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Duality1

• Lagrangian & dual function

• dual problem

• weak and strong duality

• geometric interpretation

• optimality (KKT) conditions

• perturbation and sensitivity analysis

• examples

1adapted from Boyd & Vandenberghe, Convex Optimization, Lecture slides.
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Lagrangian

Standard form problem (not necessarily convex)

min f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
(1)

domain D, optimal value p⋆

Lagrangian:

L(x,λ,ν) = f0(x) +

m
∑

i=1

λi fi(x) +

p
∑

i=1

νihi (x) (2)

• weighted sum of objective and constraint functions

• λi is Lagrange multiplier resp. for fi(x) ≤ 0

• νi is Lagrange multiplier resp. for hi(x) = 0
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Lagrange dual function

• Lagrange dual function:

g(λ,ν) = min
x∈D

L(x,λ,ν)

= min
x∈D

(

f0(x) +

m
∑

i=1

λi fi(x) +

p
∑

i=1

νihi (x)

)

(3)

• unconstraint minimization in minx∈D

• g(λ,ν) is (jointly) concave (can be −∞ for some λ,ν);

• Q: why?

• fundamental for optimality conditions

• also used by many algorithms
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Lagrange dual function & fundamental LB

Fundamental lower bound (LB):

if λ � 0 then g(λ,ν) ≤ p⋆ (4)

proof:

1. if x is feasible and λ � 0, then

f0(x) ≥ L(x,λ,ν) ≥ min
x

L(x,λ,ν) = g(λ,ν) (5)

Q: explain (5)

2. minimizing over all feasible x gives p⋆ ≥ g(λ,ν)

LB holds even if not convex
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Example: least-norm solution of linear equations

min xTx s.t. Ax = b (6)

dual function

• Lagrangian is L(x,ν) = xTx+ ν
T (Ax− b)

• to minimize L over x, set gradient equal to zero:

∇xL(x,ν) = 2x+ AT
ν = 0 =⇒ x = −(1/2)AT

ν (7)

• plug in in L to obtain g :

g(ν) = L
(

(−1/2)AT
ν,ν

)

= −
1

4
ν
TAAT

ν − bTν (8)

• g(ν) is concave in ν

lower bound property: p⋆ ≥ −(1/4)νTAAT
ν − bTν ∀ ν
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Example: standard form LP

min cTx s.t. Ax = b, x � 0 (9)

dual function

• the Lagrangian is

L(x,λ,ν) = cTx+ ν
T (Ax− b)− λ

Tx (10)

= −bTν +
(

c+ AT
ν − λ

)T
x
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Example: standard form LP

• L(x,λ,ν) is affine in x, hence

g(λ,ν) = min
x

L(x,λ,ν) =

{

−bTν AT
ν − λ+ c = 0

−∞ otherwise
(11)

g(λ,ν) is linear on affine domain
{

(λ,ν) : AT
ν − λ+ c = 0

}

→
concave

lower bound property: p⋆ ≥ −bTν if AT
ν + c � 0
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Two-way partitioning

min xTWx s.t. x2i = 1, i = 1..n (12)

• convex ?
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Two-way partitioning

min xTWx s.t. x2i = 1, i = 1..n (12)

• convex ?

• feasible set contains 2n points

• interpretation: partition {1, . . . , n} in two sets; Wij is cost of assigning
i , j to the same set; −Wij is cost of assigning to different sets
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Two-way partitioning: dual function, LB

• dual function

g(ν) = min
x

(

xTWx+
∑

i

νi
(

x2i − 1
)

)

= min
x

xT (W + diag(ν))x − 1Tν

=

{

−1Tν W + diag(ν) � 0
−∞ otherwise

(13)

• Q: prove (13)
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Two-way partitioning: dual function, LB

• dual function

g(ν) = min
x

(

xTWx+
∑

i

νi
(

x2i − 1
)

)

= min
x

xT (W + diag(ν))x − 1Tν

=

{

−1Tν W + diag(ν) � 0
−∞ otherwise

(13)

• Q: prove (13)

