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On the Use of Cann’s Model for Nonlinear
Behavioral-Level Simulation
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Abstract—The use of Cann’s model for modeling nonlinear cir-
cuits and systems is discussed in this paper. It is shown that this
model has a nonphysical behavior for the small-signal regime in
most cases (it has no some derivatives and, correspondingly, cannot
be expanded in a Taylor series) and gives incorrect predictions for
nonlinear products. When nonlinearities are to be taken into ac-
count in the simulation (intermodulation, adjacent channel power,
etc.), the use of Cann’s model should be avoided or at least it should
be used with extreme care.

Index Terms—Behavioral-level simulation, Cann’s model, non-
linear modeling.

I. INTRODUCTION

BEHAVIORAL-LEVEL techniques are presently very pop-
ular tools for the nonlinear simulation of mobile commu-

nication circuits and systems. Simulation accuracy and, conse-
quently, the efficiency of a simulation technique as a design
tool depends substantially on accurate modeling of nonlinear
elements. Cann’s model for a nonlinear input–output transfer
characteristic [1] was used for the nonlinear modeling of ampli-
fiers [intermodulation products (IMPs), spectral regrowth, etc.]
in several recent publications [2]–[4]. However, as a detail con-
sideration shows, this model gives inaccurate results in many
cases and should consequently be used with extreme care when
nonlinear effects (IMPs, harmonics, etc.) are analyzed. In this
paper, we consider the use of Cann’s model for the nonlinear
product prediction and show the reason why this model fails to
predict correctly the levels of these products in the small-signal
regime (for weakly nonlinear circuits).

II. CANN’S MODEL OF INPUT–OUTPUT TRANSFER

CHARACTERITIC

In this model, the input–output transfer characteristic is de-
scribed by the following [1], [3], [4]:

(1)

Manuscript received May 20, 1999; revised January 5, 2000.
The author was with the Swiss Federal Institute of Technology, LEMA-EPFL,

Ecublens, CH-1015 Lausanne, Switzerland. He is now with LACIME-ETS,
Ecole de Technologie Superieure, Montreal, H3C 1K3 PQ, Canada. (e-mail:
segey.loyka@ieee.org).

Publisher Item Identifier S 0018-9545(00)07920-2.

Fig. 1. Cann’s model for various values of knee sharpness parameters(s =
0:5; 1; 2; and10); L = l = 1.

where
input voltage;
output voltage;
output limit (asymptote as ) level;
input limit level;
knee sharpness parameter.

Fig. 1 shows various transfer characteristics described by (1).
The modulus function in the denominator of (1) and the sign
function in the numerator are required if various values
of are allowed, not only even integer ones, sincecan be
negative as well as positive (bipolar signals), and the transfer
characteristic is an odd one (we consider now
first-zone products only). A slightly different form of Cann’s
model was adopted in [2], but if we accept the considerations
given above, then it must be transformed to (1). Changing pa-
rameters , , and , we can approximate by (1) a large number
of real-world amplifier input–output transfer characteristics [1],
[3]. Note that need not be an integer.

III. SOME STRANGE PROPERTIES OFCANN’S MODEL IN THE

SMALL -SIGNAL REGIME

As it seems from Fig. 1, Cann’s model can approxi-
mate many real-world voltage transfer characteristics quite
satisfactory and it is indeed used for such a purpose. The
input–output curves seem to be quite smooth (see Fig. 1)
so one might expect that it predicts nonlinear product levels
quite accurately if its parameters are accurately determined
(using a curve-fitting technique). However, as mentioned for
the first time in [3] (to the best of the author’s knowledge),
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Fig. 2. Third-, fifth-, seventh-, and ninth-order IMPs at the output of Cann’s
model(L = l = 1; s = 1).

