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DETECTOR SIMULATION WITH THE USE OF THE DISCRETE TECHNIQUE 

Sergey L. Loyka,  

Belorussian State University of Informatics & Radioelectronics, P. Brovki Str. 6, Minsk 
220027, Republic of Belarus, e-mail: loyka@nemc.belpak.minsk.by

This paper presents a functional-level detector 
simulation technique which is based on the Hilbert 
Transforms and can be used together with the Discrete 
Technique. AM-detector simulation as well as its 
constrains, improvements and validation has been 
discussed in detail. It has been shown that the RC-circuit 
at the detector output should be ignored during the 
simulation. The technique proposed can be used for a 
rapid nonlinear EMC/EMI modeling at the 
system/subsystem level. 

1.INTRODUCTION 

Numerical modeling of a radio electronic system is a 
very useful tool for electromagnetic 
compatibility/interference (EMC/EMI) analysis, in that it 
allows for the simulation of system behavior for a wide 
variety of initial conditions, excitations and system 
configurations in a rapid and inexpensive way [1]. A 
system can often reveal nonlinear behavior and nonlinear 
phenomena (intermodulation, cross-modulation, gain 
compression/expansion etc.) has profound effect on 
EMC/EMI in some cases [2]. A nonlinear modeling tool 
must be used in order to carry out EMC/EMI analysis in 
such a case.  

A nonlinear modeling technique (so called ‘discrete 
technique’) for numerical EMC/EMI simulation at the 
system level has been proposed in [3]. This technique 
allows one to carry out rapid numerical EMC/EMI 
analysis of a complex system or subsystem (i.e. receiver, 
transmitter etc.) or a set of systems/subsystems in a wide 
frequency range taking into account nonlinear effects 
(including spurious responses of a receiver). Such an 
analysis is, for instance, a very important part of 
EMC/EMI modeling of a mobile communication system 
[4,5].  

The basis of the discrete technique [3,6] is a 
representation of the equivalent block diagram of a 
system as linear filters (LF) and memoryless nonlinear 
elements (MNE) connected in series (or in parallel). 
Thus a stage which employs a nonlinear element, for 
example, a radio frequency amplifier, can be represented 
as a typical radio stage, which employs the linear filter at 
the input, the memoryless nonlinear element and the 
linear filter at the output [2], see Fig.1.  

The process of signal passage through linear filters is 
simulated in the frequency domain using the complex 
transfer factor of the filter,  

( ) ( ) ( )S f S f K fout n in n n= ⋅ . ,                     (1) 

where Sout(fn)- is the signal spectrum at the filter output, 
Sin(fn) - the signal spectrum at the filter input, K(fn) - is 
the complex transfer factor of the filter, fn  - are sample  
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Fig.1. Representation of a typical radio frequency 
stage 

frequencies. The process of signal passage through a 
nonlinear memoryless element is simulated in the time 
domain, 
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where uout(tk) - is the instantaneous value of the signal at 
the MNE output, uin(tk) - is the same for the MNE input, 
tk - are sample points in time, ai - are coefficients of the 
high-order polynomial which describes the transfer 
characteristic of the nonlinear element; I - is order of the 
polynomial. The transition from the time domain to the 
frequency domain and vice versa is made with the use of 
the direct and inverse Fast Fourier Transform (FFT and 
IFFT): 

S = FFT(u)  ,  u = IFFT(S)  .             (3) 

The determination of the sampling rate, the sample 
frequency interval, the number of samples as well as a 
polynomial synthesis technique have been discussed in 
[6]. Using this technique, a radio receiver can be 
simulated in a wide frequency range with a very high 
frequency resolution (up to 106 - 107 sample frequencies) 
on a modern PC in dozens of minutes (a conventional 
circuit-level simulation would require several years for 
such an analysis). 

The essential limitation of this technique is that (1) 
the nonlinear element is to be memoryless (or, at least, 
the non-zero memory of the nonlinear element must 
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allow an assignment to the linear filters), (2) the 
succeeding element in the functional block diagram does 
not influence the preceding one (in some cases, this 
influence can be taken into account by the use of the 
equivalent transfer factor). Therefore this technique 
cannot be directly applied to the detector simulation, 
which is an essential limitation on its possibilities - the 
simulation of a radio receiver can be carried out only as 
far as the output of the intermediate frequency (IF) path 
(the detector input) and, correspondingly, baseband 
signal processing cannot be simulated. But the detector 
and baseband signal processing can substantially 
influence the EMC/EMI situation, so it’s desirable to 
have an appropriate simulation technique. 

