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Duality?

® Lagrangian & dual function

® dual problem

® weak and strong duality

® geometric interpretation

e optimality (KKT) conditions

® perturbation and sensitivity analysis

® examples

'adapted from Boyd & Vandenberghe, Convex Optimization, Lecture slides.
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Lagrangian
Standard form problem (not necessarily convex)

min  fo(x)
st. fi(x)<0, i=1,...,m
hi(x)=0, i=1,...,p

domain D, optimal value p*
Lagrangian:

L(x, A, v) = fio(x) + > Aifi(x) + Z vihi(x)

i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier resp. for fi(x) <0
e y; is Lagrange multiplier resp. for h;(x) =0
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Lagrange dual function

Lagrange dual function:

g(A,v) =minL(x,\,v)

xeD
:m|n< +Z)\fx)+2u,, )

® unconstraint minimization in mingep

3)

g(A,v) is (jointly) concave (can be —oo for some A, v);
Q: why?
fundamental for optimality conditions

also used by many algorithms
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Lagrange dual function & fundamental LB

Fundamental lower bound (LB):

if X = 0 then g(A,v) < p* (4)
proof:

1. if x is feasible and A > 0, then
fo(x) > L(x, A,v) > minL(x, A,v) = g(A,v) (5)
X

Q: explain (5)
2. minimizing over all feasible x gives p* > g(A,v)

LB holds even if not convex
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Example: least-norm solution of linear equations

min x'x st. Ax=b

dual function
® Lagrangianis L(x,v) = x"x + v (Ax —b)

® to minimize L over x, set gradient equal to zero:

March 16, 2021

(6)

Vil(x,v) =2x+ AT =0 — x=—(1/2)A"v (7)

® plug inin L to obtain g :
1
gv) =L((-1/2ATv.v) = — v AATY —bTy

® g(v) is concave in v

lower bound property: p* > —(1/4)v"AA"v —b v YV v
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Example: standard form LP

T

minc'x st. Ax=b, x>0 9)

dual function

® the Lagrangian is
L(x,\,v) =c"x+ v (Ax —b) — ATx (10)

:—bTV—I—(C—l-ATV—)\)TX
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Example: standard form LP

e [(x,A,v) is affine in x, hence

by ATv—X+c=0
—00 otherwise

g\ v) = mxin L(x,A\,v) = { (11)

g(X,v) is linear on affine domain {(A,v): ATy —A+c=0} —
concave

lower bound property: p* > b v if ATv+¢c >0
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Two-way partitioning

min x’Wx st. x2=1, i=1.n (12)

® convex ?
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Two-way partitioning

min x’Wx st. x2=1, i=1.n (12)

® convex ?
e feasible set contains 2" points

® interpretation: partition {1,...,n} in two sets; Wj is cost of assigning
i,J to the same set; —Wj; is cost of assigning to different sets
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Two-way partitioning: dual function, LB

e dual function

S. Loyka

g(v) = min (xTWx + Zu; (xF — 1))
= minx” (W + diag(v))x — 17w
B { ~1"v W +diag(v) = 0

—00 otherwise

: prove (13)
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Two-way partitioning: dual function, LB

e dual function

gv) = mxin (xTWx + Z vi (xF — 1))
= mxin x"(W + diag(v))x — 17w

-1Tv W +diag(v) = 0
—00 otherwise

* Q: prove (13)
* lower bound: p* > —17v if W +diag(v) = 0

® example:

v = _)\min(w)l — P* > n)\min(w)
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The dual problem: best LB

¢ Lagrange dual problem

max g\, v) st. A>=0

® best LB on p* via Lagrange dual function
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The dual problem: best LB

¢ Lagrange dual problem

max g\, v) st. A>=0 (15)

® best LB on p* via Lagrange dual function

® convex problem?
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The dual problem: best LB

Lagrange dual problem

max g\, v) st. A>=0 (15)

best LB on p* via Lagrange dual function

convex problem?

yes, optimal value = d*:

d* = max g\, v) st. A0

A, v are dual feasible if A = 0,(\,v) € domg
often simplified by making implicit constraint (A, v) € dom g explicit
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Example: standard form LP and its dual

® standard LP

min ¢'x st. Ax=b, x>0 (16)
X
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Example: standard form LP and its dual

