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Convex optimization problems1

• optimization problem in standard form

• convex optimization problems

• quasiconvex optimization

• linear optimization

• quadratic optimization

• robust optimization

• geometric programming

• semidefinite programming (rate of MIMO channel, secrecy rate)

1adapted from Boyd & Vandenberghe, Convex Optimization, Lecture slides.
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Optimization problem in standard form

minx f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p
(1)

• x is the optimization variable (vector)
• f0 : is the objective or cost function

• fi : are the inequality constraint functions
• hi : are the equality constraint functions

S. Loyka Lecture 4, ELG6108: Introduction to Convex Optimization 3 / 41



March 8, 2021

Optimization problem in standard form

minx f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p
(1)

• x is the optimization variable (vector)
• f0 : is the objective or cost function

• fi : are the inequality constraint functions
• hi : are the equality constraint functions

optimal value:

p⋆ = min
x
{f0(x) : fi(x) ≤ 0, hi (x) = 0 ∀i} (2)
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Optimization problem in standard form

minx f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p
(1)

• x is the optimization variable (vector)
• f0 : is the objective or cost function

• fi : are the inequality constraint functions
• hi : are the equality constraint functions

optimal value:

p⋆ = min
x
{f0(x) : fi(x) ≤ 0, hi (x) = 0 ∀i} (2)

• p⋆ = ∞ if problem is infeasible (no x satisfies the constraints)
• p⋆ = −∞ if problem is unbounded below
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(globally) Optimal and locally optimal points

• x is feasible if x ∈ dom f0 and it satisfies the constraints
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(globally) Optimal and locally optimal points

• x is feasible if x ∈ dom f0 and it satisfies the constraints

• a feasible x is optimal if f0(x) = p⋆
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(globally) Optimal and locally optimal points

• x is feasible if x ∈ dom f0 and it satisfies the constraints

• a feasible x is optimal if f0(x) = p⋆

• x is locally optimal if there is an d > 0 such that x is optimal for

minz f0(z)
s.t. fi(z) ≤ 0, hi(z) = 0 ∀ i

‖z− x‖2 ≤ d

(3)
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Optimal and locally optimal points

examples (with n = 1,m = p = 0)

• f0(x) = 1/x , x > 0: p⋆ = 0, no optimal point
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Optimal and locally optimal points

examples (with n = 1,m = p = 0)

• f0(x) = 1/x , x > 0: p⋆ = 0, no optimal point

• f0(x) = − log x , x > 0: p⋆ = −∞
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Optimal and locally optimal points

examples (with n = 1,m = p = 0)

• f0(x) = 1/x , x > 0: p⋆ = 0, no optimal point

• f0(x) = − log x , x > 0: p⋆ = −∞

• f0(x) = x log x , x > 0: p⋆ = −1/e, x = 1/e is optimal
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Optimal and locally optimal points

examples (with n = 1,m = p = 0)

• f0(x) = 1/x , x > 0: p⋆ = 0, no optimal point

• f0(x) = − log x , x > 0: p⋆ = −∞

• f0(x) = x log x , x > 0: p⋆ = −1/e, x = 1/e is optimal

• f0(x) = x3 − 3x , p⋆ = −∞, local optimum at x = 1
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =

m
⋂

i=0

dom fi ∩

p
⋂

i=1

dom hi (4)

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi (x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints
(m = p = 0)
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Implicit constraints

example:

min f0(x) = −
k
∑

i=1

log
(

bi − aTi x
)

(5)

is an unconstrained problem with implicit constraints aTi x < bi
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Feasibility problem

find x
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p
(6)

can be considered a special case of the general problem with f0(x) = 0 :

min 0
s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p
(7)

• p⋆ = 0 if constraints are feasible; any feasible x is optimal

• p⋆ = ∞ if constraints are infeasible
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Convex optimization problem

Standard form convex optimization problem

min f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi , i = 1, . . . , p
(8)

• f0, f1, . . . , fm are convex; equality constraints are affine
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Convex optimization problem

