above. 

The upper bound derived in this paper accounts for 
both transmit and receive branch correlation in such a way 
that the impact of these branches can be estimated 
separately, which simplifies the computational procedure 
substantially 
 

2. MIMO CHANNEL CAPACITY 
 
For a fixed linear n×n matrix channel with additive white 
gaussian noise and when the transmitted signal vector is 
composed of statistically independent equal power 
components each with a gaussian distribution, the channel 
capacity is [3]: 







 ⋅ρ+= +HHI

n
C detlog2  bits/s/Hz ,     (1) 

where n is the number of transmit/receive antennas (we 
consider here the case when the number of transmit and 
receive antennas are equal), ρ is the signal-to-noise ratio 
(SNR), I is n×n identity matrix, H is the normalized 



 

channel matrix, which is considered to be frequency 
independent over the signal bandwidth, and “+” means 
transpose conjugate. We adopt here the following 
normalization condition: 

nh
n

ji
ij =∑

=1,

2
 ,                         (2) 

where hik denotes the components of H ( ijh  is the transfer 

factor between jth transmit antenna and ith receive 
antenna). Hence, nρ  is the average per-branch SNR, i.e. 
ρ is the ratio of total received power (in all branches) to 
the per-branch noise level. Some other kinds of the 
normalization can also be used, but in this case nρ  will 
have a slightly different meaning. 
 

3. UPPER BOUND ON MIMO CHANNEL 
CAPACITY 

 
When the channel is random (stochastic), then the 
capacity is random, too. The mean (ergodic) capacity can 
be defined in this case as [1]: 





 ⋅ρ+δ= ijij r

n
C detlog2  ,                (3) 

where ijr  is “instantaneous” correlation matrix, 

∑=
k

jkikij hhr *  ,                               (4) 

ijδ  is Kroneker's delta, < > is the expectation over the 

channel matrix. Note that Eq. (3) does take into account 
correlation occurring at both the transmit and receive 
ends. This equation can be used for statistical (Monte-
Carlo) simulations to evaluate C  for some specific 
models of the channel matrix. However, these matrix 
numerical computations can be very lengthy, especially 
when the number of antennas is very large. Here we 
propose to use Jensen’s inequality to obtain an upper 
bound on C . According to this inequality and concavity 
of log det function [8], one obtains: 





 ⋅ρ+δ=≤ R

ijijR r
n

CC detlog2               (5) 

where R
ijr  is the correlation matrix of receive branches, 

∑=
k

jkik
R

ij hhr *  ,                      (6) 

Note that this correlation matrix does not capture the 
correlation of transmit branches (since k in (6) represents 
the transmit antenna index and it is the same for both 
factors). Thus, the upper limit in (5) can be close to the 

mean capacity when the correlation of receive branches is 
much higher than the correlation of transmit branches and, 
consequently, the effect of transmit branch correlation can 
be ignored. However, if the transmit correlation is higher 
than the receive one, then the upper bound in (5) is not an 
accurate approximation of the mean capacity. Therefore, 
in order to have an upper bound that is as close as possible 
to the mean capacity, one must also account for transmit 
correlation. To this end, the reciprocity of (1) can be used 
in the following way. First, we note that the MIMO 
capacity given by (1) is invariant under the transformation 

THH →  (“T” means transpose). This in effect is 
equivalent to reversing the direction of information 
transmission by interchanging transmit and receive ends. 
Thus, (3) still holds true if we define ijr  as: 

∑=
k

kjkiij hhr *  ,                          (7) 

Hence, one obtains the second upper bound (the transmit 
bound), 





 ⋅ρ+δ=≤ T

ijijT r
n

CC detlog2              (8) 

where T
ijr  is the correlation matrix of transmit branches, 

∑=
k

kjki
T
ij hhr *  ,                      (9) 

Note that the upper bound in (8) does not capture the 
receive correlation. Therefore, this upper bound will be 
close to the mean capacity when the transmit correlation is 
higher than the receive one. However, if the opposite is 
true, then this upper bound is not an accurate 
approximation of the mean capacity. 

From inequalities (5) and (8) it is clear that a tighter 
upper bound of the mean channel capacity can be obtained 
by combining them. Thus, we form the compound upper 
bound by taking minimum of the two bounds defined 
above, 

[ ]TRcmp CCC ,min=                       (10) 

This upper bound is much tighter than the receive or 
transmit bound considered separately when the transmit 
and receive branch correlations are significantly different. 

