ELG6108: Introduction to Convex Optimization

Lecture 4: Convex optimization problems

Dr. Sergey Loyka
EECS, University of Ottawa

March 8, 2021

Convex optimization problems ${ }^{1}$

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- robust optimization
- geometric programming
- semidefinite programming (rate of MIMO channel, secrecy rate)
${ }^{1}$ adapted from Boyd \& Vandenberghe, Convex Optimization, Lecture slides.

Optimization problem in standard form

$$
\begin{array}{cl}
\min _{\mathbf{x}} & f_{0}(\mathbf{x}) \\
\mathrm{s.t.} & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& h_{i}(\mathbf{x})=0, \quad i=1, \ldots, p
\end{array}
$$

- \mathbf{x} is the optimization variable (vector)
- f_{0} : is the objective or cost function
- f_{i} : are the inequality constraint functions
- h_{i} : are the equality constraint functions

Optimization problem in standard form

$$
\begin{array}{cl}
\min _{\mathbf{x}} & f_{0}(\mathbf{x}) \\
\mathrm{s.t.} & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& h_{i}(\mathbf{x})=0, \quad i=1, \ldots, p
\end{array}
$$

- \mathbf{x} is the optimization variable (vector)
- f_{0} : is the objective or cost function
- f_{i} : are the inequality constraint functions
- h_{i} : are the equality constraint functions
optimal value:

$$
\begin{equation*}
p^{\star}=\min _{\mathbf{x}}\left\{f_{0}(\mathbf{x}): f_{i}(\mathbf{x}) \leq 0, h_{i}(\mathbf{x})=0 \forall i\right\} \tag{2}
\end{equation*}
$$

Optimization problem in standard form

$$
\begin{array}{cl}
\min _{\mathbf{x}} & f_{0}(\mathbf{x}) \\
\mathrm{s.t.} & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& h_{i}(\mathbf{x})=0, \quad i=1, \ldots, p
\end{array}
$$

- \mathbf{x} is the optimization variable (vector)
- f_{0} : is the objective or cost function
- f_{i} : are the inequality constraint functions
- h_{i} : are the equality constraint functions
optimal value:

$$
\begin{equation*}
p^{\star}=\min _{\mathbf{x}}\left\{f_{0}(\mathbf{x}): f_{i}(\mathbf{x}) \leq 0, h_{i}(\mathbf{x})=0 \forall i\right\} \tag{2}
\end{equation*}
$$

- $p^{\star}=\infty$ if problem is infeasible (no \mathbf{x} satisfies the constraints)
- $p^{\star}=-\infty$ if problem is unbounded below

(globally) Optimal and locally optimal points

- \mathbf{x} is feasible if $\mathbf{x} \in \operatorname{dom} f_{0}$ and it satisfies the constraints

(globally) Optimal and locally optimal points

- \mathbf{x} is feasible if $\mathbf{x} \in \operatorname{dom} f_{0}$ and it satisfies the constraints
- a feasible \mathbf{x} is optimal if $f_{0}(\mathbf{x})=p^{\star}$

(globally) Optimal and locally optimal points

- \mathbf{x} is feasible if $\mathbf{x} \in \operatorname{dom} f_{0}$ and it satisfies the constraints
- a feasible \mathbf{x} is optimal if $f_{0}(\mathbf{x})=p^{\star}$
- \mathbf{x} is locally optimal if there is an $d>0$ such that \mathbf{x} is optimal for

$$
\begin{array}{cl}
\min _{\mathbf{z}} & f_{0}(\mathbf{z}) \\
\mathrm{s.t.} & f_{i}(\mathbf{z}) \leq 0, \quad h_{i}(\mathbf{z})=0 \forall i \tag{3}\\
& \|\mathbf{z}-\mathbf{x}\|_{2} \leq d
\end{array}
$$

Optimal and locally optimal points

examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x, x>0: p^{\star}=0$, no optimal point

Optimal and locally optimal points

examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x, x>0: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x, x>0: p^{\star}=-\infty$

Optimal and locally optimal points

examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x, x>0: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x, x>0: p^{\star}=-\infty$
- $f_{0}(x)=x \log x, x>0: p^{\star}=-1 / e, x=1 / e$ is optimal

Optimal and locally optimal points

examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x, x>0: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x, x>0: p^{\star}=-\infty$
- $f_{0}(x)=x \log x, x>0: p^{\star}=-1 / e, x=1 / e$ is optimal
- $f_{0}(x)=x^{3}-3 x, p^{\star}=-\infty$, local optimum at $x=1$

