ELG6108: Introduction to Convex Optimization

Lecture 4: Convex optimization problems

Dr. Sergey Loyka EECS, University of Ottawa

March 8, 2021

Lecture 4, ELG6108: Introduction to Convex Optimization

Convex optimization problems¹

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- robust optimization
- geometric programming
- semidefinite programming (rate of MIMO channel, secrecy rate)

¹adapted from Boyd & Vandenberghe, Convex Optimization, Lecture slides.

(1)

Optimization problem in standard form

$$\begin{array}{ll} \min_{\mathbf{x}} & f_0(\mathbf{x}) \\ \text{s.t.} & f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m \\ & h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p \end{array}$$

- x is the optimization variable (vector)
- *f*₀ : is the objective or cost function
- *f_i*: are the inequality constraint functions
- *h_i*: are the equality constraint functions

(1)

Optimization problem in standard form

$$\begin{array}{ll} \min_{\mathbf{x}} & f_0(\mathbf{x}) \\ \text{s.t.} & f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m \\ & h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p \end{array}$$

- **x** is the optimization variable (vector)
- *f*₀ : is the objective or cost function
- *f_i*: are the inequality constraint functions
- *h_i*: are the equality constraint functions

optimal value:

$$p^{\star} = \min_{\mathbf{x}} \{ f_0(\mathbf{x}) : f_i(\mathbf{x}) \le 0, h_i(\mathbf{x}) = 0 \ \forall i \}$$
(2)

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

3 / 41

(1)

Optimization problem in standard form

$$\begin{array}{ll} \min_{\mathbf{x}} & f_0(\mathbf{x}) \\ \text{s.t.} & f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m \\ & h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p \end{array}$$

- x is the optimization variable (vector)
- *f*₀ : is the objective or cost function
- *f_i*: are the inequality constraint functions
- *h_i*: are the equality constraint functions

optimal value:

$$p^{\star} = \min_{\mathbf{x}} \{ f_0(\mathbf{x}) : f_i(\mathbf{x}) \le 0, h_i(\mathbf{x}) = 0 \ \forall i \}$$

$$(2)$$

• $p^* = \infty$ if problem is infeasible (no **x** satisfies the constraints) • $p^* = -\infty$ if problem is unbounded below

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

(globally) Optimal and locally optimal points

• **x** is **feasible** if $\mathbf{x} \in \text{dom } f_0$ and it satisfies the constraints

(globally) Optimal and locally optimal points

- **x** is **feasible** if $\mathbf{x} \in \text{dom } f_0$ and it satisfies the constraints
- a feasible **x** is **optimal** if $f_0(\mathbf{x}) = p^*$

(globally) Optimal and locally optimal points

- **x** is **feasible** if $\mathbf{x} \in \text{dom } f_0$ and it satisfies the constraints
- a feasible **x** is **optimal** if $f_0(\mathbf{x}) = p^*$
- x is locally optimal if there is an d > 0 such that x is optimal for

$$\begin{array}{ll} \min_{\mathbf{z}} & f_0(\mathbf{z}) \\ \text{s.t.} & f_i(\mathbf{z}) \leq 0, \quad h_i(\mathbf{z}) = 0 \ \forall \ i \\ & \|\mathbf{z} - \mathbf{x}\|_2 \leq d \end{array}$$
 (3)

examples (with n = 1, m = p = 0)

•
$$f_0(x) = 1/x$$
, $x > 0$: $p^* = 0$, no optimal point

examples (with n = 1, m = p = 0)

•
$$f_0(x) = 1/x$$
, $x > 0$: $p^* = 0$, no optimal point

•
$$f_0(x) = -\log x, \ x > 0$$
: $p^* = -\infty$

examples (with n = 1, m = p = 0)

•
$$f_0(x) = 1/x$$
, $x > 0$: $p^* = 0$, no optimal point

•
$$f_0(x) = -\log x, \ x > 0: \ p^* = -\infty$$

• $f_0(x) = x \log x, \ x > 0$: $p^* = -1/e, \ x = 1/e$ is optimal

examples (with n = 1, m = p = 0)