This article presents several methods used so as to 
simulate various (amplitude (AM), frequency (FM) or 
phase (PM)) detectors at the system (functional) level, 
which can be used together with the discrete technique. 
The method of an amplitude detector simulation, which 
is based on the Hilbert transforms, as well as its 
constraints, improvements and validation has been 
discussed in detail. 

2. AM DETECTOR SIMULATION 

Since the primary function of an AM detector is to 
generate output signal which is proportional to the 
amplitude of an input signal, it’s necessary to calculate 
the input signal amplitude in order to carry out the 
simulation. A signal at the input of a radio receiver 
detector is, as a rule, a narrowband one, so the Hilbert 
transform can be used for this purpose ( we should note 
that the requirement for the input signal to be 
narrowband is dictated by not Hilbert transform itself 
which can be applied to a broadband signal too, but by 
the RC-circuit present at the detector output. Further this 
issue will be discussed in detail). 

For the sampled spectrum which is used in the 
discrete technique, the Hilbert transform takes the 
simplest form [7]: 

Sn* = -j⋅Sn ,                             (4) 

where Sn = S(fn) - is a sampled spectrum, Sn* - is the 
spectrum of the Hilbert conjugate signal, j - is the 
imaginary unit. The input signal amplitude can be 
obtained with the use of the well-known ratio [7,8] 

( )A u uk k k= +2 2*   ,                     (5) 

where uk = u(tk) - is the sampled input signal, uk* - the 
Hilbert conjugate signal of uk . uk* is obtained from Sn* 
by means of inverse FFT 

uk* = IFFT(Sn)  .                      (6) 

In the simplest simulation technique, Ak can be used in 
order to obtain the detector output signal 

uout,k = kd ⋅ Ak                           (7) 

where kd - is the detector transfer factor. This approach 
works quite well in some practical cases. But, as a 
detailed consideration shows, there are two constrains for 
this approach:  

(1)  the bandwidth of the input signal must be smaller 
than the cut-off frequency of a low-pass filter (RC-
circuit) at the detector output, 

∆fin < Fcut  ,                          (8) 

(in some cases this constrain can be relaxed, see below), 
and  

(2)  the input signal must be large enough so that the 
detector operates in the large signal mode, 

Ak > Amin    ,                          (9) 

where Amin  - is a threshold level which is determined by 
the volt-ampere characteristic of the nonlinear device 
used in the detector (for a diode detector, Amin ≈ 
0.2÷0.7V).  

The second constrain is rather obvious - only in the 
large signal mode the output signal in an AM detector is 
proportional to the input signal amplitude (kd is a 
constant). In the small signal mode, kd is a function of Ak 
and the spectral content of the output signal is much 
richer than that of Ak . This technique doesn’t “feel” the 
difference between the small and large signals modes 
since the Hilbert transform is linear relative to the input 
signal amplitude 

uk*(c⋅ uk) = c⋅ uk*(uk) ,                 (10) 

where c - is a constant, and, correspondingly, Ak(c⋅uk)= 
c⋅Ak(uk) . By this reason, this technique cannot predict 
harmonics of the modulating signal, which always are 
present at the detector output (fortunately, for most of 
practical detectors, they level are rather low and may be 
disregarded in EMC problems). 

To discus the first constrain in detail, let us consider 
the detector shown in Fig. 2.  

Ein C1 R1

D1 uout

 

Fig. 2. AM diode detector 

If the bandwidth of the input signal Ein (which contains 
interference as well as a required signal) is smaller than 
the cut-off frequency of the RC-circuit at the detector 
output, the output signal uout repeats the amplitude of the 
input signal at the same moment of time - the detector is 
said to be memoryless. If not, the output signal doesn’t 
repeat the amplitude of the input signal and depends on 
its levels at the preceding moments of time - the detector 
is said to have memory. To determine the boundary 
between these two modes, let’s consider the input signal 
shown in Fig.3. This signal consists  
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Fig. 3. Spectrum of the input signal. fc - carrier 
frequency, Fm - modulating frequency, fint - interference 

frequency. 

of the required AM signal and the interference signal. 
The required signal bandwidth is always smaller than the 
cut-off frequency (the design constrain). The interaction 
between the interference and the required signal will 
result in beat. So, we must consider the difference 
between the interference frequency and the required 
signal frequencies (the beat frequencies). Taking into 
account that the side frequencies levels are, as a rule, 
smaller than that of the carrier and for the sake of 
simplicity, we shall consider further the beat between the 
carrier and the interference (beat between the side 
frequencies and the interference can be considered in a 
similar way). Then the signal bandwidth is equal to the 
beat frequency  