Implicit constraints

the standard form optimization problem has an implicit constraint

$$
\begin{equation*}
\mathbf{x} \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i} \tag{4}
\end{equation*}
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(\mathbf{x}) \leq 0, h_{i}(\mathbf{x})=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints ($m=p=0$)

Implicit constraints

example:

$$
\begin{equation*}
\min \quad f_{0}(\mathbf{x})=-\sum_{i=1}^{k} \log \left(\mathbf{b}_{i}-a_{i}^{T} \mathbf{x}\right) \tag{5}
\end{equation*}
$$

is an unconstrained problem with implicit constraints $\mathbf{a}_{i}^{T} \mathbf{x}<b_{i}$

Feasibility problem

$$
\begin{array}{ll}
\text { find } & \mathbf{x} \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{6}\\
& h_{i}(\mathbf{x})=0, \quad i=1, \ldots, p
\end{array}
$$

can be considered a special case of the general problem with $f_{0}(\mathbf{x})=0$:

$$
\begin{array}{ll}
\min & 0 \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{7}\\
& h_{i}(\mathbf{x})=0, \quad i=1, \ldots, p
\end{array}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible

Convex optimization problem

Standard form convex optimization problem

$$
\begin{array}{ll}
\min & f_{0}(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{8}\\
& \mathbf{a}_{i}^{T} \mathbf{x}=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex; equality constraints are affine

Convex optimization problem

Standard form convex optimization problem

$$
\begin{array}{ll}
\min & f_{0}(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{8}\\
& \mathbf{a}_{i}^{T} \mathbf{x}=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex; equality constraints are affine
- problem is quasiconvex if f_{0} is quasiconvex (and f_{1}, \ldots, f_{m} convex)

Convex optimization problem

Standard form convex optimization problem

$$
\begin{array}{ll}
\min & f_{0}(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{8}\\
& \mathbf{a}_{i}^{T} \mathbf{x}=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex; equality constraints are affine
- problem is quasiconvex if f_{0} is quasiconvex (and f_{1}, \ldots, f_{m} convex)

Another form of (8):

$$
\begin{array}{ll}
\min & f_{0}(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{9}\\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Important property: feasible set is convex

Example

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x})=x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & f_{1}(\mathbf{x})=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \tag{10}\\
& h_{1}(\mathbf{x})=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- convex problem?

Example

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x})=x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & f_{1}(\mathbf{x})=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \tag{10}\\
& h_{1}(\mathbf{x})=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- convex problem?
- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right): x_{1}=-x_{2} \leq 0\right\}$ is convex

Example

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x})=x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & f_{1}(\mathbf{x})=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \tag{10}\\
& h_{1}(\mathbf{x})=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- convex problem?
- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right): x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (according to our definition)

Example

$$
\begin{align*}
\min & f_{0}(\mathbf{x})=x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & f_{1}(\mathbf{x})=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \tag{10}\\
& h_{1}(\mathbf{x})=\left(x_{1}+x_{2}\right)^{2}=0
\end{align*}
$$

- convex problem?
- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right): x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (according to our definition)
- equivalent (but not identical) to the convex problem

$$
\begin{array}{ll}
\min & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & x_{1} \leq 0 \tag{11}\\
& x_{1}+x_{2}=0
\end{array}
$$

- Q: sketch the feasible set

The most important property

- The most important property of a convex problem: any locally-optimal point is also globally-optimal

The most important property

- The most important property of a convex problem: any locally-optimal point is also globally-optimal which
- Makes it possible to solve convex problems globally and efficiently

The most important property

- The most important property of a convex problem: any locally-optimal point is also globally-optimal which
- Makes it possible to solve convex problems globally and efficiently and
- Does not hold for non-convex problems in general therefore
- "The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." - R.T. Rockafellar, 1993

Local and global optima

- The most important property of a convex problem: any locally-optimal point is also globally-optimal
Proof: by contradiction. Suppose \mathbf{x} is locally optimal and \mathbf{y} is globally-optimal with $f_{0}(\mathbf{y})<f_{0}(\mathbf{x})$; \mathbf{x} locally optimal means there is an $d>0$ such that

$$
\begin{equation*}
\forall \mathbf{z}:\|\mathbf{z}-\mathbf{x}\|_{2} \leq d \quad \Longrightarrow \quad f_{0}(\mathbf{z}) \geq f_{0}(\mathbf{x}) \tag{12}
\end{equation*}
$$

Now consider $\mathbf{z}=\theta \mathbf{y}+(1-\theta) \mathbf{x}$ with $\theta=d /\left(2\|\mathbf{y}-\mathbf{x}\|_{2}\right)$