•
$$f_0(x) = 1/x$$
, $x > 0$: $p^* = 0$, no optimal point

•
$$f_0(x) = -\log x, \ x > 0; \ p^* = -\infty$$

•
$$f_0(x) = x \log x, \ x > 0$$
: $p^* = -1/e, \ x = 1/e$ is optimal

•
$$f_0(x) = x^3 - 3x$$
, $p^* = -\infty$, local optimum at $x = 1$

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

Implicit constraints

the standard form optimization problem has an implicit constraint

$$\mathbf{x} \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}$$
(4)

- we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(\mathbf{x}) \leq 0, h_i(\mathbf{x}) = 0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints (m = p = 0)

Implicit constraints

example:

min
$$f_0(\mathbf{x}) = -\sum_{i=1}^k \log \left(\mathbf{b}_i - \mathbf{a}_i^T \mathbf{x} \right)$$
 (5)

is an unconstrained problem with implicit constraints $\mathbf{a}_i^T \mathbf{x} < b_i$

Feasibility problem

find
$$\mathbf{x}$$

s.t. $f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m$
 $h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$ (6)

can be considered a special case of the general problem with $f_0(\mathbf{x}) = 0$:

min 0
s.t.
$$f_i(\mathbf{x}) \le 0, \quad i = 1, ..., m$$
 (7)
 $h_i(\mathbf{x}) = 0, \quad i = 1, ..., p$

• $p^* = 0$ if constraints are feasible; any feasible x is optimal

• $p^{\star} = \infty$ if constraints are infeasible

(8)

Convex optimization problem

Standard form convex optimization problem

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0$, $i = 1, \dots, m$
 $\mathbf{a}_i^T \mathbf{x} = b_i$, $i = 1, \dots, p$

• f_0, f_1, \ldots, f_m are convex; equality constraints are affine

Convex optimization problem

Standard form convex optimization problem

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$
 $\mathbf{a}_i^T \mathbf{x} = b_i, \quad i = 1, \dots, p$ (8)

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

Convex optimization problem

Standard form convex optimization problem

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$
 $\mathbf{a}_i^T \mathbf{x} = b_i, \quad i = 1, \dots, p$ (8)

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

Another form of (8):

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0$, $i = 1, \dots, m$ (9)
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Important property: feasible set is convex

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

$$\begin{array}{ll} \min & f_0(\mathbf{x}) = x_1^2 + x_2^2 \\ \text{s.t.} & f_1(\mathbf{x}) = x_1 / \left(1 + x_2^2\right) \le 0 \\ & h_1(\mathbf{x}) = \left(x_1 + x_2\right)^2 = 0 \end{array}$$
(10)

• convex problem?

$$\begin{array}{ll} \min & f_0(\mathbf{x}) = x_1^2 + x_2^2 \\ \text{s.t.} & f_1(\mathbf{x}) = x_1 / \left(1 + x_2^2\right) \le 0 \\ & h_1(\mathbf{x}) = \left(x_1 + x_2\right)^2 = 0 \end{array}$$
(10)

• convex problem?

• f_0 is convex; feasible set $\{(x_1, x_2) : x_1 = -x_2 \le 0\}$ is convex

$$\begin{array}{ll} \min & f_0(\mathbf{x}) = x_1^2 + x_2^2 \\ \text{s.t.} & f_1(\mathbf{x}) = x_1 / \left(1 + x_2^2\right) \le 0 \\ & h_1(\mathbf{x}) = \left(x_1 + x_2\right)^2 = 0 \end{array}$$
(10)

- convex problem?
- f_0 is convex; feasible set $\{(x_1, x_2) : x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (according to our definition)

min
$$f_0(\mathbf{x}) = x_1^2 + x_2^2$$

s.t. $f_1(\mathbf{x}) = x_1 / (1 + x_2^2) \le 0$ (10)
 $h_1(\mathbf{x}) = (x_1 + x_2)^2 = 0$

- convex problem?
- f_0 is convex; feasible set $\{(x_1, x_2) : x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (according to our definition)
- equivalent (but not identical) to the convex problem

$$\begin{array}{ll} \min & x_1^2 + x_2^2 \\ {\rm s.t.} & x_1 \leq 0 \\ & x_1 + x_2 = 0 \end{array} \tag{11}$$

• Q: sketch the feasible set

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

The most important property

• The **most important property** of a convex problem: any locally-optimal point is also globally-optimal

The most important property

- The **most important property** of a convex problem: any locally-optimal point is also globally-optimal *which*
- Makes it possible to solve convex problems globally and efficiently

