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Convex optimization problems!

optimization problem in standard form
convex optimization problems
quasiconvex optimization

linear optimization

quadratic optimization

robust optimization

geometric programming

semidefinite programming (rate of MIMO channel, secrecy rate)

'adapted from Boyd & Vandenberghe, Convex Optimization, Lecture slides.
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Optimization problem in standard form

miny  fo(x)
st.  fi(x)<0, i=1....m

® x is the optimization variable (vector)

® fy: is the objective or cost function

® f;: are the inequality constraint functions
® h;: are the equality constraint functions
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Optimization problem in standard form

miny  fo(x)
st.  fi(x)<0, i=1....m (1)

x is the optimization variable (vector)

fo : is the objective or cost function

fi: are the inequality constraint functions
h;: are the equality constraint functions

optimal value:

p* = mxin{fo(x) : fi(x) <0, hi(x) =0 Vi} (2)
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Optimization problem in standard form

miny  fo(x)
st.  fi(x)<0, i=1....m (1)

x is the optimization variable (vector)

fo : is the objective or cost function
® f;: are the inequality constraint functions

h;: are the equality constraint functions

optimal value:

p* = mxin{fo(x) : fi(x) <0, hi(x) =0 Vi} (2)

® p* = oo if problem is infeasible (no x satisfies the constraints)

p* = —oo if problem is unbounded below

S. Loyka Lecture 4, ELG6108: Introduction to Convex Optimization 3/41



March 8, 2021

(globally) Optimal and locally optimal points

e x is feasible if x € dom fy and it satisfies the constraints
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(globally) Optimal and locally optimal points

e x is feasible if x € dom fy and it satisfies the constraints

® a feasible x is optimal if f(x) = p*

S. Loyka Lecture 4, ELG6108: Introduction to Convex Optimization 4 /41



March 8, 2021

(globally) Optimal and locally optimal points

e x is feasible if x € dom fy and it satisfies the constraints
® a feasible x is optimal if f(x) = p*
® x is locally optimal if there is an d > 0 such that x is optimal for

min; fo(z)
st. fi(z) <0, hi(z)=0Vi (3)
Iz =x|> < d
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Optimal and locally optimal points

examples (with n=1,m=p =0)

® foy(x) =1/x, x > 0: p* =0, no optimal point
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Optimal and locally optimal points

examples (with n=1,m=p =0)

® foy(x) =1/x, x > 0: p* =0, no optimal point

® fo(x) =—logx, x>0: p*=—0c0
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Optimal and locally optimal points

examples (with n=1,m=p =0)

® foy(x) =1/x, x > 0: p* =0, no optimal point
® fo(x) =—logx, x>0: p*=—0c0

® fo(x) =xlogx, x >0: p*=—1/e, x =1/e is optimal
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Optimal and locally optimal points

examples (with n=1,m=p =0)
® foy(x) =1/x, x > 0: p* =0, no optimal point
® fo(x) =—logx, x>0: p*=—0c0
® fo(x) =xlogx, x >0: p*=—1/e, x =1/e is optimal

* fo(x) = x3 —3x, p* = —o0, local optimum at x = 1
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Implicit constraints

the standard form optimization problem has an implicit constraint

m p
XED:mdomf;ﬂmdomh; (4)
i=0 i=1
e we call D the domain of the problem
e the constraints fi(x) < 0, hj(x) = 0 are the explicit constraints

® a problem is unconstrained if it has no explicit constraints
(m=p=0)
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Implicit constraints
example:

K
min  fo(x) = — Z log (b; — a] x) (5)

is an unconstrained problem with implicit constraints a,Tx < b;
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Feasibility problem

find x
st. fi(x) <0, i=1,...,m (6)
hi(x)=0, i=1,...,p

can be considered a special case of the general problem with fp(x) =0 :
min 0
st. fi(x) <0, i=1,...,m (7)
hi(x)=0, i=1,...,p

e p* = 0 if constraints are feasible; any feasible x is optimal

® p* = oo if constraints are infeasible
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Convex optimization problem

Standard form convex optimization problem

® fy,f,...,fy are convex; equality constraints are affine
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Convex optimization problem

Standard form convex optimization problem

March 8, 2021

® fy,f,...,fy are convex; equality constraints are affine

® problem is quasiconvex if fy is quasiconvex (and fi, ..

