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Abstract- A genetic algorithm technique for the 
approximation of nonlinear transfer functions is proposed in 
this paper. It is shown that the GA approximation method 
gives better accuracy than the classical Chebyshev 
approximation, which is sometimes considered to be the best 
one on the minimax criterion. Application of this technique to 
behavioral-level simulation is also discussed. 
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I. INTRODUCTION 
Extensive growth in radio communication systems, 

especially in mobile communications, under conditions of 
limited spectrum available places strict limits on equipment 
characteristics. Such equipment nonperfections as 
amplitude-to-amplitude (AM-AM) and amplitude-to-phase 
(AM-PM) conversions can severe distort the overall system 
performance [1-5]. Computer-aided nonlinear simulation 
tools allow a design engineer to improve and optimize the 
system performance. However, nonlinear simulation of 
digital communication systems presents new challenges: old 
simulation techniques and old parameters applied to analog 
systems are ill-suited for digital ones [3]. Such new 
standard parameters as power spectrum regrowth, adjacent-
channel power ratio (ACPR) and error-vector magnitude 
(EVM) are used for the characterization of digital system 
equipment performance. In order to simulate these 
parameters, single or several-tone (up to 10) simulation 
techniques must be replaced by multiple-tone (up to 103-
106) ones.  

Behavioral-level simulation techniques are most widely 
used for this purpose [1-8]. They require a representation 
(or approximation) of measured transfer functions. Various 
kinds of series expansion are usually used for this purpose. 
Most popular ones are Bessel function series, sine series 
and Chebyshev polynomials [2]. Polynomial approximation 
gives also some advantages for the simulation over wide 
frequency range [7-9]. In this paper, we consider the 
genetic algorithm technique of the series approximation of 
nonlinear transfer functions recently proposed [10], discuss 
its application to nonlinear behavioral-level simulation and 
some further development (especially improvement in 
computational efficiency). 

In general, series expansion of the transfer function can 
be written in the following form: 
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where K(x) – is the transfer function, fk(x) – are basis functions, 
ak – are expansion coefficients. Several methods can be used for 
calculation of the expansion coefficients [2, 6, 9, 11]. Here we 
discuss a new method of coefficient calculation, which uses the 
Genetic Algorithm (GA), and show that this method can achieve 
better accuracy as compared to traditional ones. 

II. FUNDAMENTALS OF THE GENETIC ALGORITHM 
Rapid progress in the field of computer technology and 

numerical methods allows one to use the natural selection 
principles for engineering problems. Applying genetic algorithm 
to electromagnetics allows one to solve complex problems 
unattainable for conventional methods [12, 13]. In general, GA 
methods are very effective in finding an approximate global 
maxima in a high-dimension function domain [12]. GA methods 
differ from conventional ones in that: 

• They operate on a group (or population) of trial solutions at 
the same time, 

• They use stochastic operators (selection, crossover and 
mutation) to explore the solution domain in search of an 
optimal solution. 

Generally, a genetic algorithm method performs the following 
main operations [12]: 

 
1. Encode the solution parameters as genes. In our case, series 

coefficients are used as genes. 
2. Create a string of the genes to form a chromosome, 
3. Initialize a starting population, 
4. Assign fitness values to individuals in the population. 
5. Perform reproduction through the fitness-weighted selection 

of individuals from the population, 
6. Perform recombination and mutation to produce members 

of the next generation.  
7. Steps 4-6 are performed until termination criterion is met 

(either the number of generation or the fitness value are 
used as the criterion). 

 
Although a binary-coding is used more frequently, we use 

here a real-coding in which real-value parameters are used as 
genes because physical-problem codings work better if they 
resemble the parameters they model [13]. Binary tournament 
selection strategy is used for the reproduction due to faster 
operation and the absence of convergence problems [13]. In our 
case, fitness function is defined to be the maximum difference 
between the transfer function and its approximation: 
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where I,1i = . The difference is estimated at sample points 
xi . This fitness function is more appropriate for nonlinear 
analysis problems than, for example, the root-mean square 
difference.  

