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On the Use of Cann’s Model for Nonlinear
Behavioral-Level Simulation

Sergey L. LoykaMember, IEEE

Abstract—The use of Cann’s model for modeling nonlinear cir- 11 , , , . ' , , : :
cuits and systems is discussed in this paper. It is shown that this 10l
model has a nonphysical behavior for the small-signal regime in F
most cases (it has no some derivatives and, correspondingly, cannot 09r
be expanded in a Taylor series) and gives incorrect predictions for 081
nonlinear products. When nonlinearities are to be taken into ac- 0.7 -
count in the simulation (intermodulation, adjacent channel power, 06
etc.), the use of Cann’s model should be avoided or at least it should <z 05
be used with extreme care. = 0'4 I
Index Terms—Behavioral-level simulation, Cann’'s model, non- 03l
linear modeling. F
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EHAVIORAL-LEVEL techniques are presently very pop-
ular tools for the nonlinear simulation of mobile commu-
nication circuits and systems. Simulation accuracy and, conser. 1. Cann s model for various values of knee sharpness parasfeter
quently, the efficiency of a simulation technique as a desidgr: 1: 2-and10); L =1 = 1.
tool depends substantially on accurate modeling of nonlinear
elements. Cann’s model for a nonlinear input—output transighere
characteristic [1] was used for the nonlinear modeling of ampli- ;. jnput voltage;
fiers [intermodulation products (IMPs), spectral regrowth, etc.] ,,  output voltage;
in several recent publications [2]—-[4]. However, as a detail con- L
sideration shows, this model gives inaccurate results in many;
cases and should consequently be used with extreme care when knee sharpness parameter.
nonlinear effects (IMPs, harmonics, etc.) are analyzed. In ﬂl]i’? 1 shows various transfer characteristics described by (1).
paper, we consider the use of Cann’s model for the nonlme,’;ﬁJ

product prediction and show the reason why this model fa|ls11 e modulus function in the denominator of (1) and the sign

ctionsgn(x) in the numerator are required if various values
Fégﬁ:; ?f% rrrsc:;gljlzenlc?:ﬁrliag;2recf$t2;0dUCts in the small- S'gngtp s are allowed, not only even integer ones, sincean be

negative as well as positive (bipolar signals), and the transfer
characteristic is an odd ong—xz) = —y(z) (we consider now
first-zone products only). A slightly different form of Cann’s
model was adopted in [2], but if we accept the considerations

In this model, the input—output transfer characteristic is dgiven above, then it must be transformed to (1). Changing pa-
scribed by the following [1], [3], [4]: rameterd., [, ands, we can approximate by (1) a large number
of real-world amplifier input—output transfer characteristics [1],
[3]. Note thats need not be an integer.

X

output limit (asymptote a| — o) level;
input limit level;

Il. CANN'S MODEL OF INPUT-OUTPUT TRANSFER
CHARACTERITIC

T

L
L - sgn(z) 7

1) I1l. SOME STRANGE PROPERTIES OFCANN'S MODEL IN THE

s71/s = sql/s
[1 + <|l_|> } [1 + <@> } SMALL -SIGNAL REGIME
x . .

As it seems from Fig. 1, Cann’s model can approxi-
mate many real-world voltage transfer characteristics quite
satisfactory and it is indeed used for such a purpose. The
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2 i L rder Derivative of y(x) at x=0
g 1045 ,
0] E
= 107 ! Lyl
© E 3rd order IMP | ]
L 10% 5th order IMP
E 3 2 . . <
= 7th order IMP | not - exist, if 0<s<1
1077 e Oth order IMP | 0, if s>1
10@”:;”’. e ] .
3 -2 -1 0
10 10 10 10 3 too, if O<s<2 (s#1)
Input level 6L s=1
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Fig. 2. Third-, fifth-, seventh-, and ninth-order IMPs at the output of Cann’s g
model(L =1 =1,s = 1). 0, s>2
Cann’s model predicts the slope of third-order intermodula- 4 not exist, if 0<s<3 (sz2)
tion products equal te +1 (for equal input tone amplitudes. 0, if s>3 or s=2