Standard form convex optimization problem

min f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi , i = 1, . . . , p
(8)

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)
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Convex optimization problem

Standard form convex optimization problem

min f0(x)
s.t. fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi , i = 1, . . . , p
(8)

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

Another form of (8):

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

Ax = b
(9)

Important property: feasible set is convex
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Example

min f0(x) = x21 + x22
s.t. f1(x) = x1/

(

1 + x22
)

≤ 0

h1(x) = (x1 + x2)
2 = 0

(10)

• convex problem?
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Example

min f0(x) = x21 + x22
s.t. f1(x) = x1/

(

1 + x22
)

≤ 0

h1(x) = (x1 + x2)
2 = 0

(10)

• convex problem?

• f0 is convex; feasible set {(x1, x2) : x1 = −x2 ≤ 0} is convex
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Example

min f0(x) = x21 + x22
s.t. f1(x) = x1/

(

1 + x22
)

≤ 0

h1(x) = (x1 + x2)
2 = 0

(10)

• convex problem?

• f0 is convex; feasible set {(x1, x2) : x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition)
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Example

min f0(x) = x21 + x22
s.t. f1(x) = x1/

(

1 + x22
)

≤ 0

h1(x) = (x1 + x2)
2 = 0

(10)

• convex problem?

• f0 is convex; feasible set {(x1, x2) : x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition)

• equivalent (but not identical) to the convex problem

min x21 + x22
s.t. x1 ≤ 0

x1 + x2 = 0
(11)

• Q: sketch the feasible set
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The most important property

• The most important property of a convex problem: any
locally-optimal point is also globally-optimal
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The most important property

• The most important property of a convex problem: any
locally-optimal point is also globally-optimal

which

• Makes it possible to solve convex problems globally and efficiently
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The most important property

• The most important property of a convex problem: any
locally-optimal point is also globally-optimal

which

• Makes it possible to solve convex problems globally and efficiently

and

• Does not hold for non-convex problems in general

therefore

• ”The great watershed in optimization is not between linearity and
non-linearity, but convexity and non-convexity.” - R.T. Rockafellar,
1993
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Local and global optima
• The most important property of a convex problem: any

locally-optimal point is also globally-optimal

Proof: by contradiction. Suppose x is locally optimal and y is
globally-optimal with f0(y) < f0(x); x locally optimal means there is an
d > 0 such that

∀ z : ‖z− x‖2 ≤ d =⇒ f0(z) ≥ f0(x) (12)

Now consider z = θy+ (1− θ)x with θ = d/ (2‖y − x‖2)

• ‖y − x‖2 > d , so 0 < θ < 1/2

• z is a convex combination of two feasible points, hence also feasible

• ‖z− x‖2 = d/2 and

f0(z) ≤ θf0(x) + (1− θ)f0(y) < f0(x) (13)

which contradicts the assumption that x is locally optimal!! Q.E.D.
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and ∇f0(x)
T (y − x) ≥ 0 for all

feasible y

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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• unconstrained problem: min f0(x) → x = optimal iff

x ∈ dom f0, ∇f0(x) = 0 (14)
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• unconstrained problem: min f0(x) → x = optimal iff

x ∈ dom f0, ∇f0(x) = 0 (14)

• minimization over nonnegative orthant
min f0(x) s.t. x � 0 → x = optimal iff

x ∈ dom f0, x � 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0

(15)
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• unconstrained problem: min f0(x) → x = optimal iff

x ∈ dom f0, ∇f0(x) = 0 (14)

• minimization over nonnegative orthant
min f0(x) s.t. x � 0 → x = optimal iff

x ∈ dom f0, x � 0,

{

∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0

(15)

• equality constrained problem

min f0(x) s.t. Ax = b (16)

x is optimal iff there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) +ATν = 0 (17)
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Equivalent Problems

Two problems are equivalent if a solution of one can be obtained from a
solution of the other, and vice-versa

Some common transformations that preserve convexity:

• eliminating equality constraints

min
x

f0(x) s.t. fi(x) ≤ 0, Ax = b (18)

is equivalent to

min
z

f0(Fz+ x0) s.t. fi(Fz+ x0) ≤ 0, (19)

where F and x0 are such that: Ax = b ⇐⇒ x = Fz+ x0 for some z
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Equivalent Problems

• introducing equality constraints

min
x

f0(A0x+ b0) s.t. fi(Aix+ bi ) ≤ 0, i = 1..m (20)

is equivalent to

min
x,yi

f0(y0) s.t. fi(yi) ≤ 0, i = 1..m (21)

yi = Aix+ bi , i = 0..m
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Equivalent Problems

• introducing slack variables for linear inequalities

min f0(x)
s.t. aTi x ≤ bi , i = 1, . . . ,m

(22)

is equivalent to

min (over x , s) f0(x)
s.t. aTi x+ si = bi , i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
(23)
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Equivalent Problems
• epigraph form: standard form convex problem is equivalent to

min (over x, t) t

s.t. f0(x)− t ≤ 0
fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

(24)
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Equivalent Problems
• epigraph form: standard form convex problem is equivalent to

min (over x, t) t

s.t. f0(x)− t ≤ 0
fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

(24)

• minimizing over some variables

min f0 (x1, x2)
s.t. fi (x1) ≤ 0, i = 1, . . . ,m

(25)

is equivalent to

min f̃0(x1)
s.t. fi (x1) ≤ 0, i = 1, . . . ,m

(26)

where f̃0 (x1) = minx2 f0 (x1, x2)
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Quasiconvex optimization

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

Ax = b
(27)

with f0 quasiconvex, f1, . . . , fm convex
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Quasiconvex optimization

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

Ax = b
(27)

with f0 quasiconvex, f1, . . . , fm convex

Can have locally optimal points that are not (globally) optimal
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Convex representation of sublevel sets of f0

If f0 is quasiconvex, there exists a family of functions φt such that:

• φt(x) is convex in x for fixed t

• t -sublevel set of f0 is 0 -sublevel set of φt , i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0 (28)
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Convex representation of sublevel sets of f0

If f0 is quasiconvex, there exists a family of functions φt such that:

• φt(x) is convex in x for fixed t

• t -sublevel set of f0 is 0 -sublevel set of φt , i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0 (28)

Example:

f0(x) =
p(x)

q(x)
(29)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0
can take φt(x) = p(x)− tq(x) :

• for t ≥ 0, φt convex in x

• p(x)/q(x) ≤ t ↔ φt(x) ≤ 0
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Quasiconvex optimization via convex feasibility

(P) find x : φt(x) ≤ 0, fi(x) ≤ 0, Ax = b (30)

• for fixed t, a convex feasibility problem in x

• if feasible, p⋆ ≤ t; if infeasible, p⋆ ≥ t

• Why ?

S. Loyka Lecture 4, ELG6108: Introduction to Convex Optimization 21 / 41



March 8, 2021

Bisection method

(P) find x : φt(x) ≤ 0, fi(x) ≤ 0, Ax = b

Bisection method for quasiconvex optimization

given l ≤ p⋆, u ≥ p⋆, tolerance ǫ > 0
repeat

1. t := (l + u)/2

2. solve the convex feasibility problem (P).

3. if (P) is feasible, u := t; else l := t.

until u − l ≤ ǫ

requires exactly
⌈

log2
u−l
ǫ

⌉

iterations (u, l are initial bounds)
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Linear program (or problem, LP)

min cTx+ d

s.t. Gx � h
Ax = b

(31)

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron (why?)
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Examples

Diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj , contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

min cTx
s.t. Ax � b, x � 0

(32)
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Examples

Diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj , contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

min cTx
s.t. Ax � b, x � 0

(32)

Piecewise-linear minimization

min max
i=1,...,m

(

aTi x+ bi
)

(33)

equivalent to an LP

min t

s.t. aTi x+ bi ≤ t, i = 1, . . . ,m
(34)
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Chebyshev center of a polyhedron