- $\|\mathbf{y}-\mathbf{x}\|_{2}>d$, so $0<\theta<1 / 2$
- \mathbf{z} is a convex combination of two feasible points, hence also feasible
- $\|\mathbf{z}-\mathbf{x}\|_{2}=d / 2$ and

$$
\begin{equation*}
f_{0}(\mathbf{z}) \leq \theta f_{0}(\mathbf{x})+(1-\theta) f_{0}(\mathbf{y})<f_{0}(\mathbf{x}) \tag{13}
\end{equation*}
$$

which contradicts the assumption that \mathbf{x} is locally optimal!! Q.E.D.

Optimality criterion for differentiable f_{0}

\mathbf{x} is optimal if and only if it is feasible and $\nabla f_{0}(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \geq 0 \quad$ for all feasible y
if nonzero, $\nabla f_{0}(\mathbf{x})$ defines a supporting hyperplane to feasible set X at \mathbf{x}

- unconstrained problem: $\min f_{0}(\mathbf{x}) \rightarrow \mathbf{x}=$ optimal iff

$$
\begin{equation*}
\mathbf{x} \in \operatorname{dom} f_{0}, \quad \nabla f_{0}(\mathbf{x})=0 \tag{14}
\end{equation*}
$$

- unconstrained problem: $\min f_{0}(\mathbf{x}) \rightarrow \mathbf{x}=$ optimal iff

$$
\begin{equation*}
\mathbf{x} \in \operatorname{dom} f_{0}, \quad \nabla f_{0}(\mathbf{x})=0 \tag{14}
\end{equation*}
$$

- minimization over nonnegative orthant $\min f_{0}(\mathbf{x})$ s.t. $\mathbf{x} \succeq 0 \rightarrow \mathbf{x}=$ optimal iff

$$
\mathbf{x} \in \operatorname{dom} f_{0}, \quad \mathbf{x} \succeq 0, \quad \begin{cases}\nabla f_{0}(\mathbf{x})_{i} \geq 0 & x_{i}=0 \tag{15}\\ \nabla f_{0}(\mathbf{x})_{i}=0 & x_{i}>0\end{cases}
$$

- unconstrained problem: $\min f_{0}(\mathbf{x}) \rightarrow \mathbf{x}=$ optimal iff

$$
\begin{equation*}
\mathbf{x} \in \operatorname{dom} f_{0}, \quad \nabla f_{0}(\mathbf{x})=0 \tag{14}
\end{equation*}
$$

- minimization over nonnegative orthant $\min f_{0}(\mathbf{x})$ s.t. $\mathbf{x} \succeq 0 \rightarrow \mathbf{x}=$ optimal iff

$$
\mathbf{x} \in \operatorname{dom} f_{0}, \quad \mathbf{x} \succeq 0, \quad \begin{cases}\nabla f_{0}(\mathbf{x})_{i} \geq 0 & x_{i}=0 \tag{15}\\ \nabla f_{0}(\mathbf{x})_{i}=0 & x_{i}>0\end{cases}
$$

- equality constrained problem

$$
\begin{equation*}
\min f_{0}(\mathbf{x}) \text { s.t. } \quad \mathbf{A x}=\mathbf{b} \tag{16}
\end{equation*}
$$

\mathbf{x} is optimal iff there exists a ν such that

$$
\begin{equation*}
\mathbf{x} \in \operatorname{dom} f_{0}, \quad \mathbf{A x}=\mathbf{b}, \quad \nabla f_{0}(\mathbf{x})+\mathbf{A}^{T} \boldsymbol{\nu}=0 \tag{17}
\end{equation*}
$$

Equivalent Problems

Two problems are equivalent if a solution of one can be obtained from a solution of the other, and vice-versa

Some common transformations that preserve convexity:

- eliminating equality constraints

$$
\begin{equation*}
\min _{\mathbf{x}} f_{0}(\mathbf{x}) \text { s.t. } f_{i}(\mathbf{x}) \leq 0, \mathbf{A} \mathbf{x}=\mathbf{b} \tag{18}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
\min _{\mathbf{z}} f_{0}\left(\mathbf{F z}+\mathbf{x}_{0}\right) \text { s.t. } f_{i}\left(\mathbf{F z}+\mathbf{x}_{0}\right) \leq 0, \tag{19}
\end{equation*}
$$

where \mathbf{F} and \mathbf{x}_{0} are such that: $\mathbf{A} \mathbf{x}=\mathbf{b} \Longleftrightarrow \mathbf{x}=\mathbf{F z}+\mathbf{x}_{0}$ for some \mathbf{z}