• lower bound: p⋆ ≥ −1Tν if W + diag(ν) � 0

• example:

ν = −λmin(W)1 → p⋆ ≥ nλmin(W) (14)
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The dual problem: best LB

• Lagrange dual problem

max
λ,ν

g(λ,ν) s.t. λ � 0 (15)

• best LB on p⋆ via Lagrange dual function
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The dual problem: best LB

• Lagrange dual problem

max
λ,ν

g(λ,ν) s.t. λ � 0 (15)

• best LB on p⋆ via Lagrange dual function

• convex problem?
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The dual problem: best LB

• Lagrange dual problem

max
λ,ν

g(λ,ν) s.t. λ � 0 (15)

• best LB on p⋆ via Lagrange dual function

• convex problem?

• yes, optimal value = d⋆:

d∗ = max
λ,ν

g(λ,ν) s.t. λ � 0

• λ,ν are dual feasible if λ � 0, (λ,ν) ∈ dom g

• often simplified by making implicit constraint (λ,ν) ∈ dom g explicit
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Example: standard form LP and its dual

• standard LP

min
x

cTx s.t. Ax = b, x � 0 (16)

S. Loyka Lecture 5, ELG6108: Introduction to Convex Optimization 12 / 32



March 16, 2021

Example: standard form LP and its dual

• standard LP

min
x

cTx s.t. Ax = b, x � 0 (16)

• and its dual

max
ν

−bTν s.t. AT
ν + c � 0 (17)
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Weak and strong duality

weak duality: d⋆ ≤ p⋆

• always holds (for convex and nonconvex problems)

• nontrivial lower bounds for difficult problems

• example: a lower bound for the two-way partitioning problem

min
x

xTWx s.t. x2i = 1 (18)

via the SDP

max
ν

−1Tν s.t. W + diag(ν) � 0 (19)
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Weak and strong duality

strong duality: d⋆ = p⋆

• does not hold in general

• (usually) holds for convex problems

• conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

min f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(20)

if it is strictly feasible, i.e.

∃x ∈ intD : fi(x) < 0, i = 1, . . . ,m, Ax = b (21)

• also guarantees that the dual optimum is attained (if p⋆ > −∞)

• can be sharpened: e.g., can replace int D with relint D (interior
relative to affine hull); linear inequalities do not need to hold with
strict inequality, ...

• there exist many other types of constraint qualifications
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Complementary slackness
Assume that strong duality holds and let x∗ be primal optimal, (λ∗,ν∗) be
dual optimal. Then,

f0(x
∗) = p∗ = d∗ = g(λ∗,ν∗) (22)

= min
x

(

f0(x) +
m
∑

i=1

λ∗
i fi(x) +

p
∑

i=1

ν∗i hi(x)

)

(23)

≤ f0(x
∗) +

m
∑

i=1

λ∗
i fi(x

∗) +

p
∑

i=1

ν∗i hi(x
∗) (24)

≤ f0(x
∗) (25)

hence, the two inequalities hold with equality

• x∗ minimizes L(x,λ∗,ν∗)

• λ∗
i fi(x

∗) = 0 for all i , known as complementary slackness:

λ∗
i > 0 =⇒ fi(x

∗) = 0, fi (x
∗) < 0 =⇒ λ∗

i = 0 (26)
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Karush-Kuhn-Tucker (KKT) conditions

The most fundamental optimality conditions:

1. stationarity: ∇xL(x,λ,ν) = 0, or

∇xf0(x) +

m
∑

i=1

λi∇xfi(x) +

p
∑

i=1

νi∇xhi (x) = 0 (27)

2. complementary slackness: λi fi(x) = 0
3. primal feasibility: fi(x) ≤ 0, hi (x) = 0, for all i
4. dual feasibility: λi ≥ 0 (no condition on νi)

if strong duality holds and x,λ,ν are optimal, then they must satisfy the
KKT conditions, i.e. KKT conditions are necessary for optimality
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KKT conditions for convex problem

If x∗,λ∗,ν∗ satisfy KKT conditions for a convex problem, then they are
optimal, i.e. any solution of KKT is optimal (sufficiency).