Let us now consider an illustrative example of 
correlated Rayleigh channel. The components of H are 
taken to be identically distributed complex gaussian 
variables (real and imaginary parts are identically 
distributed and independent, i.e. the phase is uniformly 
distributed over [ ]π2,0 ) with zero mean and unit variance.  
The correlation matrix of H is assumed to be of the 
following form: 
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Figure 1. MIMO channel capacity and its upper 
bounds versus correlation coefficient 
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where R
ijR  and T

ijR  are uniform correlation matrixes of 

the receive and transmit branches correspondingly, 
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where 10 ≤≤ r . In fact, (11) assumes that the receive and 
transmit branches are correlated independently on each 
other (which may be justified by the presence of local 
scatterers near both ends). Fig. 1 shows the mean capacity 
of this channel, obtained by extensive numerical 
simulations (Eq. 3), and the receive (Eq. 5), transmit (Eq. 
8) and compound (Eq. 10) bounds.  In this example, 

0=r corresponds to uncorrelated receive branches and 
full correlation of the transmit ones; 1=r  corresponds to 
full correlation of receive branches and uncorrelated 
transmit ones. The compound bound provides a good 
approximation to the mean capacity while the receive or 
transmit bounds alone are not accurate for the whole range 
of r. It is also interesting to note that the maximum 
capacity is achieved for 5.0=r . This indicates that 
decrease in capacity is usually due to that side (transmit or 
receive) which has higher correlation. Thus, a rough 
estimation of the capacity may be obtained by considering 
only the higher correlated side. 

 
4. SOME ANALYTICAL RESULTS 

Using the upper bound on MIMO channel capacity 
derived above, one may apply the analytical results on the 
MIMO capacity of a deterministic channel [5,6,10] to the 
case of random channel, i.e. to obtain the upper bound. 
For simplicity, we assume here that the transmit branches 
are not correlated and the correlation impact is due to the 

receive branch correlation. Obviously, the impact of 
transmit branch correlation can be estimated in a similar 
way and the combination of the results is trivial. It is also 
assumed that the receive power is identical for all the 
receive branches. In this case, 

1
2

=∑ j ijh                           (13) 

and ijr in (4) is the normalized correlation matrix, 1≤ijr . 

The effect of unequal received powers can be considered 
in a straightforward way [5]. 

We start with the uniform correlation matrix model, 
when all the correlation coefficients are equal and real [6], 
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This case is somewhat artificial because one expects that 
the correlation of neighbouring branches is larger than that 
of distant branches. However, the case of equal correlation 
coefficients provides a worst-case estimation and some 
insight into BLAST operation in correlated channels, so it 
deserves to be considered (besides, one may interpret r as 
an "average" correlation coefficient). In this case, after 
some mathematical transformations that do not change the 
determinant, we present the upper bound (5) in the 
following form: 
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For n=2, (15) reduces to (8) in [5]. As a detail analysis of 
(7) shows, the channel capacity decreases substantially for 
r ≥ 0.5 – 0.8, what agrees well with the recent 
measurements of the MIMO channel [9]. For r=1, (15) 
reduces to the famous Shannon's formula. It should be 
noted that the second term in (15) is essential only when 
the correlation coefficient is close to 1. However, in this 
case the advantage of the MIMO architecture over 
traditional techniques is very small (the channel capacity 
is close to the Shannon's SISO limit) and it is not 
reasonable to use it. Thus, when the MIMO architecture 
provides a substantial advantage, the upper bound on its 
channel capacity can be estimated as (for 10 <≤ r ): 

( )





 −ρ+⋅≈ r

n
nC 11log2                  (16) 

In the limiting case of ∞→n , one obtains from (16): 

( )
2ln

1 rC −ρ≈∞                           (17) 

When r=0, the last two equations reduce to the well-
known formulas (in this case, H=I) [3]: 



 


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n
nC 1log2  and 

2ln
ρ=∞C          (18) 

Comparison of (16) and (17) with (18) clearly indicates 
that the effect of the channel correlation is equivalent to 
the decrease in the SNR. Hence, for example, r=0.5 is 
equivalent to 3 dB reduction in SNR. Another 
interpretation of (16) and (17) is that the correlation of 
individual sub-channels gives an increase in the noise 
level because for each particular sub-channel all the other 
sub-channels are just the sources of interference. 