., fm convex)
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Convex optimization problem

Standard form convex optimization problem

® fy,f,...,fy are convex; equality constraints are affine

® problem is quasiconvex if fy is quasiconvex (and fi, ..

Another form of (8):

min  fo(x)
st. fi(x) <0, i=1,...,m
Ax=0b

Important property: feasible set is convex
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Example

min  fo(x) = x2 + x3
st f(x) =xi/ (1 —|—x2) <0 (10)
h1( ) (X1 +X2) =0

® convex problem?
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Example

min  fo(x) = x2 + x3
st f(x) =xi/ (1 —|—x2) <0 (10)
h1( ) (X1+X2) =0

® convex problem?

® fy is convex; feasible set {(x1,x2) : X1 = —xp < 0} is convex
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Example

min  fo(x) = x2 + x3
st A(x)=x/ (1 —I—x2) <0 (10)
h1( ) (X1+X2) =0
® convex problem?
® fy is convex; feasible set {(x1,x2) : x1 = —x2 < 0} is convex

® not a convex problem (according to our definition)
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Example

min  fo(x) = x2 + x3
s.t. fl(X) = X1/ (1 —|—X22) <0 (10)
hi(x) = (x1 +x2)° =0

convex problem?

fo is convex; feasible set {(x1,x2) : x1 = —xo < 0} is convex

® not a convex problem (according to our definition)

® equivalent (but not identical) to the convex problem
min  x? + x3
st. x1 <0 (11)
x1+x =0
® (Q: sketch the feasible set
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The most important property

® The most important property of a convex problem: any
locally-optimal point is also globally-optimal
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The most important property

® The most important property of a convex problem: any
locally-optimal point is also globally-optimal

which

® Makes it possible to solve convex problems globally and efficiently
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The most important property

S. Loyka

The most important property of a convex problem: any
locally-optimal point is also globally-optimal

which

Makes it possible to solve convex problems globally and efficiently
and

Does not hold for non-convex problems in general

therefore

"The great watershed in optimization is not between linearity and
non-linearity, but convexity and non-convexity.” - R.T. Rockafellar,
1993
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Local and global optima
¢ The most important property of a convex problem: any
locally-optimal point is also globally-optimal

Proof: by contradiction. Suppose x is locally optimal and y is

globally-optimal with fy(y) < fo(x); x locally optimal means there is an
d > 0 such that

Vz: lz—x2<d = fi(z) > f(x) (12)
Now consider z = 0y + (1 — 0)x with 0 = d/ (2]ly — x||2)
° |ly—x[2>d,s0o0<6<1/2

® z is a convex combination of two feasible points, hence also feasible
¢ ||z—x|2=d/2 and

fo(z) < 0fo(x) + (1 = 0)fo(y) < fo(x) (13)

which contradicts the assumption that x is locally optimal!! Q.E.D.
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Optimality criterion for differentiable f;

x is optimal if and only if it is feasible and Vfy(x)"(y —x) >0  for all
feasible y

—Viu(z)

if nonzero, Vfy(x) defines a supporting hyperplane to feasible set X at x
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® unconstrained problem: min fy(x) — x = optimal iff

x € domfy, Vfy(x)=0 (14)
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® unconstrained problem: min fy(x) — x = optimal iff

x € domfy, Vfy(x)=0 (14)

® minimization over nonnegative orthant
min fo(x) s.t. x = 0 — x = optimal iff

Vfo(x),' >0 x,=0

Vfo(x),' =0 x>0 (15)

x €domfy, x>0, {
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S. Loyka

unconstrained problem: min fy(x) — x = optimal iff

x € domfy, Vfy(x)=0

minimization over nonnegative orthant
min fo(x) s.t. x = 0 — x = optimal iff

x €domfy, x>0, {

Vfo(x),' >0 x,=0
Vfo(x),' =0 x>0

equality constrained problem

min fo(x) st. Ax=Db

x is optimal iff there exists a v such that

x € dom fy,

Lecture 4,

Ax=b, Vi(x)+ATv=0

ELG6108: Introduction to Convex Optimization
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Equivalent Problems