The most important property

- The **most important property** of a convex problem: any locally-optimal point is also globally-optimal *which*
- Makes it possible to solve convex problems *globally* and *efficiently* and
- Does not hold for non-convex problems in general *therefore*
- "The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." - R.T. Rockafellar, 1993

Local and global optima

• The **most important property** of a convex problem: any locally-optimal point is also globally-optimal

Proof: by contradiction. Suppose **x** is locally optimal and **y** is globally-optimal with $f_0(\mathbf{y}) < f_0(\mathbf{x})$; **x** locally optimal means there is an d > 0 such that

$$\forall \mathbf{z}: \|\mathbf{z} - \mathbf{x}\|_2 \le d \implies f_0(\mathbf{z}) \ge f_0(\mathbf{x}) \tag{12}$$

Now consider $\mathbf{z} = \theta \mathbf{y} + (1 - \theta) \mathbf{x}$ with $\theta = d/(2 \|\mathbf{y} - \mathbf{x}\|_2)$

• $\|\mathbf{y} - \mathbf{x}\|_2 > d$, so $0 < \theta < 1/2$

• z is a convex combination of two feasible points, hence also feasible

•
$$\|{\bf z} - {\bf x}\|_2 = d/2$$
 and

$$f_0(\mathbf{z}) \le \theta f_0(\mathbf{x}) + (1 - \theta) f_0(\mathbf{y}) < f_0(\mathbf{x})$$
(13)

which contradicts the assumption that \mathbf{x} is locally optimal!! Q.E.D.

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and $\nabla f_0(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \ge 0$ for all feasible **y**

if nonzero, $\nabla f_0(\mathbf{x})$ defines a supporting hyperplane to feasible set X at \mathbf{x}

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

• unconstrained problem: min $f_0(\mathbf{x}) \rightarrow \mathbf{x} = \text{optimal iff}$

$$\mathbf{x} \in \operatorname{dom} f_0, \quad \nabla f_0(\mathbf{x}) = 0$$
 (14)

• unconstrained problem: min $f_0(\mathbf{x}) \rightarrow \mathbf{x} = \text{optimal iff}$

$$\mathbf{x} \in \operatorname{dom} f_0, \quad \nabla f_0(\mathbf{x}) = 0 \tag{14}$$

• minimization over nonnegative orthant min $f_0(\mathbf{x})$ s.t. $\mathbf{x} \succeq 0 \rightarrow \mathbf{x} =$ optimal iff

$$\mathbf{x} \in \operatorname{dom} f_0, \quad \mathbf{x} \succeq 0, \quad \begin{cases} \nabla f_0(\mathbf{x})_i \ge 0 & x_i = 0\\ \nabla f_0(\mathbf{x})_i = 0 & x_i > 0 \end{cases}$$
(15)

• unconstrained problem: min $f_0(\mathbf{x}) \rightarrow \mathbf{x} = \text{optimal iff}$

$$\mathbf{x} \in \operatorname{dom} f_0, \quad \nabla f_0(\mathbf{x}) = 0 \tag{14}$$

• minimization over nonnegative orthant min $f_0(\mathbf{x})$ s.t. $\mathbf{x} \succeq 0 \rightarrow \mathbf{x} = \text{optimal iff}$

$$\mathbf{x} \in \operatorname{dom} f_0, \quad \mathbf{x} \succeq 0, \quad \left\{ \begin{array}{ll} \nabla f_0(\mathbf{x})_i \ge 0 & x_i = 0\\ \nabla f_0(\mathbf{x})_i = 0 & x_i > 0 \end{array} \right. \tag{15}$$

equality constrained problem

min
$$f_0(\mathbf{x})$$
 s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$ (16)

x is optimal iff there exists a ν such that

$$\mathbf{x} \in \operatorname{dom} f_0, \quad \mathbf{A}\mathbf{x} = \mathbf{b}, \quad \nabla f_0(\mathbf{x}) + \mathbf{A}^T \boldsymbol{\nu} = 0$$
 (17)

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

14 / 41

Two problems are **equivalent** if a solution of one can be obtained from a solution of the other, and vice-versa

Some common transformations that preserve convexity:

• eliminating equality constraints

$$\min_{\mathbf{x}} f_0(\mathbf{x}) \quad \text{s.t.} \ f_i(\mathbf{x}) \le 0, \ \mathbf{A}\mathbf{x} = \mathbf{b}$$
(18)

is equivalent to

$$\min_{\mathbf{z}} f_0(\mathbf{F}\mathbf{z} + \mathbf{x}_0) \text{ s.t. } f_i(\mathbf{F}\mathbf{z} + \mathbf{x}_0) \le 0,$$
(19)

where F and \textbf{x}_0 are such that: $\textbf{A}\textbf{x}=\textbf{b} \Longleftrightarrow \textbf{x}=\textbf{F}\textbf{z}+\textbf{x}_0$ for some z

introducing equality constraints

$$\min_{\mathbf{x}} f_0(\mathbf{A}_0 \mathbf{x} + \mathbf{b}_0) \quad \text{s.t.} \ f_i(\mathbf{A}_i \mathbf{x} + \mathbf{b}_i) \le 0, \ i = 1..m$$
(20)

is equivalent to

$$\min_{\mathbf{x},\mathbf{y}_i} f_0(\mathbf{y}_0) \quad \text{s.t.} \ f_i(\mathbf{y}_i) \le 0, \ i = 1..m$$

$$\mathbf{y}_i = \mathbf{A}_i \mathbf{x} + \mathbf{b}_i, \ i = 0..m$$

$$(21)$$

• introducing slack variables for linear inequalities

min
$$f_0(\mathbf{x})$$

s.t. $\mathbf{a}_i^T \mathbf{x} \le \mathbf{b}_i, \quad i = 1, \dots, m$ (22)

is equivalent to

min (over x, s)
$$f_0(\mathbf{x})$$

s.t. $\mathbf{a}_i^T \mathbf{x} + s_i = b_i, \quad i = 1, \dots, m$ (23)
 $s_i \ge 0, \quad i = 1, \dots m$

• epigraph form: standard form convex problem is equivalent to

min (over
$$\mathbf{x}, t$$
) t
s.t. $f_0(\mathbf{x}) - t \le 0$
 $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$ (24)

• epigraph form: standard form convex problem is equivalent to

min (over
$$\mathbf{x}, t$$
) t
s.t. $f_0(\mathbf{x}) - t \le 0$
 $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$ (24)

minimizing over some variables

min
$$f_0(\mathbf{x}_1, \mathbf{x}_2)$$

s.t. $f_i(\mathbf{x}_1) \le 0, \quad i = 1, ..., m$ (25)

is equivalent to

$$\begin{array}{ll} \min & \tilde{f}_0(\mathbf{x}1) \\ \text{s.t.} & f_i(\mathbf{x}_1) \leq 0, \quad i = 1, \dots, m \end{array}$$

where
$$\tilde{f}_0(\mathbf{x}_1) = \min_{\mathbf{x}_2} f_0(\mathbf{x}_1, \mathbf{x}_2)$$

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

18 / 41

(26)

Quasiconvex optimization

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0$, $i = 1, ..., m$ (27)
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

with f_0 quasiconvex, f_1, \ldots, f_m convex

Quasiconvex optimization

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0$, $i = 1, ..., m$ (27)
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

with f_0 quasiconvex, f_1, \ldots, f_m convex

Can have locally optimal points that are not (globally) optimal

 $(x, f_0(x$

Convex representation of sublevel sets of f_0

If f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(\mathbf{x})$ is convex in **x** for fixed t
- *t*-sublevel set of f_0 is 0 -sublevel set of ϕ_t , i.e.,

$$f_0(\mathbf{x}) \le t \quad \Longleftrightarrow \quad \phi_t(\mathbf{x}) \le 0$$
 (28)

Convex representation of sublevel sets of f_0

If f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(\mathbf{x})$ is convex in **x** for fixed t
- *t*-sublevel set of f_0 is 0 -sublevel set of ϕ_t , i.e.,

$$f_0(\mathbf{x}) \le t \quad \Longleftrightarrow \quad \phi_t(\mathbf{x}) \le 0$$
 (28)

Example:

$$f_0(\mathbf{x}) = \frac{p(\mathbf{x})}{q(\mathbf{x})} \tag{29}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on dom f_0 can take $\phi_t(\mathbf{x}) = p(\mathbf{x}) - tq(\mathbf{x})$:

- for $t \ge 0, \phi_t$ convex in **x**
- $p(\mathbf{x})/q(\mathbf{x}) \leq t \leftrightarrow \phi_t(\mathbf{x}) \leq 0$

Quasiconvex optimization via convex feasibility

(P) find
$$\mathbf{x}$$
: $\phi_t(\mathbf{x}) \leq 0$, $f_i(\mathbf{x}) \leq 0$, $\mathbf{A}\mathbf{x} = \mathbf{b}$ (30)

- for fixed t, a convex feasibility problem in **x**
- if feasible, $p^{\star} \leq t$; if infeasible, $p^{\star} \geq t$
- Why ?

Bisection method

(P) find
$$\mathbf{x}$$
: $\phi_t(\mathbf{x}) \leq 0$, $f_i(\mathbf{x}) \leq 0$, $\mathbf{A}\mathbf{x} = \mathbf{b}$

Bisection method for quasiconvex optimization

```
given l \le p^*, u \ge p^*, tolerance \epsilon > 0
repeat
```

1.
$$t := (l + u)/2$$

2. solve the convex feasibility problem (P).

3. if (P) is feasible, u := t; else l := t.

until $u - l \leq \epsilon$

requires exactly $\left[\log_2 \frac{u-l}{\epsilon}\right]$ iterations (*u*, *l* are initial bounds)

S. Loyka

Linear program (or problem, LP)

min
$$\mathbf{c}^T \mathbf{x} + d$$

s.t. $\mathbf{G} \mathbf{x} \leq \mathbf{h}$ (31)
 $\mathbf{A} \mathbf{x} = \mathbf{b}$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron (why?)

Lecture 4, ELG6108: Introduction to Convex Optimization

Examples

Diet problem: choose quantities x_1, \ldots, x_n of *n* foods

- one unit of food *j* costs *c_j*, contains amount *a_{ij}* of nutrient *i*
- healthy diet requires nutrient *i* in quantity at least *b_i*

to find cheapest healthy diet,

$$\begin{array}{ll} \min & \mathbf{c}^{T} \mathbf{x} \\ \text{s.t.} & \mathbf{A} \mathbf{x} \succeq \mathbf{b}, \quad \mathbf{x} \succeq \mathbf{0} \end{array}$$
 (32)

Examples

Diet problem: choose quantities x_1, \ldots, x_n of *n* foods

- one unit of food *j* costs *c_j*, contains amount *a_{ij}* of nutrient *i*
- healthy diet requires nutrient *i* in quantity at least *b_i*

to find cheapest healthy diet,

$$\begin{array}{ll} \min & \mathbf{c}^T \mathbf{x} \\ \text{s.t.} & \mathbf{A} \mathbf{x} \succeq \mathbf{b}, \quad \mathbf{x} \succeq \mathbf{0} \end{array}$$
(32)

Piecewise-linear minimization

min
$$\max_{i=1,\dots,m} \left(\mathbf{a}_i^T \mathbf{x} + b_i \right)$$
(33)

equivalent to an LP

min
$$t$$

s.t. $\mathbf{a}_i^T \mathbf{x} + b_i \le t, \quad i = 1, \dots, m$ (34)

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

24 / 41

25 / 41

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \left\{ \mathbf{x} : \mathbf{a}_i^T \mathbf{x} \le b_i, i = 1, \dots, m \right\}$$

is center of largest inscribed ball

$$\mathcal{B} = \{\mathbf{x}_c + \mathbf{u} : \|\mathbf{u}\|_2 \le r\}$$

•
$$\mathbf{a}_i^T \mathbf{x} \leq b_i$$
 for all $\mathbf{x} \in \mathcal{B}$ iff

$$\max\left\{\mathbf{a}_{i}^{T}\left(\mathbf{x}_{c}+\mathbf{u}\right):\left\|\mathbf{u}\right\|_{2}\leq r\right\}=\mathbf{a}_{i}^{T}\mathbf{x}_{c}+r\left\|\mathbf{a}_{i}\right\|_{2}\leq b_{i}$$
(35)

• hence, \mathbf{x}_c , r can be determined by solving the LP

max
$$r$$

s.t. $\mathbf{a}_i^T \mathbf{x}_c + r \|\mathbf{a}_i\|_2 \le b_i, \quad i = 1, \dots, m$ (36)