Equivalent Problems

- introducing equality constraints

$$
\begin{equation*}
\min _{\mathbf{x}} f_{0}\left(\mathbf{A}_{0} \mathbf{x}+\mathbf{b}_{0}\right) \quad \text { s.t. } f_{i}\left(\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right) \leq 0, i=1 . . m \tag{20}
\end{equation*}
$$

is equivalent to

$$
\begin{align*}
& \min _{\mathbf{x}, \mathbf{y}_{i}} f_{0}\left(\mathbf{y}_{0}\right) \quad \text { s.t. } f_{i}\left(\mathbf{y}_{i}\right) \leq 0, i=1 . . m \tag{21}\\
& \\
& \mathbf{y}_{i}=\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}, \quad i=0 . . m
\end{align*}
$$

Equivalent Problems

- introducing slack variables for linear inequalities

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x}) \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq \mathbf{b}_{i}, \quad i=1, \ldots, m \tag{22}
\end{array}
$$

is equivalent to

$$
\begin{array}{cl}
\min (\text { over } x, s) & f_{0}(\mathbf{x}) \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x}+s_{i}=b_{i}, \quad i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1, \ldots m \tag{23}
\end{array}
$$

Equivalent Problems

- epigraph form: standard form convex problem is equivalent to

$$
\begin{array}{ll}
\min (\text { over } \mathbf{x}, t) & t \\
\text { s.t. } & f_{0}(\mathbf{x})-t \leq 0 \\
& f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{24}\\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Equivalent Problems

- epigraph form: standard form convex problem is equivalent to

$$
\begin{array}{ll}
\min (\text { over } \mathbf{x}, t) & t \\
\text { s.t. } & f_{0}(\mathbf{x})-t \leq 0 \\
& f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \\
& \mathbf{A x}=\mathbf{b} \tag{24}
\end{array}
$$

- minimizing over some variables

$$
\begin{array}{cl}
\min & f_{0}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \tag{25}\\
\text { s.t. } & f_{i}\left(\mathbf{x}_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{cl}
\min & \tilde{f}_{0}(\mathbf{x} 1) \tag{26}\\
\text { s.t. } & f_{i}\left(\mathbf{x}_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where $\tilde{f}_{0}\left(\mathbf{x}_{1}\right)=\min _{\mathbf{x}_{2}} f_{0}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$

Quasiconvex optimization

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x}) \\
\mathrm{s.t.} & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

with f_{0} quasiconvex, f_{1}, \ldots, f_{m} convex

Quasiconvex optimization

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x}) \\
\mathrm{s.t.} & f_{i}(\mathbf{x}) \leq 0, \quad i=1, \ldots, m \tag{27}\\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

with f_{0} quasiconvex, f_{1}, \ldots, f_{m} convex
Can have locally optimal points that are not (globally) optimal

$$
\left(x, \underline{f_{0}(x)}\right)
$$

Convex representation of sublevel sets of f_{0}

If f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that:

- $\phi_{t}(\mathbf{x})$ is convex in \mathbf{x} for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e.,

$$
\begin{equation*}
f_{0}(\mathbf{x}) \leq t \quad \Longleftrightarrow \quad \phi_{t}(\mathbf{x}) \leq 0 \tag{28}
\end{equation*}
$$

Convex representation of sublevel sets of f_{0}

If f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that:

- $\phi_{t}(\mathbf{x})$ is convex in \mathbf{x} for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e.,

$$
\begin{equation*}
f_{0}(\mathrm{x}) \leq t \quad \Longleftrightarrow \quad \phi_{t}(\mathrm{x}) \leq 0 \tag{28}
\end{equation*}
$$

Example:

$$
\begin{equation*}
f_{0}(\mathbf{x})=\frac{p(\mathbf{x})}{q(\mathbf{x})} \tag{29}
\end{equation*}
$$

with p convex, q concave, and $p(x) \geq 0, q(x)>0$ on dom f_{0} can take $\phi_{t}(\mathbf{x})=p(\mathbf{x})-t q(\mathbf{x})$:

- for $t \geq 0, \phi_{t}$ convex in \mathbf{x}
- $p(\mathbf{x}) / q(\mathbf{x}) \leq t \leftrightarrow \phi_{t}(\mathbf{x}) \leq 0$

Quasiconvex optimization via convex feasibility

(P) find $\mathbf{x}: \phi_{t}(\mathbf{x}) \leq 0, \quad f_{i}(\mathbf{x}) \leq 0, \quad \mathbf{A x}=\mathbf{b}$

- for fixed t, a convex feasibility problem in \mathbf{x}
- if feasible, $p^{\star} \leq t$; if infeasible, $p^{\star} \geq t$
- Why ?