The single-points crossover is used, in which a random 
point in parents’ chromosomes is selected and the portions 
of the chromosomes after the selected point are exchanged. 
The probability of crossover pcross =0.7 is chosen, since it is 
reported to be the optimal value [13]. 

During the mutation operation, a gene in chromosome is 
changed with the probability pmut=0.001-0.1 . Higher 
probabilities give faster convergence in the initial phases. In 
general, pmut corresponds to at most the mutation of one or 
two genes per chromosome and at least a few chromosome 
per generation [13]. For a real-coding, the gene mutation is 
a small random perturbation of its initial value: 
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where ĝ and g – are gene values after and before the 
mutation correspondingly, gmax – the maximum value of the 
gene, G(0,1) – random Gaussian-distribution number with 
the mean value = 0 and the standard deviation =1.  

Elitist strategy is also employed (the best individual 
from the previous generation is inserted into the next one if 
the fitness value of the best individual in the next 
generation is lower than in the previous one). 

The choice of the initial population may substantially 
influence the GA performance. Thus, some a priory 
knowledge should also be used. 

Thus, using Genetic Algorithm we can evaluate the 
expansion coefficient ak in a new way. Further we consider 
the Chebyshev polynomials as basis functions and apply 
GA to evaluate the expansion coefficients. However, the 
use of GA is not limited to this particular kind of basis 
functions – any other basis functions can also be used. 

III. APPLYING GENETIC ALGORITHM TO 
CHEBYSHEV POLYNOMIAL SERIES EXPANSION 

Polynomials are often used as basis function for the 
nonlinear transfer function. The use of Chebyshev 
polynomials in this case gives many advantages due to 
exceptional properties of these polynomials [11]. Usually, 
the expansion coefficients are calculated using the 
orthogonality of the Chebyshev polynomials:  
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where tj – are zeros of the Chebyshev polynomials, Tk – is 
k-th order Chebyshev polynomial. Integral formulation can 
also be used for this purpose. 

It is a common belief that Chebyshev polynomials give 
the best polynomial approximation to a given function on 
minimax criterion [11]. Here we show that GA method 
allows one to build a polynomial approximation better than 
Chebyshev one on the minimax criterion. For this purpose, 

we have used an instantaneous transfer characteristic of a single-
stage microwave amplifier, which has been calculated from the 
measured envelope transfer characteristic using the integral 
equation approach [14-16]. Further, we have calculated the 
expansion coefficients ak using the conventional approach 
(eq.(4)) and the GA method described above. Since the 
performance of the genetic algorithm depends substantially on 
the initial population generated, we used some physical 
observations in order to improve the algorithm performance. In 
particular, the normalized transfer function was used, such that 
a1=1 . We have also used the fact that higher-order coefficient 
are smaller than lower-order ones. Thus, the following maximum 
coefficient values have been used: 

k
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Some particular results are as follows. For N=5, the 
maximum error for the conventional approach is εconv=0.034, and 
for the GA method is εGA=0.029. For N=7, εconv=0.036 and 
εGA=0.024. And for N=15, εconv=0.012 and εGA=0.0093. Thus, 
the main result is that the GA methods give the maximum error 
between the transfer function and its approximation in average 
1.2-1.5 times lower than the conventional method. 

Fig. 1 shows the approximation error for the conventional 
method and for the GA method applied to the approximation of a 
hyperbolic tangent function (this function is frequently used in 
nonlinear simulation of active circuitry). It can be seen from this 
figure that the approximation curve peaks for the classical 
Chebychev series are not of equal amplitude. It means that this 
approximation is not optimal on the minimax criterion [11] and 
may be further improved. At the same time, all peaks of the GA 
method curve are almost equal, indicating that this approximation 
is very close to the optimal one. 
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Figure 1. Approximation error for hyperbolic tangent versus 
normalized input level (dashed line – conventional Chebyshev 
polynomial series, solid line – the GA coefficient evaluation 
method, N=9 for both methods). 
 
 



 

IV. GENETIC ALGORITHM APPROXIMATION AND 
NONLINEAR BEHAVIORAL-LEVEL SIMULATION 

As it was already mentioned above, behavioral-level 
simulations techniques require some representation or 
approximation of transfer functions. Due to nonlinear 
behavior of a circuit under simulation, approximation of 
its transfer characteristic is usually a very difficult task. 