Proof:

• from complementary slackness:

L(x∗,λ∗,ν∗) = f0(x
∗) +

m
∑

i=1

λ∗
i fi(x

∗) +

p
∑

i=1

ν∗i hi (x
∗) = f0(x

∗) (28)

• from stationarity and convexity:

g(λ∗,ν∗) = min
x

L(x,λ∗,ν∗) = L(x∗,λ∗,ν∗) = f0(x
∗) (29)

so that f0(x
∗) = p∗, since g(λ∗,ν∗) = f0(x

∗) is a certificate of
optimality (via the LB). Q.E.D.
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KKT conditions for convex problem

If Slater’s condition is satisfied:

x is optimal if and only if there exist λ,ν that satisfy KKT conditions, i.e.
KKT are sufficient and necessary for optimality

• recall that Slater implies strong duality, and dual optimum is attained

• generalizes (300y old) optimality condition ∇f0(x) = 0 for
unconstrained problem
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Example: optimal power allocation (OPA) I

Maximizing the sum rate of parallel Gaussian channels via OPA (WiFi,
cellular, DSL),

(P1) max
xi

n
∑

i=1

log(1 + xi/αi ) s.t. xi ≥ 0,
∑

i

xi = P (30)

xi = signal power of i -th channel, αi = its noise power, P = total signal
(Tx) power; xi , αi ≥ 0; log(1 + xi/αi ) = rate of i -th channel, in [b/s/Hz].

Equivalent to

(P2) min
xi

−

n
∑

i=1

log(xi + αi) s.t. − xi ≤ 0,
∑

i

xi = P (31)
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Example: optimal power allocation (OPA) II
Its Lagrangian is

L = −

n
∑

i=1

log(xi + αi )−
∑

i

λixi + ν

(

∑

i

xi − P

)

(32)

and the KKT conditions are

(a)
1

xi + αi

+ λi = ν, (b) λixi = 0, (c)
∑

i

xi = P, (d) λi ≥ 0 (33)

from (b) and (a):

• if xi > 0 → λi = 0 and xi = 1/ν − αi > 0 → ν > 1/αi (active ch.)

• if ν ≥ 1/αi → xi = 0, λi = ν − 1/αi (inactive ch.)
so that

xi = (1/ν − αi )+, where (x)+ = max{0, x} (34)

• find ν from (c):
∑

i(1/ν − αi )+ = P
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OPA = Water Filling (WF)
water-filling interpretation

• container with n segments; floor profile: segment i is at height αi

• flood area with P units of ”water”
• ”water” level is xi = (1/ν − αi)+ at segment i

• one of the most elegant/popular algorithms in IT, communications,
signal processing, control

• widely used in practice (quantized, WiFi, 3/4/5G, DSL)
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Water Filling (WF)
• Q1: find the conditions under which only 1 channel is active:

x∗1 > 0, x∗2 ...x
∗
n = 0

• Q2: find the conditions under which all channels are active:
x∗1 ...x

∗
n > 0

• Q3: show that the number of active streams is an increasing function
of P

• Q4: find a closed-form expression for ν∗ and, using it, the number of
active streams

• Q5: consider a modification of (P1), where the power constraint is via
an equality:

(P3) max
xi

n
∑

i=1

log(1 + xi/αi ) s.t. xi ≥ 0,
∑

i

xi ≤ P (35)

show that, at optimal point, it always holds with equality:
∑

i x
∗
i = P, so that (P1) and (P3) are also equivalent.
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Water Filling (WF) with per-channel constraint