Bisection method

$$
\text { (P) find } \mathbf{x}: \quad \phi_{t}(\mathbf{x}) \leq 0, \quad f_{i}(\mathbf{x}) \leq 0, \quad \mathbf{A x}=\mathbf{b}
$$

Bisection method for quasiconvex optimization given $I \leq p^{\star}, u \geq p^{\star}$, tolerance $\epsilon>0$ repeat

$$
\text { 1. } t:=(I+u) / 2
$$

2. solve the convex feasibility problem (P).
3. if (P) is feasible, $u:=t ; \quad$ else $l:=t$. until $u-I \leq \epsilon$
requires exactly $\left\lceil\log _{2} \frac{u-I}{\epsilon}\right\rceil$ iterations (u, I are initial bounds)

Linear program (or problem, LP)

$$
\begin{align*}
\min & \mathbf{c}^{T} \mathbf{x}+d \\
\text { s.t. } & \mathbf{G} \mathbf{x} \preceq \mathbf{h} \tag{31}\\
& \mathbf{A x}=\mathbf{b}
\end{align*}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron (why?)

Examples

Diet problem: choose quantities x_{1}, \ldots, x_{n} of n foods

- one unit of food j costs c_{j}, contains amount $a_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
to find cheapest healthy diet,

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \succeq \mathbf{b}, \quad \mathbf{x} \succeq 0 \tag{32}
\end{array}
$$

Examples

Diet problem: choose quantities x_{1}, \ldots, x_{n} of n foods

- one unit of food j costs c_{j}, contains amount $a_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
to find cheapest healthy diet,

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \succeq \mathbf{b}, \quad \mathbf{x} \succeq 0 \tag{32}
\end{array}
$$

Piecewise-linear minimization

$$
\begin{equation*}
\min \max _{i=1, \ldots, m}\left(\mathbf{a}_{i}^{T} \mathbf{x}+b_{i}\right) \tag{33}
\end{equation*}
$$

equivalent to an LP

$$
\begin{array}{cl}
\min & t \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x}+b_{i} \leq t, \quad i=1, \ldots, m \tag{34}
\end{array}
$$

Chebyshev center of a polyhedron

Chebyshev center of

$$
\mathcal{P}=\left\{\mathbf{x}: \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, i=1, \ldots, m\right\}
$$

is center of largest inscribed ball

$$
\mathcal{B}=\left\{\mathbf{x}_{c}+\mathbf{u}:\|\mathbf{u}\|_{2} \leq r\right\}
$$

- $\mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}$ for all $\mathbf{x} \in \mathcal{B}$ iff

$$
\begin{equation*}
\max \left\{\mathbf{a}_{i}^{T}\left(\mathbf{x}_{c}+\mathbf{u}\right):\|\mathbf{u}\|_{2} \leq r\right\}=\mathbf{a}_{i}^{T} \mathbf{x}_{c}+r\left\|\mathbf{a}_{i}\right\|_{2} \leq b_{i} \tag{35}
\end{equation*}
$$

- hence, \mathbf{x}_{c}, r can be determined by solving the $L P$

$$
\begin{array}{cl}
\max & r \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x}_{c}+r\left\|\mathbf{a}_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m \tag{36}
\end{array}
$$

Linear-fractional problem

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x}) \tag{37}\\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h}, \mathbf{A} \mathbf{x}=\mathbf{b}
\end{array}
$$

linear-fractional problem

$$
\begin{equation*}
f_{0}(\mathbf{x})=\frac{\mathbf{c}^{T} \mathbf{x}+d}{\mathbf{e}^{T} \mathbf{x}+f}, \quad \operatorname{dom} \quad f_{0}(\mathbf{x})=\left\{\mathbf{x}: \mathbf{e}^{T} \mathbf{x}+f>0\right\} \tag{38}
\end{equation*}
$$

- a quasiconvex optimization problem; can be solved by bisection

Linear-fractional problem

$$
\begin{array}{cl}
\min & f_{0}(\mathbf{x}) \tag{37}\\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h}, \mathbf{A} \mathbf{x}=\mathbf{b}
\end{array}
$$

linear-fractional problem

$$
\begin{equation*}
f_{0}(\mathbf{x})=\frac{\mathbf{c}^{T} \mathbf{x}+d}{\mathbf{e}^{T} \mathbf{x}+f}, \quad \text { dom } f_{0}(\mathbf{x})=\left\{\mathbf{x}: \mathbf{e}^{T} \mathbf{x}+f>0\right\} \tag{38}
\end{equation*}
$$