First, the envelope transfer characteristics (AM-AM 
and AM-PM) are usually measured (using network 
analyzer in power sweep mode or other appropriate 
equipment) or simulated at the circuit level. In the latter 
case, harmonic balance simulator is more appropriate tool 
because transient-mode simulation (using SPICE, for 
example) has rather small dynamic range [3], requires 
much computational resources (very time-consuming) and 
reveals large phase errors [17]. In any case, measured or 
simulated AM-AM or AM-PM characteristics includes 
measurement/simulation noise: 
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where y(x) – is the measured (or simulated) characteristic 
yreal(x) – is the “real” characteristic (without any noise or 
inaccuracy), and ε(x) – measurement (simulation) 
inaccuracy (noise). Consequently, an approximation of 
y(x) is a specific optimization problem: we need to 
approximate yreal(x) as accurate as possible and, at the 
same time, we need to suppress ε(x) as much as possible. 
The first part of optimization requires high-order 
approximation (the more terms we use, the more accurate 
we approximate yreal(x) ). The second part requires low-
order approximation (the lower order we use, the more we 
suppress ε(x) because it usually contains higher-order 
components). Obviously, there is some optimum. 
Unfortunately, there is no any mathematical technique at 
the moment which would allow to calculate this optimum. 
Now we can see why the GA method is so important: it 
allows to calculate the best possible approximation (the 
best approximation of yreal(x) ) for a given approximation 
order (we keep it rather small to suppress ε(x) ). Fig. 2 
illustrates this situation. As we can see from this figure, 
the approximation error decreases and the noise 
contribution increases as the number of terms increases. 
The optimum number in this case is about 50. 

Substantial difference between measured and 
simulated characteristics is that simulation noise is usually 
smaller than measurement one. Fig. 3 and 4 illustrate 
measured and simulated correspondingly AM-PM 
characteristic of a microwave amplifier (different 
amplifiers were used for Fig.3 and 4). As we can see, the 
measurement noise (ripples) is much higher. It has its 
impact on the modeling process: a procedure of noise 
filtering out can be neglected for HB-simulated 
characteristics, but it is a very important part of the 
modeling for measured characteristics. As a consequence, 
splines, which provide better approximation accuracy, can 
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Figure. 2. Error of approximation (solid line) and noise contribution 
(dot line) versus approximation order (number of terms in a series). 

Figure. 3. Measured AM-PM characteristic of a microwave amplifier 

Figure. 4. HB-simulated AM-PM characteristic of a microwave amplifier 



 

be used for HB-simulated characteristics but not for 
measured ones. The GA method seems to be a very 
efficient tool for noise filtering out. 

We should note that extreme care must be taken during 
measurement or simulation of AM-AM and AM-PM 
characteristics since small inaccuracies in these 
characteristics may result in very large inaccuracies of the 
simulation results (IMP levels, for example). The same is 
also true for the approximation of characteristics.  

V. CONCLUSION 
The use of the genetic algorithm for the evaluation of 

expansion coefficients as applied to the nonlinear transfer 
function approximation has been considered in this paper. 
It is a robust approach that gives many advantages, 
including optimization possibility, improvement in the 
approximation accuracy, the possibility of using various 
approximation criterion etc. Improvement in the 
approximation accuracy by 1.2-1.5 times as compared to 
the conventional Chebyshev polynomials approach, which 
is considered to be the best polynomial approximation, 
are possible by using the GA method. It seems that the 
GA method gives the best polynomial approximation ever 
possible. 

Further improvement of computational efficiency 
(convergence speed) of the proposed technique is possible 
in several ways: 
• the coefficients calculated by the classical Chebyshev 

approximation method should be included in the initial 
population giving a good starting point for the directed 
random search performed by GA, 

• the initial population genes are generated using the 
Gaussian distribution with the mean equal to the 
classical Chebyshev coefficients, and the standard 
deviation equal to 10 – 50% of the mean value,  

• uniform crossover should be used together with the 
gradient descent method applied to each population 
member (faster convergence is achieved in this way). 
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