Two problems are equivalent if a solution of one can be obtained from a
solution of the other, and vice-versa

Some common transformations that preserve convexity:

® eliminating equality constraints
mxin fo(x) s.t. fi(x) <0, Ax=b (18)
is equivalent to
mzin fo(Fz 4+ xg) s.t. fi(Fz+x¢) <0, (19)

where F and xq are such that: Ax = b <= x = Fz + xq for some z
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Equivalent Problems

S. Loyka

introducing equality constraints
mxin fo(Aox +bg) s.t. fi(Aix+b;) <0, i=1.m (20)
is equivalent to
min fo(yy) st fi(y;) <0, i=1.m (21)

XYi

y;=Aix+b;, i=0..m
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Equivalent Problems

S. Loyka

introducing slack variables for linear inequalities

min  fp(x)
s.t. a,-Txgb,-7 i=1,...,m

is equivalent to
min (over x,s) fo(x)

s.t. alx+s=b, i=1,....m
si>0, i=1...m

Lecture 4, ELG6108: Introduction to Convex Optimization
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Equivalent Problems

e epigraph form: standard form convex problem is equivalent to

S. Loyka

min (over x,t) t

s.t. fo(x) —t<0
fi(x) <0, i=1,....m (24)
Ax=Db
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Equivalent Problems

e epigraph form: standard form convex problem is equivalent to

min (over x,t) t

S TR
Ax=b
® minimizing over some variables
T oS imtm @
is equivalent to
min  fo(x1) (26)

st. fi(x1) <0, i=1,....m

where f (x1) = miny, fy (x1,%2)
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Quasiconvex optimization

min  fo(x)
st. fi(x)<0, i=1,....,m (27)
Ax=b

with fy quasiconvex, fi, ..., f, convex
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Quasiconvex optimization

min  fo(x)
st. fi(x) <0, i=1,....m (27)
Ax=b

with fy quasiconvex, fi, ..., f, convex

Can have locally optimal points that are not (globally) optimal

(z. fo(x))
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Convex representation of sublevel sets of f

If fy is quasiconvex, there exists a family of functions ¢; such that:
® ¢(x) is convex in x for fixed t

e t -sublevel set of fy is 0 -sublevel set of ¢y, i.e.,

fo(x) <t <= ¢¢(x) <0 (28)
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Convex representation of sublevel sets of f

If fy is quasiconvex, there exists a family of functions ¢; such that:
® ¢(x) is convex in x for fixed t

® t -sublevel set of fy is 0 -sublevel set of ¢y, i.e.,

fo(x) <t <= ¢(x) <0 (28)
Example:
_ Px)

with p convex, g concave, and p(x) > 0, g(x) > 0 on dom fy
can take ¢¢(x) = p(x) — tq(x) :

e for t > 0, ¢ convex in x

e p(x)/q(x) < t ¢+ d(x) < 0
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Quasiconvex optimization via convex feasibility

(P) find x: ¢¢(x) <0, fi(x)<0, Ax= (30)

e for fixed t, a convex feasibility problem in x
e if feasible, p* < t; if infeasible, p* > t
e Why ?
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Bisection method

(P) find x: ¢+(x) <0, fi(x)<0, Ax=Db

Bisection method for quasiconvex optimization
given | < p* u > p*, tolerance € > 0
repeat
L t:=(/+u)/2
2. solve the convex feasibility problem (P).
3. if (P) is feasible, u:=1t; else/:=t.
until u —/ <e

u—|
€

requires exactly [log, “=!] iterations (u,/ are initial bounds)
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Linear program (or problem, LP)

min ¢c'x+d
st. Gx=<h (31)
Ax=Db

® convex problem with affine objective and constraint functions

e feasible set is a polyhedron (why?)
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Examples

Diet problem: choose quantities xi, ..., x, of n foods
® one unit of food j costs ¢;, contains amount a;; of nutrient /
® healthy diet requires nutrient / in quantity at least b;

to find cheapest healthy diet,

min  ¢c’x

st. Ax>b, x>0 (32)
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Examples
Diet problem: choose quantities xi, ..., x, of n foods