Let us now consider the case of exponential 
correlation matrix [10], 
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Obviously, (19) may be not an accurate model for some 
real-world scenarios but this is a simple single-parameter 
model which allows one to study the effect of correlation 
on the MIMO capacity in an explicit way and to get some 
insight. It remains to be investigated whether this model is 
applicable or not to some specific scenarios. Note, 
however, that this model is physically reasonable in the 
sense that the correlation decreases with increasing 
distance between receive antennas. Thus, it should be 
more accurate than the uniform model above. In a 
practically-important case of high SNR ( 1>>ρ n ), n>>1 
and r<1, (5) can be reduced to: 







 





 −ρ+⋅≈ 2

2 11log r
n

nC                  (20) 

In the limiting case of ∞→n , one obtains from (20): 






 −ρ≈∞

21
2ln

rC                        (21) 

Comparison of (20) and (21) with (18) clearly indicates 
that the effect of the channel correlation is equivalent to 
the SNR loss, the same as for the uniform model above. 
Hence, for example, r=0.7 is equivalent to 3 dB reduction 
in the signal-to-noise ratio. Note also that the channel 
capacity does not depend on the correlation coefficient 
phase.  

Fig. 2 shows the upper bound of MIMO channel 
capacity versus the correlation coefficient evaluated by 
the full matrix computation (Eqs. (5) and (19)) and by 
(20) for n=10 and 50, and ρ=30 dB. The MIMO channel 
capacity evaluated using the uniform correlation matrix 
model (see (15)) is also shown for comparison. As one 
may see from this figure, the accuracy of approximate 
formulas is quite good. It should be noted that the 
accuracy decreases as n and ρ/n decreases. The uniform 
model predicts lower capacity, as it should be (because it 
is the worst case model – the correlation between distant 
receive branches is the same as between neighboring  
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Figure 2. MIMO capacity upper bound versus 
correlation coefficient for exponential and uniform 
models. 
 
ones). We also see that the MIMO capacity decreases 
significantly for r>0.5-0.8, that agrees well with the know 
results on the spatial diversity techniques [11] and with 
recent measurements of the MIMO channel [9]. Detailed 
analysis using Monte-Carlo simulations shows that the 
mean capacity is approximately 20 to 40% smaller then 
the upper bound above. 
 

5. PARADOX OF ZERO CORRELATION 
 
MIMO channel capacity  is usually thought of as limited 
by correlation: it is low for highly correlated channel, and 
it is high when the correlation between individual sub-
channels (i.e. links between one transmit and one receive 
antenna) of the matrix (MIMO) channel is zero. However, 
an elegant example has been presented in [12], which 
demonstrates that zero correlation is not a guarantee of 
high capacity, i.e. the channel may have zero correlation 
and still only a single degree of freedom (these are so 
called degenerate channels or keyholes). However, no 
explanation has been provided to this phenomenon. In this 
section, we provide a statistical explanation of this 
phenomenon and, in particular, we emphasize that one 
should distinguish between “instantaneous” and “mean” 
(or conventional) correlation. We also present a general 
statistical criterion for the channel to be degenerate and 
propose a method to estimate the capacity of those 
channels. 

Let us now consider 2x2 deterministic MIMO channel. 
(1) takes the following form in this case: 

( )22112
2

12

22

2 log
22

1log rrRC +



















 ρ−






 ρ+=    (22) 



 

where 12R  is the normalized correlation coefficient 

( 112 ≤R ), 

2211

12
12

rr

r
R =                                  (23) 

In fact, 11r  and 22r  represent the normalized received 
power in 1st and 2nd branch correspondingly. Hence, the 
last term in (22) describes the effect of SNR. The 
eigenvalues λ  of ijr  can be obtained from the following 

equation: 

( ) 01 2
1222112211

2 =




 −+λ+−λ Rrrrr          (24) 

The singular values of ijh  are square roots of λ  [1]. Thus, 

correlation has the major impact on the number of degrees 
of freedom (i.e., non-zero singular or eigenvalues): there 
are two degrees of freedom when 112 <R  and only one 

when 112 =R , as long as the received powers are not 
zero. 

When the channel is random, the mean (ergodic) 
capacity may be defined using the expectation over the 
channel matrix in (22) (see eq. (3)) [1]. Detailed analysis 
using Monte-Carlo simulations of the correlated Rayleigh 
channel and of the channel in [12] shows that the impact 
of the second term in (22) on the mean capacity is much 
smaller than that of the first term for 1>>ρ . The same 
conclusion may be obtained using Jensen’s inequality. 
The second term mainly accounts for varied received 
powers. On the contrary, correlation has the major impact 
on the mean capacity. Hence, to isolate and study the 
effect of correlation, we neglect the second term. In this 
case, the mean capacity depends on 12R only, which is 
“instantaneous” correlation coefficient, and can be 
presented as follows: 

( ) ( ) 121212

12

dRRfRCC
DR

⋅= ∫                  (25) 

where ( )12Rf  is the probability density function (PDF) of 
R12, and DR12 is the range of R12. Thus, the mean capacity 
depends on the PDF of R12, not only on its mean value. In 
general, the mean correlation is not a reliable tool in 
estimating the MIMO capacity of a random channel. 