Cann’s model predicts the slope of third-order intermodula-
tion products equal to (for equal input tone amplitudes.
Henceforth, we shall consider only this case) on the decibel
scale for the small-signal regime (see Fig. 2. Cann’s model
was used for the envelope input–output transfer characteristic

). However, as is well known from theory and extensive
practical design experience (e.g., [5]–[7]), the third-order
IMP slope must be equal to three (60 dB per decade in
decibel units) in the small-signal regime. Therefore, Cann’s
model gives correct predictions only if . It is most
probably that if this parameter is determined using
measured data and a curve fitting technique. Thus, Cann’s
model will give incorrect results for the third-order IMP
(as well as for higher order IMPs and harmonics), at least
for the small-signal regime. As we also see from Fig. 2,
the fifth-, seventh-, and ninth-order IMPs have the same
slope as the third-order IMP, what is also incorrect for the
small-signal regime. Thus, the next question arises: What is
the reason for Cann’s model incorrectness in this case? The
reason proposed in [3] is, “However, since these models are
only characterized to yield correct single-tone measurements
it is not expected that the magnitude of these intermodula-
tion products are correct.” However, as was shown in many
publications (e.g., [8]–[10]), the quadrature modeling tech-
nique that is characterized from single-tone measurements
can nevertheless predict multiple-tone nonlinear products
(IMPs, adjacent channel power, etc.) quite accurately. Thus,
the above statement does not provide the true reason.

The real reason does not lie in the simulation or the char-
acterization approach, but in the model itself (in its particular
mathematical form). Examining carefully (1), one may expect
some problems with the derivatives of at due to
because , as is well known [11], [12], has no derivatives at

. Detail analysis (using left-side and right-side derivatives)
shows that the first derivative exists and the problems appear
for higher-order derivatives. Table I shows the detail results for
the first-order to the seventh-order derivatives. From this table,
as well as from (1), we may conclude that there exist no prob-
lems with derivatives when even integer. However, even in
this case the behavior of the Cann’s model in the small-signal

TABLE I
DERIVATIVES OF y(x) AT x = 0 (ODD-ORDER DERIVATIVES ARE EQUAL TO

+1 OR�1 DEPENDING ON ASPECIFICVALUE OF s)

regime is very strange. For instance, when (or, in a more
general case, when ), there is no third-order nonlinearity
in this characteristic and, consequently, the slope of IMPwill
not be equal to three in the small-signal regime. Whenodd
integer, this model also experiences the problems with deriva-
tives. In particular, if (where is an integer), there
does not exist the th-order derivative and, consequently,
we cannot use the Taylor series expansion of the Cann’s model.
This is also a very undesirable feature because the Taylor series
expansion is a very useful and widely accepted tool for the anal-
ysis of weakly nonlinear circuits (without memory effects; when
memory effects are to be taken into account, Volterra series ex-
pansion is used) [7], [13], [14], and the transfer characteristic of
any weakly nonlinear circuit (like amplifier in the small-signal
regime) can be expanded in the Taylor series (when memory
effects are not taken into account). When integer, some
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odd-order derivatives are infinite and some even-order deriva-
tives do not exist. Hence, in this case, one also cannot expand the
Cann’s model in the Taylor series. Thus, the only case when all
derivatives exist and are finite is even integer(however, as it
was mentioned above, IMP levels in the small-signal regime are
also incorrectly predicted in this case). If one uses a curve-fitting
technique to computefrom measured data,is most probably
will not be equal to an even integer and, consequently, it will
not be possible to expand (1) in a Taylor series. Note that in the
limiting case of Cann’s model reduces to the ideal lim-
iter [1] that can be expanded in the Taylor series (which consists
of only the first-order term) for . In this case, as Table I
shows, second- and higher order derivative are equal to zero and
the Taylor expansion exists.