® one unit of food j costs ¢;, contains amount a;; of nutrient /
® healthy diet requires nutrient / in quantity at least b;

to find cheapest healthy diet,

T

rzl': Zxxt b, x>0 (32)
Piecewise-linear minimization
min fmax (alx + b;) (33)
equivalent to an LP
ns“: ;,-Tx—l—b,-gt, i=1,...,m (34)
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Chebyshev center of a polyhedron

Chebyshev center of

P:{x:a,-Txgb,-,izl,...,m}

Icheb
is center of largest inscribed ball
B={xc+u:|ul2<r}
® alx < b; for all x € B iff
max{a,-T (xc+u):fulla<r} = a/ xc +rllajll, < b (35)
® hence, X, r can be determined by solving the LP
max r
st.a/xc+rlajll, <b, i=1....m (36)
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Linear-fractional problem

min  fo(x)
st. Gx=<h, Ax=0Db (37)
linear-fractional problem
f(x)—CTxi—i_d dom fy(x) = {x:e’x+f >0} (38)
O™ eTx + f 0=

® 3 quasiconvex optimization problem; can be solved by bisection
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Linear-fractional problem

min  fo(x)

st. Gx=<h, Ax=0Db (37)
linear-fractional problem
c'x+d T

fo(X) = m, dom fO(X) = {X ce'x+f > 0} (38)

® 3 quasiconvex optimization problem; can be solved by bisection

e equivalent to the following LP (in y, z)
; T

min  c'y+dz (39)

st. Gy=<hz, Ay=bz, ely+fz=1,2z>0

® j.e. non-convex = convex P |
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Generalized linear-fractional program

C,-TX—I-di

fo(x) = max ———— dom fy(x)={x:e/x+f>0,i=1,...

i=Lr e x4 f;

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy
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Quadratic program (QP)

min %XTPX +q'x+r

st. Gx=<h, Ax=0Db (41)

e P >0, so the objective is convex quadratic (what is not?)

® minimize a convex quadratic function over a polyhedron

.~V o(z*)
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Example: least-squares

min  ||Ax — b||3

e analytical solution: x* = Afb, Al is pseudo-inverse

® can add linear constraints, e.g., x; < x < x,,
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Example: linear program with random cost

min €' x +yx"Xx =E{c"x} + yvar (c"x)
st. Gx=<h, Ax=Db

® c is random vector with mean € and covariance X

T T

e c”x is random variable with mean €7 x and variance x" x

® v > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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Quadratically constrained quadratic program (QCQP)

min xTPox—l-qg—x—Fro
st. x"Pix+q/x+r <0 (44)
Ax=Db

e P,..P, >0, objective and constraints are convex quadratic

e if P1..P,, > 0, feasible set is intersection of ellipsoids and an affine
set (if not?)
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Second-order cone programming

min  f7x
st. [[Ax+bi,<c/x+d, i=1...,m
Fx=g

® inequalities are called second-order cone (SOC) constraints:
(A,-x + b;, c,Tx + d,-) € second-order cone

e for nj = 0, reduces to an LP; if ¢; =0, reduces to a QCQP
® more general than QCQP and LP
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Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min  ¢c’x

st. a/x<b;, i=1...,m (46)

with uncertainty in c, a;, b;
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Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min  ¢c’x

. 46
st. a/x<b;, i=1...,m (46)
with uncertainty in c, a;, b;

Two common approaches to handling uncertainty (in a;, for simplicity)
® deterministic model: constraints must hold for all a; € &;

min  ¢c’x

s.t. a,-Tx <b;, Vajeé&, i=1....,m (47)
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Robust linear programming

The parameters in optimization problems are often uncertain, e.g.

min  ¢c’x

. 46
st. a/x<b;, i=1...,m (46)
with uncertainty in c, a;, b;

Two common approaches to handling uncertainty (in a;, for simplicity)
® deterministic model: constraints must hold for all a; € &;

min  ¢c’x

s.t. a,-Tx <b;, Vajeé&, i=1....,m (47)

