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Convex functions1

• Definition

• Examples

• 1st order condition

• 2nd order condition

• Operations that preserve convexity

• Quasiconvex functions

• Log-concave and log-convex functions

• Generalized inequalities

1adapted from Boyd & Vandenberghe, Convex Optimization, Lecture slides.
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Definition of convex/concave function

• f (x) is convex if dom f is a convex set and

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ)f (y) (1)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1
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• geometrically: any line segment is above the graph
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Definition of convex/concave function

• f (x) is convex if dom f is a convex set and

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ)f (y) (1)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

• geometrically: any line segment is above the graph

• strictly convex: if the inequality is strict for any x 6= y and 0 < θ < 1
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Definition of convex/concave function

• f (x) is convex if dom f is a convex set and

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ)f (y) (1)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

• geometrically: any line segment is above the graph

• strictly convex: if the inequality is strict for any x 6= y and 0 < θ < 1

• f is concave if −f is convex (equivalently: opposite inequality)
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Examples: convex f (x) of scalar x

• quadratic: x2 (most simple, my favorite)
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Examples: convex f (x) of scalar x

• quadratic: x2 (most simple, my favorite)

• affine (linear): ax + b for any a, b (convex and concave sim.)

• exponential: eax , for any a

• powers: xα for x > 0, α ≥ 1 or α ≤ 0

• powers of absolute value: |x |p for p ≥ 1

• negative entropy: x log x for x > 0
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Examples: concave f (x) of scalar x

• negative quadratic: −x2 (most simple, my favorite)
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Examples: concave f (x) of scalar x

• negative quadratic: −x2 (most simple, my favorite)

• affine (linear): ax + b for any a, b

• powers: xα for x > 0 and 0 ≤ α ≤ 1

• logarithm: log x for x > 0
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Examples: vector argument x

• affine functions are convex and concave; all norms are convex
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Examples: vector argument x

• affine functions are convex and concave; all norms are convex

• Euclidean norm = length |x| = |x|2
• affine function f (x) = aTx+ b

• lp norms: |x|p = (
∑n

i=1 |xi |p)1/p for p ≥ 1

• |x |∞ = maxk |xk |
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Examples: convex f (X) of matrix X

• trace: f (X) = tr(X) for any X (convex and concave)

• affine function for any X (convex and concave)

f (X) = tr(ATX) + b =
∑

i ,j

aijxij + b (2)

• max. eigenvalue: f (X) = λmax(X) for X
T = X

• spectral norm (max. singular value) for any X

f (X) = |X|2 = σmax(X) = (λmax(X
TX))1/2 (3)
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Examples: concave f (X) of matrix X

• trace: f (X) = tr(X) for any X (convex and concave)

• min. eigenvalue: f (X) = λmin(X) for X
T = X

• log-det: f (X) = log |X| for X > 0
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Restriction to a line

• makes it simple to check convexity in many cases

• f (x) is convex if and only if g(t) is convex:

g(t) = f (x+ ty) (4)

for any x, y, t such that (x+ ty) ∈ dom f

• same applies to f (X)

• note that g(t) is simpler than f (x): t - scalar, but x - vector

• can check convexity of f (x) by checking convexity of g(t)
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Example: f (X) = log |X|, X > 0

g(t) = log |X + tY| (5)

= log |X|+ log |I+ tX−1/2YX−1/2| (6)

= log |X|+
∑

i

log(1 + tλi) (7)

λi = λi(X
−1/2YX−1/2) are the eigenvalues

g(t) is concave (why?), for any t,X,Y such that X+ tY > 0

hence, f (X) is also concave
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First-order condition

Assume f (x) is differentiable, the gradient ∇f (x)

∇f (x) =

(

∂f (x)

∂x1
,
∂f (x)

∂x2
, ...,

∂f (x)

∂xn

)T

(8)

exists for each x ∈ dom f

1st-order condition: differentiable f (x) with convex domain is convex iff

f (y) ≥ f (x) +∇f (x)T (y − x) for all x, y ∈ dom f (9)
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First-order condition

Differentiable f (x) with convex domain is convex iff

f (y) ≥ f (x) +∇f (x)T (y − x) for all x, y ∈ dom f

Geometry: first-order approximation of f (x) is its global underestimator
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Second-order condition

Twice differentiable f (x), Hessian H = ∇2f (x) exists at each x ∈ dom f ,

H = ∇2f (x) =
∂2f (x)

∂xT∂x
=

{

∂2f (x)

∂xi∂xj

}

(10)

2nd-order conditions: for twice differentiable f (x) with convex domain

• f (x) is convex if and only if

H = ∇2f (x) ≥ 0 for all x ∈ domf (11)

• strictly convex if ∇2f (x) > 0
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Examples

• quadratic function: f (x) = (1/2)xTPx+ qTx+ r

∇f (x) = Px+ q, ∇2f (x) = P (12)

convex if P � 0, concave if P ≤ 0
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Examples

• quadratic function: f (x) = (1/2)xTPx+ qTx+ r

∇f (x) = Px+ q, ∇2f (x) = P (12)

convex if P � 0, concave if P ≤ 0

• least-squares objective: f (x) = |Ax− b|22

∇f (x) = 2AT (Ax− b), ∇2f (x) = 2ATA ≥ 0 (13)

convex for any A (even non-square)
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Examples

• quadratic-over-linear: f (x , y) = x2/y convex for y > 0
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Examples