Let us now consider an illustrative example, when 
112 ±=R  with equal probability. Obviously, the mean 

correlation is zero but the mean capacity is low and there 
is only one degree of freedom just because 112 =R . The 
next example is provided in [12]. In that case,  

( )21
12

ϕ−ϕ= jeR                            (26) 

where ( )11 arg b=ϕ , ( )22 arg b=ϕ , and b1 and b2 are 
scattering coefficients (see [12] for detail discussion). 
Again, 012 =R  because 1ϕ  and 2ϕ  are independent 

and uniformly distributed, but the mean capacity is low 
and there is only one degree of freedom because 112 =R . 
From the considerations above, we may conclude the 
following: 
§ The capacity of deterministic channel is maximum 
when 012 =R  (see eq. (22)). However, as the examples 
above show, it is wrong to state the same about random 
channel using the mean correlation, i.e. zero mean 
correlation of a random channel is not a sufficient 
condition of maximum mean capacity. Using inequality 
(5), we conclude that it is the necessary condition (i.e., if 
the mean correlation is high, than the mean capacity is 
necessarily low). 
§ Referring to eq. (22), we conclude that the sufficient 
condition of high capacity is low mean magnitude 
correlation. For example, if 012 =R , then there are two 

degrees of freedom and the mean capacity is maximum 
simply because 012 =R  in this case. 

The general conditions for a channel to be degenerate 
are,  

012 =R   and  112 =R                   (27) 

From practical viewpoint, 12R  may not be equal to 1 but 

be close to it. The capacity will be low in this case as well. 
In particular, according to the results of Section 4, it will 
be low when 8.05.012 −≥R . In the case of degenerate 
channels, the mean correlation does not provide an 
accurate estimation of the capacity. Figure 3 illustrates the 
channel capacity for PDF of R12 of the following form: 

( ) 1,exp 12
12

12 ≤






α
⋅= R

R
cRf              (28) 

where c is normalizing constant, and α determines the 
root-mean-square (RMS) value of R12 (note that α may be 
negative as well as positive). Obviously, the mean 
correlation is zero and its use for estimating the capacity 
will give an incorrect result. As figure 3 indicates, a more 
accurate estimation of the capacity of degenerate channels 
can be obtained using RMS or mean magnitude 
correlation. 

It is interesting to note that the eigenvalue approach, 
which is widely used for the MIMO system analysis, is 
more formal mathematically and does not provide this 
insight. 
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Figure 3. MIMO capacity using RMS, mean 
magnitude and mean correlation versus RMS 
correlation for ρ=20 dB. 

 

7. CONCLUSIONS 

In this paper, we discussed the use of Jensen inequality to 
estimate the MIMO channel capacity through the upper 
bound on it. The direct application of the inequality results 
in the receive branch upper bound, which does not 
account for the transmit branch correlation. The transmit 
branch bound is obtain using the transpose of the channel 
matrix. Finally, the compound bound is formed using the 
minimum of the two bounds above. This compound bound 
accounts for both transmit and receive branch correlation 
in such a way that the impact of these branches can be 
estimated separately, which simplifies the procedure 
substantially. Extensive numerical simulations confirm 
that this bound is a quite accurate estimation of the mean 
MIMO capacity. The statistics of amplitude distribution of 
the matrix channel coefficients has no significant impact 
on the capacity – the main impact is due to correlation. 

Using the bound above, we applied the results on 
MIMO capacity of deterministic channels to a random 
channel, i.e. estimated the capacity upper bound using the 
uniform and exponential correlation matrix models. These 
estimations agree well with the recent measurements of 
the MIMO radio channel. We have also shown that the 
increase in correlation is equivalent to the decrease in 
SNR. 

Finally, we have discussed the paradox of zero 
correlation and provided a statistical explanation for it. In 
particular, we have shown that one should distinguish 
between “average” (conventional) and “instantaneous” 
correlation. High magnitude correlation is the solution to 
this paradox. Zero average correlation is not a guarantee 
of high capacity. On the contrary, zero or low mean 
magnitude correlation is indeed a guarantee of high 
capacity. Mean magnitude or RMS correlation should be 
used for the capacity estimation of degenerate channels. 
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