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

Linear-fractional problem

min
$$f_0(\mathbf{x})$$

s.t. $\mathbf{G}\mathbf{x} \leq \mathbf{h}, \ \mathbf{A}\mathbf{x} = \mathbf{b}$ (37)

linear-fractional problem

$$f_0(\mathbf{x}) = \frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f}, \quad \text{dom } f_0(\mathbf{x}) = \{\mathbf{x} : \mathbf{e}^T \mathbf{x} + f > 0\}$$
(38)

• a quasiconvex optimization problem; can be solved by bisection

Linear-fractional problem

min
$$f_0(\mathbf{x})$$

s.t. $\mathbf{G}\mathbf{x} \leq \mathbf{h}, \ \mathbf{A}\mathbf{x} = \mathbf{b}$ (37)

linear-fractional problem

$$f_0(\mathbf{x}) = \frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f}, \quad \text{dom } f_0(\mathbf{x}) = \{\mathbf{x} : \mathbf{e}^T \mathbf{x} + f > 0\}$$
(38)

- a quasiconvex optimization problem; can be solved by bisection
- equivalent to the following LP (in \mathbf{y}, z)

min
$$\mathbf{c}^T \mathbf{y} + dz$$

s.t. $\mathbf{G}\mathbf{y} \leq hz, \ Ay = bz, \ \mathbf{e}^T \mathbf{y} + fz = 1, \ z \geq 0$ (39)

• i.e. **non-convex** \Rightarrow **convex** P !

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

Generalized linear-fractional program

$$f_0(\mathbf{x}) = \max_{i=1,\dots,r} \frac{\mathbf{c}_i^T \mathbf{x} + d_i}{\mathbf{e}_i^T \mathbf{x} + f_i}, \quad \text{dom } f_0(\mathbf{x}) = \left\{ \mathbf{x} : \mathbf{e}_i^T \mathbf{x} + f_i > 0, i = 1, \dots, r \right\}$$
(40)

a quasiconvex optimization problem; can be solved by bisection **example:** Von Neumann model of a growing economy

Quadratic program (QP)

min
$$\frac{1}{2}\mathbf{x}^T \mathbf{P} \mathbf{x} + \mathbf{q}^T \mathbf{x} + r$$

s.t. $\mathbf{G} \mathbf{x} \preceq \mathbf{h}, \ \mathbf{A} \mathbf{x} = \mathbf{b}$ (41)

- **P** \geq 0, so the objective is convex quadratic (what is not?)
- minimize a convex quadratic function over a polyhedron

Example: least-squares

$$\min \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \tag{42}$$

- analytical solution: $\mathbf{x}^{\star} = \mathbf{A}^{\dagger}\mathbf{b}$, \mathbf{A}^{\dagger} is pseudo-inverse
- can add linear constraints, e.g., $\mathbf{x}_{l} \leq \mathbf{x} \leq \mathbf{x}_{u}$

Example: linear program with random cost

min
$$\mathbf{\bar{c}}^T \mathbf{x} + \gamma \mathbf{x}^T \mathbf{\Sigma} \mathbf{x} = \mathbb{E} \{ \mathbf{c}^T \mathbf{x} \} + \gamma \operatorname{var} (\mathbf{c}^T \mathbf{x})$$

s.t. $\mathbf{G} \mathbf{x} \leq \mathbf{h}, \quad \mathbf{A} \mathbf{x} = \mathbf{b}$ (43)

- **c** is random vector with mean $\bar{\mathbf{c}}$ and covariance $\boldsymbol{\Sigma}$
- $\mathbf{c}^T \mathbf{x}$ is random variable with mean $\bar{\mathbf{c}}^T \mathbf{x}$ and variance $\mathbf{x}^T \boldsymbol{\Sigma} \mathbf{x}$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

min
$$\mathbf{x}^T \mathbf{P}_0 \mathbf{x} + \mathbf{q}_0^T \mathbf{x} + r_0$$

s.t. $\mathbf{x}^T \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^T \mathbf{x} + r_i \le 0$ (44)
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

- $\mathbf{P}_{1}..\mathbf{P}_{m} \geq 0$, objective and constraints are convex quadratic
- if P₁..P_m > 0, feasible set is intersection of ellipsoids and an affine set (if not?)