- a quasiconvex optimization problem; can be solved by bisection
- equivalent to the following LP (in \mathbf{y}, z)

$$
\begin{array}{cl}
\min & \mathbf{c}^{T} \mathbf{y}+d z \\
\text { s.t. } & \mathbf{G y} \preceq h z, A y=b z, \mathbf{e}^{T} \mathbf{y}+f z=1, z \geq 0 \tag{39}
\end{array}
$$

- i.e. non-convex \Rightarrow convex P !

Generalized linear-fractional program

$$
\begin{equation*}
f_{0}(\mathbf{x})=\max _{i=1, \ldots, r} \frac{\mathbf{c}_{i}^{T} \mathbf{x}+d_{i}}{\mathbf{e}_{i}^{T} \mathbf{x}+f_{i}}, \quad \operatorname{dom} f_{0}(\mathbf{x})=\left\{\mathbf{x}: \mathbf{e}_{i}^{T} \mathbf{x}+f_{i}>0, i=1, \ldots, r\right\} \tag{40}
\end{equation*}
$$

a quasiconvex optimization problem; can be solved by bisection example: Von Neumann model of a growing economy

Quadratic program (QP)

$$
\begin{array}{cl}
\min & \frac{1}{2} \mathbf{x}^{\top} \mathbf{P} \mathbf{x}+\mathbf{q}^{\top} \mathbf{x}+r \\
\text { s.t. } & \mathbf{G} \mathbf{x} \preceq \mathbf{h}, \mathbf{A} \mathbf{x}=\mathbf{b} \tag{41}
\end{array}
$$

- $\mathbf{P} \geq 0$, so the objective is convex quadratic (what is not?)
- minimize a convex quadratic function over a polyhedron

Example: least-squares

$$
\begin{equation*}
\min \|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2} \tag{42}
\end{equation*}
$$

- analytical solution: $\mathbf{x}^{\star}=\mathbf{A}^{\dagger} \mathbf{b}, \mathbf{A}^{\dagger}$ is pseudo-inverse
- can add linear constraints, e.g., $\mathbf{x}_{I} \leq \mathbf{x} \leq \mathbf{x}_{u}$

Example: linear program with random cost

$$
\begin{array}{ll}
\min & \overline{\mathbf{c}}^{T} x+\gamma \mathbf{x}^{\top} \boldsymbol{\Sigma} \mathbf{x}=\mathbb{E}\left\{\mathbf{c}^{\top} \mathbf{x}\right\}+\gamma \operatorname{var}\left(\mathbf{c}^{\top} \mathbf{x}\right) \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h}, \quad \mathbf{A x}=\mathbf{b} \tag{43}
\end{array}
$$

- c is random vector with mean $\overline{\mathbf{c}}$ and covariance $\boldsymbol{\Sigma}$
- $\mathbf{c}^{T} \mathbf{x}$ is random variable with mean $\overline{\mathbf{c}}^{T} \mathbf{x}$ and variance $\mathbf{x}^{T} \boldsymbol{\Sigma} \mathbf{x}$
- $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{P}_{0} \mathbf{x}+\mathbf{q}_{0}^{T} \mathbf{x}+r_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{P}_{i} \mathbf{x}+\mathbf{q}_{i}^{T} \mathbf{x}+r_{i} \leq 0 \tag{44}\\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

- $\mathbf{P}_{1} . . \mathbf{P}_{m} \geq 0$, objective and constraints are convex quadratic
- if \mathbf{P}_{1}.. $\mathbf{P}_{m}>0$, feasible set is intersection of ellipsoids and an affine set (if not?)