® standard LP

min ¢’x st. Ax=h, x>0 (16)
X
® and its dual
max —b’v st. ATv+¢c =0 (17)
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Weak and strong duality

weak duality: d* < p*
e always holds (for convex and nonconvex problems)
® nontrivial lower bounds for difficult problems
e example: a lower bound for the two-way partitioning problem
min x’Wx st. x? =1 (18)
X

via the SDP

max —17v st. W + diag(v) = 0 (19)

v
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Weak and strong duality

strong duality: d* = p*
® does not hold in general
e (usually) holds for convex problems

® conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater's constraint qualification

strong duality holds for a convex problem

min  fo(x)
st. fi(x)<0, i=1,...,m (20)
Ax=b

if it is strictly feasible, i.e.

dxeintD: fi(x)<0, i=1,...,m; Ax=Db (21)

e also guarantees that the dual optimum is attained (if p* > —o0)

® can be sharpened: e.g., can replace int D with relint D (interior
relative to affine hull); linear inequalities do not need to hold with
strict inequality, ...

® there exist many other types of constraint qualifications
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Complementary slackness

Assume that strong duality holds and let x* be primal optimal, (A*,v*) be
dual optimal. Then,

fo(x*) = p* = d* = g(A", V%) (22)

n (fo(x) DLCEM h;(x>> (23)
j i=1

< fy(x*) + Z Aifi(x*) z,,: v hi(x*) (24)
i=1
< fo(x") (25)

hence, the two inequalities hold with equality
® x* minimizes L(x, A", ")
® \fi(x*) =0 for all i, known as complementary slackness:

A 0= fi(x) =0, fi(x)<0= A =0 (26)
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Karush-Kuhn-Tucker (KKT) conditions

The most fundamental optimality conditions:

1. stationarity: V4L(x,A,v) =0, or

m p
Vafo(x) + > ANiVufi(x) + > vVchi(x) =0 (27)
i=1 i=1

2. complementary slackness: \;fj(x) =0
3. primal feasibility: f;(x) <0, hj(x) =0, for all i
4. dual feasibility: \; > 0 (no condition on v;)

if strong duality holds and x, A, v are optimal, then they must satisfy the
KKT conditions, i.e. KKT conditions are necessary for optimality

S. Loyka Lecture 5, ELG6108: Introduction to Convex Optimization 17 / 32



March 16, 2021

KKT conditions for convex problem

If x*, X*, v* satisfy KKT conditions for a convex problem, then they are
optimal, i.e. any solution of KKT is optimal (sufficiency).
Proof:

e from complementary slackness:

L(x*, A", %) = fo(x*) + Z)\j‘f;(x*) + ) vihi(x*) = f(x*)  (28)

i=1

e from stationarity and convexity:
g(A*,v*) = min L(x, A", v*) = L(X*, A*,v") = fo(x") (29)

so that fy(x*) = p*, since g(A*,v*) = fy(x*) is a certificate of
optimality (via the LB). Q.E.D.
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KKT conditions for convex problem

If Slater’s condition is satisfied:

x is optimal if and only if there exist A, v that satisfy KKT conditions, i.e.
KKT are sufficient and necessary for optimality

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes (300y old) optimality condition Vfy(x) = 0 for
unconstrained problem
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Example: optimal power allocation (OPA) |

Maximizing the sum rate of parallel Gaussian channels via OPA (WiFi,
cellular, DSL),

(P1) max Z log(1+ xj/cj) s.t. x; >0, Zx; =P (30)
"=l i

x; = signal power of i-th channel, a; = its noise power, P = total signal
(Tx) power; x;,j > 0; log(1 + x;/«j) = rate of i-th channel, in [b/s/Hz].

Equivalent to

(P2)  min —Z log(xi + ) st. —x; <0, Zx; =P (31)
' i=1 i
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Example: optimal power allocation (OPA) I
Its Lagrangian is

n
L==) log(xi+ai)— > A\ixi+v (Z Xj — P) (32)
i=1 i i
and the KKT conditions are

(a) —

Xj + @

+Ai=v, (b)) \ixi=0, (c) D x=P, (d) ;>0 (33)

from (b) and (a):
e ifx;>0—> X\ =0and x; =1/v—a; >0— v > 1/a; (active ch.)
e ifv>1/aj — x; =0, \; = v — 1/a; (inactive ch.)
so that
xi = (1/v — aj)+, where (x)+ = max{0, x} (34)
e find v from (c): > ,(1/v —ai)y+ =P
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OPA = Water Filling (WF)

water-filling interpretation
® container with n segments; floor profile: segment i is at height «;
e flood area with P units of "water”
e "water” level is x; = (1/v — «j)+ at segment i