Chebyshev center of

P =
{

x : aTi x ≤ bi , i = 1, . . . ,m
}

is center of largest inscribed ball

B = {xc + u : ‖u‖2 ≤ r}

• aTi x ≤ bi for all x ∈ B iff

max
{

aTi (xc + u) : ‖u‖2 ≤ r
}

= aTi xc + r ‖ai‖2 ≤ bi (35)

• hence, xc , r can be determined by solving the LP

max r

s.t. aTi xc + r ‖ai‖2 ≤ bi , i = 1, . . . ,m
(36)
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Linear-fractional problem

min f0(x)
s.t. Gx � h, Ax = b

(37)

linear-fractional problem

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) =

{

x : eTx+ f > 0
}

(38)

• a quasiconvex optimization problem; can be solved by bisection
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Linear-fractional problem

min f0(x)
s.t. Gx � h, Ax = b

(37)

linear-fractional problem

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) =

{

x : eTx+ f > 0
}

(38)

• a quasiconvex optimization problem; can be solved by bisection

• equivalent to the following LP (in y, z)

min cTy + dz

s.t. Gy � hz , Ay = bz , eTy + fz = 1, z ≥ 0
(39)

• i.e. non-convex ⇒ convex P !
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Generalized linear-fractional program

f0(x) = max
i=1,...,r

cTi x+ di

eTi x+ fi
, dom f0(x) =

{

x : eTi x+ fi > 0, i = 1, . . . , r
}

(40)

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy
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Quadratic program (QP)

min 1
2x

TPx+ qTx+ r

s.t. Gx � h, Ax = b
(41)

• P ≥ 0, so the objective is convex quadratic (what is not?)

• minimize a convex quadratic function over a polyhedron
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Example: least-squares

min ‖Ax− b‖22 (42)

• analytical solution: x⋆ = A†b, A† is pseudo-inverse

• can add linear constraints, e.g., xl ≤ x ≤ xu
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Example: linear program with random cost

min c̄T x + γxTΣx = E{cTx}+ γ var
(

cTx
)

s.t. Gx � h, Ax = b
(43)

• c is random vector with mean c̄ and covariance Σ

• cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

min xTP0x+ qT0 x+ r0
s.t. xTPix+ qTi x+ ri ≤ 0

Ax = b
(44)

• P1..Pm ≥ 0, objective and constraints are convex quadratic

• if P1..Pm > 0, feasible set is intersection of ellipsoids and an affine
set (if not?)
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Second-order cone programming

min fTx
s.t. ‖Aix+ bi‖2 ≤ cTi x+ di , i = 1, . . . ,m

Fx = g

(45)

• inequalities are called second-order cone (SOC) constraints:

(

Aix+ bi , c
T
i x+ di

)

∈ second-order cone

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP
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Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min cTx
s.t. aTi x ≤ bi , i = 1, . . . ,m

(46)

with uncertainty in c, ai , bi
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Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min cTx
s.t. aTi x ≤ bi , i = 1, . . . ,m

(46)

with uncertainty in c, ai , bi

Two common approaches to handling uncertainty (in ai , for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

min cTx
s.t. aTi x ≤ bi , ∀ ai ∈ Ei , i = 1, . . . ,m

(47)
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Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min cTx
s.t. aTi x ≤ bi , i = 1, . . . ,m

(46)

with uncertainty in c, ai , bi

Two common approaches to handling uncertainty (in ai , for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

min cTx
s.t. aTi x ≤ bi , ∀ ai ∈ Ei , i = 1, . . . ,m

(47)

• stochastic model: ai is random variable; constraints must hold with
probability at least η

min cTx
s.t. Pr

(

aTi x ≤ bi
)

≥ η, i = 1, . . . ,m
(48)
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Geometric programming
• monomial function

f (x) = c · xa11 xa22 · · · xann , x1, .., xn > 0 (49)

with c > 0; ai = any real number
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Geometric programming
• monomial function

f (x) = c · xa11 xa22 · · · xann , x1, .., xn > 0 (49)

with c > 0; ai = any real number

• posynomial function: sum of monomials

f (x) =

K
∑

k=1

ckx
a1k
1 x

a2k
2 · · · xankn (50)
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Geometric programming
• monomial function

f (x) = c · xa11 xa22 · · · xann , x1, .., xn > 0 (49)

with c > 0; ai = any real number

• posynomial function: sum of monomials

f (x) =

K
∑

k=1

ckx
a1k
1 x

a2k
2 · · · xankn (50)