*

® stochastic model: a; is random variable; constraints must hold with
probability at least 1

min  ¢c’x

st. Pr(a/x<b)>n i=1..m (48)
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Geometric programming

® monomial function

f(x) =c-x{'x3% X", X1,..,% >0
with ¢ > 0; a; = any real number
S. Loyka Lecture 4, ELG6108: Introduction to Convex Optimization
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Geometric programming

® monomial function

f(x) =c-x'x3% - x7",

X1y -3 Xp >0

with ¢ > 0; a; = any real number

¢ posynomial function: sum of monomials

f(x) = E ChXHxGK - Xk
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Geometric programming

® monomial function

f(x) =c-x'x3% - x7",

X1y -3 Xp >0

with ¢ > 0; a; = any real number

¢ posynomial function: sum of monomials
X) — § :Ckxalk Dk 3nk

¢ geometric program (GP)

min  fy(x)

st. fi(x) <1, hi(x)=1, i=1,...,p

with f; posynomial, h; monomial
® QQ: convex or not?
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Geometric program in convex form

Change variables to y; = log x;, and take logarithm of cost, constraints

® monomial f(x) = c-x;* -+ x3" transforms to

logf(e”,...,e")=a’y+b (b=logc) (52)
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Geometric program in convex form

March 8, 2021

Change variables to y; = log x;, and take logarithm of cost, constraints

® monomial f(x) = c-x;* -+ x3" transforms to

logf(e”,...,e")=a’y+b (b=logc)

Ak 4 2k
X2

e posynomial f(x) = S15_; ckxd x32nk transforms to

K
log f (e”,...,e") = log (Z eakTerbk) ,  bx =logck
k=1

S. Loyka Lecture 4, ELG6108: Introduction to Convex Optimization
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Geometric program in convex form

March 8, 2021

Change variables to y; = log x;, and take logarithm of cost, constraints

® monomial f(x) = c-x;* -+ x3" transforms to

logf(e”,...,e")=a’y+b (b=logc)

Ak 4 2k
X2

e posynomial f(x) = S15_; ckxd x32nk transforms to

K
.
log f (e”,...,e") = log E e Yth ) b = log ck
® now, convex or not?

S. Loyka Lecture 4, ELG6108: Introduction to Convex Optimization

(52)

(53)

35 /41



March 8, 2021

Geometric program in convex form

® geometric program transforms to convex problem

min  log (35, exp (ad,y + bok))
st.  log Zszl exp (afy + b,-k)) <0, i=1,....m (54)
Gy+d=0
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Multi-antenna Gaussian channel

Example: maximizing rate (MI) in multi-antenna Gaussian channel
y=Hx+¢ (55)

x,y = input (Tx) and output (Rx), & = noise, H = channel matrix

channel
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Semidefinite problem (SDP)
Example: maximizing rate (MI) in multi-antenna Gaussian channel

y = Hx+ &, Ml =log|l +WR]| (56)

x,y = input (Tx) and output (Rx), & = noise, H = channel matrix

max Ml = log|l + WR| s.t. R> 0, trR < Pt (57)

R = Tx (input) covariance matrix, trR = its power
Pt = max. Tx power
W = H™H = channel Gram matrix

® Very important in wireless communications (WiFi, 5G)

® (QQ: convex or not?
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Maximizing rate in multi-antenna Gaussian channel

Can add extra constrains:

max Ml = log || + WR| (58)
st. R>0,trR < Pr,r;j < Py, tr(W2R) < P

rii < P1 - per antenna power constraint
tr(W3R) < P; - interference power constraint
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Maximizing secrecy rate

e wire-tap MIMO channel model

yi =Hix+&, y2=Hx+&
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Maximizing secrecy rate

e wire-tap MIMO channel model

yi =Hix+&, y2=Hx+&

® secrecy rate maximization

I+ W;R
max log g st. R>0,trR < Pr
R “ + W2R‘
® convex or not?
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More Examples (see Boyd & Vandenberghe)

® max. eigenvalue minimization
® matrix norm minimization
® general vector optimization problem

® multicriterion optimization (optimal and Pareto-optimal points,
scalarization)
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