1/v7

cvi

® one of the most elegant/popular algorithms in IT, communications,
signal processing, control
e widely used in practice (quantized, WiFi, 3/4/5G, DSL)
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Water Filling (WF)

S. Loyka

Q1: find the conditions under which only 1 channel is active:

x{ >0, x3..x; =0

Q2: find the conditions under which all channels are active:

x{..xp >0

Q3: show that the number of active streams is an increasing function
of P

Q4: find a closed-form expression for v* and, using it, the number of
active streams

Q5: consider a modification of (P1), where the power constraint is via
an equality:

(P3) max Zlog(l + xi/aj) st. x; >0, Zx; <P (35)
"=l i

show that, at optimal point, it always holds with equality:
>.;x* = P, so that (P1) and (P3) are also equivalent.
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Water Filling (WF) with per-channel constraint

® Q6: consider the following modification of (P3),

n
(P4) mx?x Z log(1 + xj/a) s.it. x; >0, Zx,- <P, xi<P;

i=1 i

where P; is the maximum per-channel power. Find its OPA and
compare it to the WF in (34). Give its geometric interpretations
(similar to WF).
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Perturbation and sensitivity analysis
(unperturbed) optimization problem and its dual

min  fo(x) maximize g(\,v)
st. fi(x)<0,i=1,....,m s.t. A=0 (36)
hi(x)=0, i=1,...,p

perturbed problem and its dual

min  fo(x) max g\ v)—u'Ax—vTv
st. fi(x)<wuj,i=1,...,m st. A>=0 (37)
hi(x)=v;, i=1,...,p

® x is primal variable; u, v are parameters

p*(u, v) is optimal value as a function of u, v
® we are interested in information about p*(u, v) that we can obtain
from the solution of the unperturbed problem and its dual
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global sensitivity result assume strong duality holds for unperturbed
problem, and that A*, v* are dual optimal for unperturbed problem apply
weak duality to perturbed problem:

p*(u,v) > g (A, v*) —u' A" —vTv* (38)
= p*(0,0) —u’ X —vTp* (39)

sensitivity interpretation

S. Loyka

if \¥ large: p* increases greatly if we tighten constraint i (u; < 0)

if X7 small: p* does not decrease much if we loosen constraint
i(u; > 0)
if v large and positive: p* increases greatly if we take v; < 0;

*
1

if v small and positive: p* does not decrease much if we take v; > 0;

if ¥ large and negative: p* increases greatly if we take v; > 0
g g g

if v small and negative: p* does not decrease much if we take v; <0
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local sensitivity: if (in addition) p*(u, v) is differentiable at (0, 0), then

9p*(0,0) . op*(0,0)

o= ZPE) e 9P LY

i ou; ! ov;
proof (for A¥) : from global sensitivity result,

ap(;(uc:,o) _ li\rgp*(tef,o)t—p*(o,o) > —\F

ap(;(uc:,o) _ tli/r%p*(te"’o)t_p*(o’o) < -AF

hence, equality

p*(u) for a problem with one (inequality)
constraint:

(40)
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Duality and problem reformulations

® equivalent formulations of a problem can lead to very different duals

® reformulating the primal problem can be useful when the dual is
difficult to derive, or uninteresting

common reformulations
® introduce new variables and equality constraints
® make explicit constraints implicit or vice-versa

® transform objective or constraint functions
e.g., replace fy(x) by ¢ (fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

min  fo(Ax + b)

e dual function is constant: g = infy L(x) = infy fo(Ax + b) = p*

® we have strong duality, but dual is quite useless

reformulated problem and its dual

min  fo(y) max b'v — f(v)
st. Ax+b—y=0 st. ATv=0
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Introducing new variables and equality constraints

dual function follows from

g(v) =inf (fo(y) — viy+uvTAx + bTu) (43)
X,y

[ @) +bv ATv=0
|l — otherwise
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Implicit constraints

LP with box constraints: primal and dual problem

min  c’x max —-b’r—1TX; —1TX,
st. Ax=b st. c+ATL+A XA =0
-1<x=<1 A1=0, X=0

reformulation with box constraints made implicit

c’'x —1=<x=<1
00 otherwise

min  fy(x) = {
st. Ax=b
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Implicit constraints

dual function

glv) = Jnf (c"™x+ v (Ax — b))
= bTv-— |ATV + c|1

dual problem: maximize —b"v — |ATV + c!l
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