• geometric program (GP)

min f0(x)
s.t. fi(x) ≤ 1, hi (x) = 1, i = 1, . . . , p

(51)

with fi posynomial, hi monomial

• Q: convex or not?
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Geometric program in convex form

Change variables to yi = log xi , and take logarithm of cost, constraints

• monomial f (x) = c · xa11 · · · xann transforms to

log f (ey1, . . . , eyn) = aTy + b (b = log c) (52)
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Geometric program in convex form

Change variables to yi = log xi , and take logarithm of cost, constraints

• monomial f (x) = c · xa11 · · · xann transforms to

log f (ey1, . . . , eyn) = aTy + b (b = log c) (52)

• posynomial f (x) =
∑K

k=1 ckx
a1k
1 x

a2k
2 . . . xankn transforms to

log f (ey1 , . . . , eyn) = log

(

K
∑

k=1

ea
T
k
y+bk

)

, bk = log ck (53)
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Geometric program in convex form

Change variables to yi = log xi , and take logarithm of cost, constraints

• monomial f (x) = c · xa11 · · · xann transforms to

log f (ey1, . . . , eyn) = aTy + b (b = log c) (52)

• posynomial f (x) =
∑K

k=1 ckx
a1k
1 x

a2k
2 . . . xankn transforms to

log f (ey1 , . . . , eyn) = log

(

K
∑

k=1

ea
T
k
y+bk

)

, bk = log ck (53)

• now, convex or not?
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Geometric program in convex form

• geometric program transforms to convex problem

min log
(

∑K
k=1 exp

(

aT0ky + b0k
)

)

s.t. log
(

∑K
k=1 exp

(

aTiky + bik
)

)

≤ 0, i = 1, . . . ,m

Gy + d = 0

(54)
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Multi-antenna Gaussian channel

Example: maximizing rate (MI) in multi-antenna Gaussian channel

y = Hx+ ξ (55)

x, y = input (Tx) and output (Rx), ξ = noise, H = channel matrix

� �
��
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Semidefinite problem (SDP)

Example: maximizing rate (MI) in multi-antenna Gaussian channel

y = Hx+ ξ, MI = log |I+WR| (56)

x, y = input (Tx) and output (Rx), ξ = noise, H = channel matrix

max
R

MI = log |I+WR| s.t. R ≥ 0, trR ≤ PT (57)

R = Tx (input) covariance matrix, trR = its power
PT = max. Tx power
W = H+H = channel Gram matrix

• Very important in wireless communications (WiFi, 5G)

• Q: convex or not?
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Maximizing rate in multi-antenna Gaussian channel

Can add extra constrains:

max
R

MI = log |I+WR| (58)

s.t. R ≥ 0, trR ≤ PT , rii ≤ P1, tr(W2R) ≤ PI

rii ≤ P1 - per antenna power constraint
tr(W2R) ≤ PI - interference power constraint
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Maximizing secrecy rate

• wire-tap MIMO channel model

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (59)

1H

�� ��

2H

���

2�

1�

1y

2y

x
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Maximizing secrecy rate

• wire-tap MIMO channel model

y1 = H1x+ ξ1, y2 = H2x+ ξ2 (59)

1H

�� ��

2H

���

2�

1�

1y

2y

x

• secrecy rate maximization

max
R

log
|I+W1R|

|I+W2R|
s.t. R ≥ 0, trR ≤ PT (60)

• convex or not?
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More Examples (see Boyd & Vandenberghe)

• max. eigenvalue minimization

• matrix norm minimization

• general vector optimization problem

• multicriterion optimization (optimal and Pareto-optimal points,
scalarization)
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