Second-order cone programming

$$
\begin{array}{ll}
\min & \mathbf{f}^{T} \mathbf{x} \\
\text { s.t. } & \left\|\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right\|_{2} \leq \mathbf{c}_{i}^{T} \mathbf{x}+d_{i}, \quad i=1, \ldots, m \tag{45}\\
& \mathbf{F x}=\mathbf{g}
\end{array}
$$

- inequalities are called second-order cone (SOC) constraints:

$$
\left(\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}, \mathbf{c}_{i}^{T} \mathbf{x}+\mathbf{d}_{i}\right) \in \text { second-order cone }
$$

- for $n_{i}=0$, reduces to an LP; if $c_{i}=0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq \mathbf{b}_{i}, \quad i=1, \ldots, m \tag{46}
\end{array}
$$

with uncertainty in $\mathbf{c}, \mathbf{a}_{i}, b_{i}$

Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq \mathbf{b}_{i}, \quad i=1, \ldots, m \tag{46}
\end{array}
$$

with uncertainty in $\mathbf{c}, \mathbf{a}_{i}, b_{i}$
Two common approaches to handling uncertainty (in \mathbf{a}_{i}, for simplicity)

- deterministic model: constraints must hold for all $\mathbf{a}_{i} \in \mathcal{E}_{i}$

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq \mathbf{b}_{i}, \forall \mathbf{a}_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m \tag{47}
\end{array}
$$

Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq \mathbf{b}_{i}, \quad i=1, \ldots, m \tag{46}
\end{array}
$$

with uncertainty in $\mathbf{c}, \mathbf{a}_{i}, b_{i}$
Two common approaches to handling uncertainty (in \mathbf{a}_{i}, for simplicity)

- deterministic model: constraints must hold for all $\mathbf{a}_{i} \in \mathcal{E}_{i}$

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq \mathbf{b}_{i}, \forall \mathbf{a}_{i} \in \mathcal{E}_{i}, \quad i=1, \ldots, m \tag{47}
\end{array}
$$

- stochastic model: \mathbf{a}_{i} is random variable; constraints must hold with probability at least η

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \operatorname{Pr}\left(\mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}\right) \geq \eta, \quad i=1, \ldots, m \tag{48}
\end{array}
$$

Geometric programming

- monomial function

$$
\begin{equation*}
f(\mathbf{x})=c \cdot x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}, \quad x_{1}, . ., x_{n}>0 \tag{49}
\end{equation*}
$$

with $c>0 ; a_{i}=$ any real number

Geometric programming

- monomial function

$$
\begin{equation*}
f(\mathbf{x})=c \cdot x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}, \quad x_{1}, . ., x_{n}>0 \tag{49}
\end{equation*}
$$

with $c>0 ; a_{i}=$ any real number

- posynomial function: sum of monomials

$$
\begin{equation*}
f(\mathbf{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}} \tag{50}
\end{equation*}
$$

Geometric programming

- monomial function

$$
\begin{equation*}
f(\mathbf{x})=c \cdot x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}, \quad x_{1}, . ., x_{n}>0 \tag{49}
\end{equation*}
$$

with $c>0 ; a_{i}=$ any real number

- posynomial function: sum of monomials

$$
\begin{equation*}
f(\mathbf{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \cdots x_{n}^{a_{n k}} \tag{50}
\end{equation*}
$$

- geometric program (GP)

$$
\begin{array}{ll}
\min & f_{0}(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 1, h_{i}(\mathbf{x})=1, \quad i=1, \ldots, p \tag{51}
\end{array}
$$

with f_{i} posynomial, h_{i} monomial

- Q: convex or not?

Geometric program in convex form

Change variables to $y_{i}=\log x_{i}$, and take logarithm of cost, constraints

- monomial $f(\mathbf{x})=c \cdot x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ transforms to

$$
\begin{equation*}
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\mathbf{a}^{T} \mathbf{y}+b \quad(b=\log c) \tag{52}
\end{equation*}
$$

Geometric program in convex form

Change variables to $y_{i}=\log x_{i}$, and take logarithm of cost, constraints

- monomial $f(\mathbf{x})=c \cdot x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ transforms to

$$
\begin{equation*}
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\mathbf{a}^{T} \mathbf{y}+b \quad(b=\log c) \tag{52}
\end{equation*}
$$

- posynomial $f(\mathbf{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \ldots x_{n}^{a_{n k}}$ transforms to

$$
\begin{equation*}
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\log \left(\sum_{k=1}^{K} e^{\mathbf{a}_{k}^{T} \mathbf{y}+b_{k}}\right), \quad b_{k}=\log c_{k} \tag{53}
\end{equation*}
$$

Geometric program in convex form

Change variables to $y_{i}=\log x_{i}$, and take logarithm of cost, constraints

- monomial $f(\mathbf{x})=c \cdot x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ transforms to

$$
\begin{equation*}
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\mathbf{a}^{T} \mathbf{y}+b \quad(b=\log c) \tag{52}
\end{equation*}
$$

- posynomial $f(\mathbf{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1 k}} x_{2}^{a_{2 k}} \ldots x_{n}^{a_{n k}}$ transforms to

$$
\begin{equation*}
\log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\log \left(\sum_{k=1}^{K} e^{\mathbf{a}_{k}^{T} \mathbf{y}+b_{k}}\right), \quad b_{k}=\log c_{k} \tag{53}
\end{equation*}
$$

- now, convex or not?