Let us now consider the binomial series expansion of (1) [8]

(2)

where are the expansion coefficients. We see that this charac-
teristic is an odd one , as one would expect,
but if , for example, it also contains “even-power non-
linearities” [more precisely, products of even powers ofand

, one obtains these terms when the brackets in (2) are re-
moved. They are nonlinear functions of strictly even power in
for or for , but not for both]. This is very strange be-
cause usually even-order powers are associated with even char-
acteristics , not with an odd one. Hence, the
properties of (2) are also very different from those of a Taylor
series expansion.

Thus, in the general case (when even integer) we cannot
expand (1) in a Taylor series and, consequently, there is no such
thing as a small-signal regime (weak nonlinearity) for (1)—any
signal, no matter how small it can be, remains in the large-signal
area when using Cann’s model. As mentioned in [1] and [3],
one attribute for a transfer characteristic model is that “it has
to be linear for small signals.” But (1) is not linear for small
signals, it only looks like it is linear when we plot it and it has
a very strange behavior in the expected “small-signal” region.
The necessary and sufficient condition for a function to be
linear is that its second- and higher order derivatives equal to
zero

(3)

But how can we decide whether the function is linear (or close
to linear) if its higher order derivatives do not exist? The real
criterion for small-signal linearity is not the function’s plot, but
its derivatives and the possibility to expand it in a converging
Taylor series that has a dominant first-order term. Thus, we ob-
tain the nonexpected slope for the third-order IMP because the
device we analyze operates in the large-signal regime where the
slope is not necessarily equal to three (the same is true for higher
order IMPs and other nonlinear products). As is also well known
[16]–[18], nonlinear product levels are determined by higher
order derivatives of the transfer function and since we have trou-

bles with these derivatives, we also have troubles with nonlinear
products.

Let us now consider the case of . This is an “expected”
small-signal region, but, as considerations given above show,
there is no small-signal region (in the sense that the model is
weakly nonlinear and, consequently, there exists the Taylor se-
ries expansion and IMPs have correct slopes) for Cann’s model
in most cases. Detailed analysis shows that IMP levels of all or-
ders (not only the third-order one) are determined by the second
term in brackets in (2) in this case, ifis not an even integer.
When , this term determines only third-order IMP, higher
order IMPs are determined by higher order terms and have cor-
rect slope. One may say that this case is the only one when
Cann’s model predicts correctly the nonlinear products (IMPs
and harmonics) of a weakly nonlinear circuit. If , e.g.,
there is no third-order IMP (more precisely, there is a spectral
component at , but its slope is five, thus, this is the
fifth-order nonlinearity). The same is true for .
Furthermore, when we compare the two cases of and, say,

, we find that in the first case IMPs have correct slope
and in the second one all the IMPs have the same slope, i.e.,
small variation in changes significantly the qualitative prop-
erties of the model. Thus, Cann’s model has unstable physical
behavior with respect to changes in.

It should be noted that Cann’s model can be used for both
the instantaneous transfer characteristic (broad-band or instan-
taneous nonlinearity) and the envelope transfer characteristic
(bandpass or envelope nonlinearity). However, it has the unde-
sirable properties discussed above in both cases and also in the
case of .

IV. CONCLUSION

We can conclude that the main reason of incorrect predictions
of IMP levels (and also other nonlinear products) by Cann’s
model is its nonphysical behavior at , namely, the nonexis-
tence of many derivatives at this point in most cases. Thus, con-
structing a model for an input–output transfer characteristic, it is
not enough to consider only the characteristic values themselves
(its plot), but its derivatives are also of great importance when a
nonlinear behavior is involved. Special care must also be paid to
stable physical behavior of the model with respect to parameter
changes over reasonable ranges. The use of Cann’s model in the
simulation of communication systems should be avoided (or, at
least it should be used with extreme care) when nonlinear prod-
ucts are to be taken into account. The main advantage of Cann’s
model is that it is described by a closed-form expression that
is very convenient for analytical calculations. Presently, numer-
ical methods are extensively used, thus, this advantage is not
so important any longer. A better choice in this case is to use
some series expansions or splines to approximate the measured
transfer characteristic [8], [10], [19], [20].
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