∆fin =fbeat= fin -- fc  ,                    (11) 

where fbeat - is the beat frequency. If condition (8) is true, 
then the output signal repeats the input signal amplitude 
and the technique works quite well. Otherwise, the output 
signal doesn’t repeat the input signal amplitude because 
capacitor C1 has not managed to discharge with the beat 
frequency: the rate of the capacitor discharge vC is 
smaller than the rate of the change of the beat signal 
amplitude vbeat . Let’s assume for simplicity that uint < uc 
, where uint - interference level, uc - required signal level 
without modulation (the opposite case can be considered 
in a similar manner). Then, taking into account the 
exponential law for the capacitor discharge, we obtain 
the following assessment for vC: 

v
u

C
c≈

τ
  ,                       (12) 

where τ = R1C1 - is the RC-circuit constant. In a similar 
way we obtain the following assessment for the average 
value of vbeat : 

v
u
Tbeat

beat
≈ int

4
  ,                  (13) 

where Tbeat=1/fbeat=1/∆fin - is the beat period, since the 
beat amplitude equals the interference amplitude. Our 
simulation technique will predict the correct output 
signal if vC > vbeat , or, using (12) and (13) 

u
u
f

c

beat
int <

⋅
4

τ
  ,                  (14) 

From this condition we can conclude the following: if the 
interference level is rather low, then the output 

interference level (at the beat frequency) is not affected 
by the RC-circuit even if the beat frequency is larger than 
the cut-off frequency of the RC-circuit (this conclusion is 
also confirmed by the PSpice simulation - see below).  

Thus, it’s absolutely unacceptable to model the AM 
detector as the series connection of a nonlinear element 
(or a frequency transformer) and a low-pass filter, as it 
has been proposed by some authors. Physically it can be 
explained as follows: the capacitor is discharged through 
the resistor R1 and is charged through the direct diode 
resistance which is much smaller than R1 , so the 
discharge time constant and the charge time constant are 
quite different.  

From the practical viewpoint, spectral components of 
the detector input signal, which lie outside of the IF path 
bandwidth, will be strongly attenuated by the IF path, so 
that condition (14) will be fulfilled. If, nevertheless, it is 
not, it means that these spectral components have very 
large level at the receiver preselector and the receiver is 
completely blocked. 

If condition (14) is not true, then the output 
interference signal will be attenuated by the RC-circuit. 
But the attenuation factor will be smaller then the 
transfer factor of the RC-circuit. Thus, the optimal 
decision is to ignore the RC circuit during the simulation 
at all. 

Taking into account all considerations given above, 
we can present the AM detector simulation scheme as on 
Fig.4. 

( )u k u uo u t k d k k,
*= +2 2

uk*= IFFT(-jSin)

uk= IFFT(Sin)

Sout= FFT(uout,k)

Sin

Sout

 

Fig.4. AM-detector simulation scheme. Sin - input 
signal spectrum, Sout - output signal spectrum. 
 
We should note that if an additional low-pass filter is 

connected to the detector output (as on Fig.5) then this 
filter must be taken into account (since the capacitor C2 
charge and discharge time constants are the same) 

Sout = Sout⋅K(f) ,                       (15) 

where Sout - spectrum at the filter output, K(f) - complex 
transfer factor of the filter. The scheme on Fig. 4 must be 
corrected too.  

The technique proposed can be used to simulate an 
AM detector in the small-signal mode. In this case, kd 
must be considered as a function of Ak . An appropriate 
approximation to this function can be found, for instance, 
in [9]. Harmonics of the modulating signal can also be 
predicted in this way. 
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Fig. 5. AM diode detector with a low-pass filter 
 
Let’s consider determination of the sampling rate, the 

sample frequency interval and the number of samples. 
It’s similar to the determination of these quantities for the 
discrete technique [3,6]. The maximum sample 
frequency fn,max must be higher than the highest input 
spectrum frequency fin,max with some margin,  

fn,max = k⋅fin,max                         (16) 

where k - is a margin factor (k=2…10). The sample 
frequency interval ∆fn must be lower with some margin 
than the lowest input beat (or modulating) frequency 
fbeat,min which should be modeled, 

∆fn = k1⋅fbeat,min                     (17) 

where k1 - is a margin factor (k1=0.1 ... 0.5). Using (16) 
and (17), we find the number of samples 

N
f

f
n

beat
= 2 ,max

,min
                         (18) 

We must round off this number to a power of two (in 
order to use FFT) 

[ ]N m Nm= = +2 12, log          (19) 

where [*] - is the whole part. Further we recalculate ∆fn 
for constant fn,max (or fn,max for constant ∆fn) using 
equations (16)-(18). 