Second-order cone programming

min
$$\mathbf{f}^T \mathbf{x}$$

s.t. $\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 \le \mathbf{c}_i^T \mathbf{x} + d_i, \quad i = 1, \dots, m$ (45)
 $\mathbf{F} \mathbf{x} = \mathbf{g}$

• inequalities are called second-order cone (SOC) constraints:

 $(\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}, \mathbf{c}_{i}^{T}\mathbf{x} + \mathbf{d}_{i}) \in \text{second-order cone}$

• for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP

more general than QCQP and LP

Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

$$\begin{array}{ll} \min & \mathbf{c}^T \mathbf{x} \\ \text{s.t.} & \mathbf{a}_i^T \mathbf{x} \le \mathbf{b}_i, \quad i = 1, \dots, m \end{array} \tag{46}$$

with uncertainty in \mathbf{c} , \mathbf{a}_i , b_i

Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min
$$\mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{a}_i^T \mathbf{x} \le \mathbf{b}_i, \quad i = 1, \dots, m$ (46)

with uncertainty in \mathbf{c} , \mathbf{a}_i , b_i

Two common approaches to handling uncertainty (in \mathbf{a}_i , for simplicity)

• deterministic model: constraints must hold for all $\mathbf{a}_i \in \mathcal{E}_i$

min
$$\mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{a}_i^T \mathbf{x} \le \mathbf{b}_i, \ \forall \ \mathbf{a}_i \in \mathcal{E}_i, \quad i = 1, \dots, m$ (47)

Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min
$$\mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{a}_i^T \mathbf{x} \le \mathbf{b}_i, \quad i = 1, \dots, m$ (46)

with uncertainty in \mathbf{c} , \mathbf{a}_i , b_i

Two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $\mathbf{a}_i \in \mathcal{E}_i$

min
$$\mathbf{c}^T \mathbf{x}$$

s.t. $\mathbf{a}_i^T \mathbf{x} \le \mathbf{b}_i, \ \forall \ \mathbf{a}_i \in \mathcal{E}_i, \quad i = 1, \dots, m$ (47)

- stochastic model: ${\bf a}_i$ is random variable; constraints must hold with probability at least η

min
$$\mathbf{c}^T \mathbf{x}$$

s.t. $\Pr(\mathbf{a}_i^T \mathbf{x} \le b_i) \ge \eta, \quad i = 1, \dots, m$ (48)

Lecture 4, ELG6108: Introduction to Convex Optimization 33 / 41

S. Loyka

Geometric programming

monomial function

$$f(\mathbf{x}) = c \cdot x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}, \quad x_1, .., x_n > 0$$
(49)

with c > 0; $a_i = any$ real number

Geometric programming

monomial function

$$f(\mathbf{x}) = c \cdot x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}, \quad x_1, .., x_n > 0$$
(49)

with c > 0; $a_i = any$ real number

• posynomial function: sum of monomials

$$f(\mathbf{x}) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$$
(50)

Geometric programming

monomial function

$$f(\mathbf{x}) = c \cdot x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}, \quad x_1, .., x_n > 0$$
(49)

with c > 0; $a_i = any$ real number

• posynomial function: sum of monomials

$$f(\mathbf{x}) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$$
(50)

• geometric program (GP)

min
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 1, \ h_i(\mathbf{x}) = 1, \quad i = 1, ..., p$ (51)

with f_i posynomial, h_i monomial

• Q: convex or not?

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

34 / 41

Change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(\mathbf{x}) = c \cdot x_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1},\ldots,e^{y_n}) = \mathbf{a}^T \mathbf{y} + b \quad (b = \log c)$$
(52)

Change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(\mathbf{x}) = c \cdot x_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1},\ldots,e^{y_n}) = \mathbf{a}^T \mathbf{y} + b \quad (b = \log c)$$
(52)

• posynomial
$$f(\mathbf{x}) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}$$
 transforms to

$$\log f\left(e^{y_1},\ldots,e^{y_n}\right) = \log\left(\sum_{k=1}^{K} e^{\mathbf{a}_k^T \mathbf{y} + b_k}\right), \quad b_k = \log c_k \qquad (53)$$

Change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(\mathbf{x}) = c \cdot x_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1},\ldots,e^{y_n}) = \mathbf{a}^T \mathbf{y} + b \quad (b = \log c)$$
(52)

• posynomial
$$f(\mathbf{x}) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}$$
 transforms to

$$\log f\left(e^{y_1},\ldots,e^{y_n}\right) = \log\left(\sum_{k=1}^{K} e^{\mathbf{a}_k^T \mathbf{y} + b_k}\right), \quad b_k = \log c_k \qquad (53)$$

now, convex or not?