• Q6: consider the following modification of (P3),

(P4) max
xi

n
∑

i=1

log(1 + xi/αi ) s.t. xi ≥ 0,
∑

i

xi ≤ P, xi ≤ P1

where P1 is the maximum per-channel power. Find its OPA and
compare it to the WF in (34). Give its geometric interpretations
(similar to WF).
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Perturbation and sensitivity analysis
(unperturbed) optimization problem and its dual

min f0(x) maximize g(λ,ν)
s.t. fi(x) ≤ 0, i = 1, . . . ,m s.t. λ � 0

hi(x) = 0, i = 1, . . . , p
(36)

perturbed problem and its dual

min f0(x) max g(λ,ν)− uTλ− vTν

s.t. fi(x) ≤ ui , i = 1, . . . ,m s.t. λ � 0
hi(x) = vi , i = 1, . . . , p

(37)

• x is primal variable; u, v are parameters

• p⋆(u, v) is optimal value as a function of u, v

• we are interested in information about p⋆(u, v) that we can obtain
from the solution of the unperturbed problem and its dual
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global sensitivity result assume strong duality holds for unperturbed
problem, and that λ⋆,ν⋆ are dual optimal for unperturbed problem apply
weak duality to perturbed problem:

p⋆(u, v) ≥ g (λ⋆,ν⋆)− uTλ⋆ − vTν⋆ (38)

= p⋆(0, 0) − uTλ⋆ − vTν⋆ (39)

sensitivity interpretation

• if λ⋆
i large: p⋆ increases greatly if we tighten constraint i (ui < 0)

• if λ⋆
i small: p⋆ does not decrease much if we loosen constraint

i (ui > 0)

• if ν⋆i large and positive: p⋆ increases greatly if we take vi < 0;

if ν⋆i large and negative: p⋆ increases greatly if we take vi > 0

• if ν⋆i small and positive: p⋆ does not decrease much if we take vi > 0;

if ν⋆i small and negative: p⋆ does not decrease much if we take vi < 0
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local sensitivity: if (in addition) p⋆(u, v) is differentiable at (0, 0), then

λ⋆
i = −

∂p⋆(0, 0)

∂ui
, ν⋆i = −

∂p⋆(0, 0)

∂vi
(40)

proof (for λ⋆
i ) : from global sensitivity result,

∂p⋆(0,0)
∂ui

= lim
tց0

p⋆(tei ,0)−p⋆(0,0)
t

≥ −λ⋆
i

∂p⋆(0,0)
∂ui

= lim
tր0

p⋆(tei ,0)−p⋆(0,0)
t

≤ −λ⋆
i

(41)

hence, equality

p⋆(u) for a problem with one (inequality)
constraint:
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Duality and problem reformulations

• equivalent formulations of a problem can lead to very different duals

• reformulating the primal problem can be useful when the dual is
difficult to derive, or uninteresting

common reformulations

• introduce new variables and equality constraints

• make explicit constraints implicit or vice-versa

• transform objective or constraint functions
e.g., replace f0(x) by φ (f0(x)) with φ convex, increasing
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Introducing new variables and equality constraints

min f0(Ax+ b)

• dual function is constant: g = infx L(x) = infx f0(Ax+ b) = p⋆

• we have strong duality, but dual is quite useless

reformulated problem and its dual

min f0(y) max bTν − f ∗0 (ν)

s.t. Ax+ b− y = 0 s.t. AT
ν = 0

(42)
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Introducing new variables and equality constraints

dual function follows from

g(ν) = inf
x,y

(

f0(y)− ν
Ty + ν

TAx+ bTν
)

(43)

=

{

−f ∗0 (ν) + bTν AT
ν = 0

−∞ otherwise
(44)
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Implicit constraints

LP with box constraints: primal and dual problem

min cTx max −bTν − 1Tλ1 − 1Tλ2

s.t. Ax = b s.t. c+ AT
ν + λ1 − λ2 = 0

−1 � x � 1 λ1 � 0, λ2 � 0

(45)

reformulation with box constraints made implicit

min f0(x) =

{

cT x −1 � x � 1
∞ otherwise

s.t. Ax = b
(46)
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Implicit constraints

dual function

g(ν) = inf
−1�x�1

(

cTx+ ν
T (Ax− b)

)

= −bTν −
∣

∣AT
ν + c

∣

∣

1

(47)

dual problem: maximize −bTν −
∣

∣AT
ν + c

∣

∣

1
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