3. SIMULATION TECHNIQUE VALIDATION 

In order to validate the technique, an extensive 
circuit-level simulation of the diode AM-detector given 
on Fig.2 (the cut-off frequency Fcut=30kHz) has been 
carried out by means of well-known simulation tool 
PSpice [10]. The input signal used in the simulation is as 
that on Fig.3. Some results of this simulation and the 
comparison with the technique proposed are presented on 
Fig. 6 and 7. For Fig.6, the interference frequency is 
within the required signal bandwidth (parameters of the 
input signal: fc=1MHz, Fm=10kHz, modulation index 
m=0.3, uc=3V, uint=3V, fint=1015kHz). As it can be seen 
from this figure, the agreement between our technique 
and PSpice predictions is quite well for levels not  
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Fig.6 Spectrum at the detector output (input signal 
- as shown on Fig.3). The interference lies within 
the required bandwidth. 
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Fig.7 Spectrum at the detector output (input signal - as 
shown on Fig.3). The interference lies outside the 
required bandwidth. 

smaller than -20 ...-30dB relative to the maximum. All 
effects known from the theory (signal compression, beat 
generation at the frequencies fint - fc , fint - fc -Fm , fint - fc + 
Fm etc.) are predicted quite well. We should note that the 
technique proposed works more than ten times faster 
than PSpice.  

For Fig.7, the interference frequency lies outside of 
the required signal bandwidth (parameters of the input 
signal: fc=1MHz, Fm=10kHz, m=0.3, uc=3V, uint=1V, 
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fint=1100kHz). As it can be seen from this figure, the 
largest beat level at the frequency fint - fc = 100kHz is 
predicted quite well. It proves our conclusion that the 
RC-circuit must be discarded during the simulation (for 
the present case, (fint - fc)/f cut ≈ 3 so if the RC-circuit had 
operated as an usual low-pass filter, three-fold 
attenuation would have been expected for this beat 
frequency, which is not observed in reality). To predict 
small spectral components more accurately, it’s 
necessary to use an appropriate approximation for kd(Ak) 
instead of a constant. 

4. FM DETECTOR SIMULATION 

A similar approach can be used in order to simulate 
an FM or PM detector. Using the Hilbert Transform, we 
find instant angular frequency of the detector input signal 
[8] 

ωk
k k k k

k

u u u u

t A
=

⋅ − ⋅

⋅
− −

* *
1 1

2∆
  ,             (20) 

where ∆t - is the time sample interval. Output signal of 
an FM detector is proportional to the difference between 
the instant frequency and the detector resonant frequency 
ω0  

( )u kout k d k, ≈ −ω ω0                (21) 

This equation is valid for the linear part of the detector 
input-output characteristic when  

ω ω ωk − ≤0 ∆   ,                  (22) 

where ∆ω - is the linear part width, and for a sufficiently 
large input signal when its amplitude is constant due to 
the limiter which is connected in front of the detector, 

A Ain th inlim, ,≥  ,                       (23) 

where Alim,in - is a signal amplitude at the limiter input, 
Ath,in - its threshold level (the saturation level). In other 
cases, this equation should be generalized to take into 
account the nonlinearity of the detector characteristic and 
its dependence on the input signal amplitude 

( )k k Ad d k k= −ω ω0 ,  .            (24) 

Appropriate approximations for the dependence of kd on 
ωk-ω0 can be found in [9]. The dependence of kd on Ak 
can be approximated by 

kd ≈ c⋅Ak , c - constant              (25) 

for an FM detector with tuned-off circuits or similar, and 
by 

kd ≈ c⋅Ak
2
 , c - constant            (26) 

for an FM detector with a multiplier. 
As practical experience shows, this simulation 

technique predicts the required signal compression and 
the threshold effect quite well. Predicted interference 
levels are smaller than in reality since the nonlinearity of 

the detector amplitude characteristic is not taken into 
account. 

5. CONCLUSION 

We can conclude that the technique proposed 
predicts output spectral components which are not 
smaller than -20dB relative to the maximum level quite 
well. The feasible improvements of the technique, which 
have been discussed above can increase the analysis 
dynamic range. 

Further reduction in the computational time can be 
achieved by decreasing the sampling rate (i.e. computing 
the output signal samples uout,k not for every k , but only 
for some k) at the output due to the fact that the output 
spectrum is a baseband one  

An PM detector can be simulated in a way similar to 
the FM detector simulation. 
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