Geometric program in convex form

- geometric program transforms to convex problem

$$
\begin{array}{ll}
\min & \log \left(\sum_{k=1}^{K} \exp \left(\mathbf{a}_{0 k}^{T} \mathbf{y}+b_{0 k}\right)\right) \\
\text { s.t. } & \log \left(\sum_{k=1}^{K} \exp \left(\mathbf{a}_{i k}^{T} \mathbf{y}+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m \tag{54}\\
& \mathbf{G y}+\mathbf{d}=0
\end{array}
$$

Multi-antenna Gaussian channel

Example: maximizing rate (MI) in multi-antenna Gaussian channel

$$
\begin{equation*}
y=H x+\xi \tag{55}
\end{equation*}
$$

$\mathbf{x}, \mathbf{y}=$ input ($\mathrm{T} x$) and output (R x), $\boldsymbol{\xi}=$ noise, $\mathbf{H}=$ channel matrix channel

Semidefinite problem (SDP)

Example: maximizing rate (MI) in multi-antenna Gaussian channel

$$
\begin{equation*}
\mathbf{y}=\mathbf{H x}+\boldsymbol{\xi}, \mathrm{MI}=\log |\mathbf{I}+\mathbf{W R}| \tag{56}
\end{equation*}
$$

$\mathbf{x}, \mathbf{y}=\operatorname{input}(\mathrm{Tx})$ and output (Rx), $\boldsymbol{\xi}=$ noise, $\mathbf{H}=$ channel matrix

$$
\begin{equation*}
\max _{\mathbf{R}} \mathrm{MI}=\log |\mathbf{I}+\mathbf{W} \mathbf{R}| \text { s.t. } \mathbf{R} \geq 0, \operatorname{tr} \mathbf{R} \leq P_{T} \tag{57}
\end{equation*}
$$

$\mathbf{R}=\mathrm{Tx}$ (input) covariance matrix, $\operatorname{tr} \mathbf{R}=$ its power
$P_{T}=$ max. Tx power
$\mathbf{W}=\mathbf{H}^{+} \mathbf{H}=$ channel Gram matrix

- Very important in wireless communications (WiFi, 5G)
- Q: convex or not?

Maximizing rate in multi-antenna Gaussian channel

Can add extra constrains:

$$
\begin{aligned}
& \max _{\mathbf{R}} \mathrm{MI}=\log |\mathbf{I}+\mathbf{W} \mathbf{R}| \\
& \quad \text { s.t. } \mathbf{R} \geq 0, \operatorname{tr} \mathbf{R} \leq P_{T}, r_{i i} \leq P_{1}, \operatorname{tr}\left(\mathbf{W}_{2} \mathbf{R}\right) \leq P_{I}
\end{aligned}
$$

$r_{i i} \leq P_{1}$ - per antenna power constraint $\operatorname{tr}\left(\mathbf{W}_{2} \mathbf{R}\right) \leq P_{l}$ - interference power constraint

Maximizing secrecy rate

- wire-tap MIMO channel model

$$
\begin{equation*}
\mathbf{y}_{1}=\mathbf{H}_{1} \mathbf{x}+\xi_{1}, \quad \mathbf{y}_{2}=\mathbf{H}_{2} \mathbf{x}+\xi_{2} \tag{59}
\end{equation*}
$$

Maximizing secrecy rate

- wire-tap MIMO channel model

$$
\begin{equation*}
\mathbf{y}_{1}=\mathbf{H}_{1} \mathbf{x}+\xi_{1}, \quad \mathbf{y}_{2}=\mathbf{H}_{2} \mathbf{x}+\xi_{2} \tag{59}
\end{equation*}
$$

- secrecy rate maximization

$$
\begin{equation*}
\max _{\mathbf{R}} \log \frac{\left|\mathbf{I}+\mathbf{W}_{1} \mathbf{R}\right|}{\left|\mathbf{I}+\mathbf{W}_{2} \mathbf{R}\right|} \text { s.t. } \mathbf{R} \geq 0, \operatorname{tr} \mathbf{R} \leq P_{T} \tag{60}
\end{equation*}
$$

- convex or not?

More Examples (see Boyd \& Vandenberghe)

- max. eigenvalue minimization
- matrix norm minimization
- general vector optimization problem
- multicriterion optimization (optimal and Pareto-optimal points, scalarization)