Henceforth, we shall consider only this case) on the decibel
scale for the small-signal regime (see Fig. 2. Cann’s model

was used for the envelope input—output transfer characteristic > too, if O<s<4 (s+*integer)
s = 1). However, as is well known from theory and extensive 120L/1°, s=1
practical design experience (e.g., [5]-[7]), the third-order 451/, s=2
IMP slope must be equal to three (60 dB per decade in —30L/I°, s=4

decibel units) in the small-signal regime. Therefore, Cann’s
model gives correct predictions only ¥ = 2. It is most
probably thats # 2 if this parameter is determined using
measured data and a curve fitting technique. Thus, Cann’s 6 not exist, if 0<s<5 (s#234)
model will give incorrect results for the third-order IMP { 0, if s>5 or s=234

(as well as for higher order IMPs and harmonics), at least
for the small-signal regime. As we also see from Fig. 2,

0, s>4 or s=3

the fifth-, seventh-, and ninth-order IMPs have the same 7 too, If 0<s<6 (s#integer)
slope as the third-order IMP, what is also incorrect for the 5040L/1", s=1

small-signal regime. Thus, the next question arises: What is ~1575L/1", s=2

the reason for Cann’s model incorrectness in this case? The 1120L/17, s=3

reason proposed in [3] is, “However, since these models are —840L/1", s=6

only characterized to yield correct single-tone measurements 0 s>6 or s=45

it is not expected that the magnitude of these intermodula-
tion products are correct.” However, as was shown in many
publications (e.g., [8]-[10]), the quadrature modeling tech-
nigue that is characterized from single-tone measurementgime is very strange. For instance, wheg 4 (or, in a more
can nevertheless predict multiple-tone nonlinear produdsneral case, when> 2), there is no third-order nonlinearity
(IMPs, adjacent channel power, etc.) quite accurately. Thus,this characteristic and, consequently, the slope of 4 M#l
the above statement does not provide the true reason. not be equal to three in the small-signal regime. Whenodd

The real reason does not lie in the simulation or the chanteger, this model also experiences the problems with deriva-
acterization approach, but in the model itself (in its particulaives. In particular, ifs = 2k + 1 (wherek is an integer), there
mathematical form). Examining carefully (1), one may expedoes not exist thé2k +2)th-order derivative and, consequently,
some problems with the derivatives#fr) atz = 0 due to|z| we cannot use the Taylor series expansion of the Cann’s model.
becausdz|, as is well known [11], [12], has no derivatives afThis is also a very undesirable feature because the Taylor series
z = 0. Detail analysis (using left-side and right-side derivative®xpansion is a very useful and widely accepted tool for the anal-
shows that the first derivative exists and the problems appe@ais of weakly nonlinear circuits (without memory effects; when
for higher-order derivatives. Table | shows the detail results faremory effects are to be taken into account, Volterra series ex-
the first-order to the seventh-order derivatives. From this tabjeansion is used) [7], [13], [14], and the transfer characteristic of
as well as from (1), we may conclude that there exist no proany weakly nonlinear circuit (like amplifier in the small-signal
lems with derivatives whes = even integerHowever, even in regime) can be expanded in the Taylor series (when memory
this case the behavior of the Cann’s model in the small-sigredfects are not taken into account). When# integer, some
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odd-order derivatives are infinite and some even-order derivales with these derivatives, we also have troubles with nonlinear
tives do not exist. Hence, in this case, one also cannot expandgheducts.
Cann’s model in the Taylor series. Thus, the only case when allLet us now consider the case|ef < [. Thisis an “expected”
derivatives exist and are finite $s— even integethowever, asit small-signal region, but, as considerations given above show,
was mentioned above, IMP levels in the small-signal regime ateere is no small-signal region (in the sense that the model is
also incorrectly predicted in this case). If one uses a curve-fittimgeakly nonlinear and, consequently, there exists the Taylor se-
technique to computefrom measured data,is most probably ries expansion and IMPs have correct slopes) for Cann’s model
will not be equal to an even integer and, consequently, it with most cases. Detailed analysis shows that IMP levels of all or-
not be possible to expand (1) in a Taylor series. Note that in thers (not only the third-order one) are determined by the second
limiting case ofs — oo Cann’s model reduces to the ideal limterm in brackets in (2) in this case,dfis not an even integer.
iter [1] that can be expanded in the Taylor series (which consisd#hens = 2, this term determines only third-order IMP, higher
of only the first-order term) for: < I. In this case, as Table | order IMPs are determined by higher order terms and have cor-
shows, second- and higher order derivative are equal to zero aact slope. One may say that this case is the only one when
the Taylor expansion exists. Cann’s model predicts correctly the nonlinear products (IMPs
Let us now consider the binomial series expansion of (1) [8ind harmonics) of a weakly nonlinear circuit.df= 4, e.g.,
there is no third-order IMP (more precisely, there is a spectral
L 2|\ * || 28 || 3s component aRf; — fo, but its slope is five, thus, this is the
y(z) = o| 1+a <7> a2 <7> a3 <7> -] fifth-order nonlinearity). The same is true for= 6, 8, 10....
Furthermore, when we compare the two cases-6f2 and, say,
@ s = 1.9, we find that in the first case IMPs have correct slope
and in the second one all the IMPs have the same slope, i.e.,
hall variation ins changes significantly the qualitative prop-
' erties of the model. Thus, Cann’s model has unstable physical