• geometric program transforms to convex problem

min
$$\log \left(\sum_{k=1}^{K} \exp \left(\mathbf{a}_{0k}^{T} \mathbf{y} + b_{0k} \right) \right)$$

s.t. $\log \left(\sum_{k=1}^{K} \exp \left(\mathbf{a}_{ik}^{T} \mathbf{y} + b_{ik} \right) \right) \le 0, \quad i = 1, \dots, m$ (54)
 $\mathbf{G}\mathbf{y} + \mathbf{d} = 0$

Multi-antenna Gaussian channel

Example: maximizing rate (MI) in multi-antenna Gaussian channel

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\xi} \tag{55}$$

 $\mathbf{x},\mathbf{y}=\mathsf{input}$ (Tx) and output (Rx), $\boldsymbol{\xi}=\mathsf{noise},~\mathbf{H}=\mathsf{channel}$ matrix

Semidefinite problem (SDP)

Example: maximizing rate (MI) in multi-antenna Gaussian channel

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \boldsymbol{\xi}, \ \mathbf{M}\mathbf{I} = \log|\mathbf{I} + \mathbf{W}\mathbf{R}|$$
(56)

 $\mathbf{x}, \mathbf{y} = \text{input (Tx)}$ and output (Rx), $\boldsymbol{\xi} = \text{noise}, \, \mathbf{H} = \text{channel matrix}$

$$\max_{\mathbf{R}} \mathbf{MI} = \log |\mathbf{I} + \mathbf{WR}| \text{ s.t. } \mathbf{R} \ge 0, tr\mathbf{R} \le P_{T}$$
(57)

- $\mathbf{R} = \mathsf{Tx}$ (input) covariance matrix, $tr\mathbf{R} = \mathrm{its}$ power $P_{\mathcal{T}} = \mathrm{max}$. Tx power $\mathbf{W} = \mathbf{H}^{+}\mathbf{H} = \mathrm{channel}$ Gram matrix
 - Very important in wireless communications (WiFi, 5G)
 - Q: convex or not?

Maximizing rate in multi-antenna Gaussian channel

Can add extra constrains:

$$\max_{\mathbf{R}} \mathsf{MI} = \log |\mathbf{I} + \mathbf{WR}|$$
s.t. $\mathbf{R} \ge 0, tr\mathbf{R} \le P_T, r_{ii} \le P_1, tr(\mathbf{W}_2\mathbf{R}) \le P_I$
(58)

 $r_{ii} \leq P_1$ - per antenna power constraint $tr(\mathbf{W}_2\mathbf{R}) \leq P_I$ - interference power constraint

Maximizing secrecy rate

• wire-tap MIMO channel model

$$\mathbf{y}_1 = \mathbf{H}_1 \mathbf{x} + \xi_1, \quad \mathbf{y}_2 = \mathbf{H}_2 \mathbf{x} + \xi_2 \tag{59}$$

Maximizing secrecy rate

• wire-tap MIMO channel model

$$\mathbf{y}_1 = \mathbf{H}_1 \mathbf{x} + \xi_1, \quad \mathbf{y}_2 = \mathbf{H}_2 \mathbf{x} + \xi_2 \tag{59}$$

secrecy rate maximization

$$\max_{\mathbf{R}} \log \frac{|\mathbf{I} + \mathbf{W}_{1}\mathbf{R}|}{|\mathbf{I} + \mathbf{W}_{2}\mathbf{R}|} \text{ s.t. } \mathbf{R} \ge 0, tr\mathbf{R} \le P_{T}$$
(60)

convex or not?

S. Loyka

Lecture 4, ELG6108: Introduction to Convex Optimization

40 / 41

More Examples (see Boyd & Vandenberghe)

- max. eigenvalue minimization
- matrix norm minimization
- general vector optimization problem
- multicriterion optimization (optimal and Pareto-optimal points, scalarization)