whereq; are the expansion coefficients. We see that this char
teristic is an odd onéy(—x) = —y(x)), as one would expect
put if s = 1, for example, it also contains “even-power NONpahavior with respect to changessn
linearities” [more precisely, products of even powerscaind

) btains these t hen the brackets in (2 It should be noted that Cann’s model can be used for both
sgu(z), one obtains ese terms when the brackets in ( )ar_e {ffé instantaneous transfer characteristic (broad-band or instan-
moved. They are nonlinear functions of strictly even power in

¢ > 0orf < 0. but not for bothl. Thisi ‘ b taneous nonlinearity) and the envelope transfer characteristic
orz > Qorforz < 0, but not for hoth]. This is very sirange e'ébandpass or envelope nonlinearity). However, it has the unde-

ca;Jsg ltJ.suaIIy even_—order powters'{';re assgc(inated v|\_1||th eve?hc #5ble properties discussed above in both cases and also in the
acteristics(y(—xz) = y(x)), not with an odd one. Hence, €case ofs # integer.

properties of (2) are also very different from those of a Taylor
series expansion.

Thus, in the general case (whegs even integérwe cannot
expand (1) in a Taylor series and, consequently, there is no suchiVe can conclude that the main reason of incorrect predictions
thing as a small-signal regime (weak nonlinearity) for (1)—angf IMP levels (and also other nonlinear products) by Cann’s
signal, no matter how small it can be, remains in the large-sigmabdel is its nonphysical behaviorat= 0, namely, the nonexis-
area when using Cann’s model. As mentioned in [1] and [3gnce of many derivatives at this point in most cases. Thus, con-
one attribute for a transfer characteristic model is that “it hasructing a model for an input—output transfer characteristic, it is
to be linear for small signals.” But (1) is not linear for smalhot enough to consider only the characteristic values themselves
signals, it only looks like it is linear when we plot it and it hagits plot), but its derivatives are also of great importance when a
a very strange behavior in the expected “small-signal” regiononlinear behavior is involved. Special care must also be paid to
The necessary and sufficient condition for a functfgm) to be  stable physical behavior of the model with respect to parameter
linear is that its second- and higher order derivatives equaldbanges over reasonable ranges. The use of Cann’s model in the

IV. CONCLUSION

zero simulation of communication systems should be avoided (or, at
least it should be used with extreme care) when nonlinear prod-
d—kf(a:) —0. E>2 3) ucts are to be taken into account. The main advantage of Cann’s

dzk - - model is that it is described by a closed-form expression that

is very convenient for analytical calculations. Presently, numer-
o li it its high der derivati d ¢ exist? Th $€al methods are extensively used, thus, this advantage is not
0 linear) if its higher order derivatives do not exist? The redo important any longer. A better choice in this case is to use

criterion for small-signal linearity is not the function’s plot, butsome series expansions or splines to approximate the measured
its derivatives and the possibility to expand it in a convergir}%

Taylor series that has a dominant first-order term. Thus, we o ansfer characteristic (8], [10], [19], {20].
tain the nonexpected slope for the third-order IMP because the
device we analyze operates in the large-signal regime where the
slope is not necessarily equal to three (the same is true for highefhe author would like to thank Prof. Gardiol, Prof. Mosig,

order IMPs and other nonlinear products). As is also well knovand Prof. Lipnizkii for many useful discussions, and Dr. Maas
[16]-[18], nonlinear product levels are determined by highéor providing references. He would also like to thank the re-
order derivatives of the transfer function and since we have trotiewers’ comments, which helped to improve the paper.
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