• quadratic-over-linear: f (x , y) = x2/y convex for y > 0

∇2f (x , y) =
2

y3

[

y

−x

] [

y

−x

]T

� 0 (14)
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Examples

• log-sum-exp: f (x) = log
∑n

k=1 exp xk is convex
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Examples

• log-sum-exp: f (x) = log
∑n

k=1 exp xk is convex

∇2f (x) =
1

1Tz
diag(z)− 1

(

1Tz
)2 zz

T (zk = exp xk) (15)

Proof: show that ∇2f (x) � 0 via vT∇2f (x)v ≥ 0 for all v :

vT∇2f (x)v =

(
∑

k zkv
2
k

)

(
∑

k zk)− (
∑

k vkzk)
2

(
∑

k zk)
2 ≥ 0 (16)

since (
∑

k vkzk)
2 ≤

(
∑

k zkv
2
k

)

(
∑

k zk) (from Cauchy-Schwarz
inequality)
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Examples

• geometric mean: f (x) = (
∏n

k=1 xk)
1/n is concave for {xk > 0, ∀k}

(similar proof as for log-sum-exp)
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Sublevel set

• α-sublevel set of f :

Cα = {x ∈ dom f : f (x) ≤ α} (17)

i.e. the set of points where function values do not exceed given level
α: f (x) ≤ α

• sublevel sets of convex functions are convex (converse is false)
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Epigraph

• the set of points above the function’s graph

• epigraph of f (x):

epi f = {(x, t) : x ∈ dom f , f (x) ≤ t} (18)
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Epigraph

• the set of points above the function’s graph

• epigraph of f (x):

epi f = {(x, t) : x ∈ dom f , f (x) ≤ t} (18)

• f (x) is convex if and only if epi f is a convex set
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Jensen’s inequality

• the definition of convexity of f (x): for 0 ≤ θ ≤ 1,

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ)f (y) (19)

• extension: if f (x) is convex, then

f (Ez) ≤ Ef (z) (20)

for any random vector z; E{·} is statistical expectation
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Jensen’s inequality

• the definition of convexity of f (x): for 0 ≤ θ ≤ 1,

f (θx+ (1− θ)y) ≤ θf (x) + (1− θ)f (y) (19)

• extension: if f (x) is convex, then

f (Ez) ≤ Ef (z) (20)

for any random vector z; E{·} is statistical expectation

• the definition is special case with discrete distributions

Pr(z = x) = θ, Pr(z = y) = 1− θ (21)
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Jensen’s inequality

• powerful applications
• communications
• information theory
• signal processing
• control, etc.

• examples:
• entropy/mutual information/channel capacity
• error rate in fading channels
• mean square error
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How to establish convexity ?
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How to establish convexity ?

1. Use definition (often simplified by restricting to a line)

2. Use ∇2f (x) � 0 (for twice differentiable functions)

3. Show that f (x) is obtained from simple convex functions by
operations that preserve convexity
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How to establish convexity ?

1. Use definition (often simplified by restricting to a line)

2. Use ∇2f (x) � 0 (for twice differentiable functions)

3. Show that f (x) is obtained from simple convex functions by
operations that preserve convexity

Some methods may be much simpler than others (example: f (x) = x2)
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Convexity-preserving operations

• nonnegative weighted sum

• composition with affine function

• pointwise maximum/supremum

• composition

• minimization

• perspective
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Positive weighted sum

• nonnegative multiple: αf (x) is convex if f (x) is convex and α ≥ 0

• sum: f1(x) + f2(x) convex if f1(x), f2(x) convex (extends to infinite
sums, integrals)

• positive weighted sum: convex if fi(x) are convex and αi ≥ 0

∑

i

αi fi(x), αi ≥ 0 (22)

• also extends to infinite sums and integrals
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Composition with affine function

• composition with affine function: f (Ax+b) is convex if f is convex

– proof?
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Composition with affine function

• composition with affine function: f (Ax+b) is convex if f is convex

– proof?

• examples

– log barrier for linear inequalities

f (x) = −
m
∑

i=1

log
(

bi − aTi x
)

, dom f = {x : aTi x < bi ∀i} (23)
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Composition with affine function

• composition with affine function: f (Ax+b) is convex if f is convex

– proof?

• examples

– log barrier for linear inequalities

f (x) = −
m
∑

i=1

log
(

bi − aTi x
)

, dom f = {x : aTi x < bi ∀i} (23)

– any norm of affine function: f (x) = ‖Ax+ b‖
– proof?
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Pointwise maximum

• if f1, . . . , fm are convex, then

f (x) = max {f1(x), . . . , fm(x)} (24)

is convex

– proof: via max{a1 + b1, a2 + b2} ≤ max{a1, a2}+max{b1, b2}
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Pointwise maximum

• if f1, . . . , fm are convex, then

f (x) = max {f1(x), . . . , fm(x)} (24)

is convex

– proof: via max{a1 + b1, a2 + b2} ≤ max{a1, a2}+max{b1, b2}
• examples

• piecewise-linear function: f (x) = maxi=1,...,m

(

aTi x+ bi
)
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Pointwise maximum: examples

• sum of r largest components of x:

f (x) = x[1] + x[2] + · · ·+ x[r ] (25)

x[i ] is i -th largest component of x,

x[1] ≥ x[2] ≥ ... ≥ x[r ] (26)
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Pointwise maximum: examples

• sum of r largest components of x:

f (x) = x[1] + x[2] + · · ·+ x[r ] (25)

x[i ] is i -th largest component of x,

x[1] ≥ x[2] ≥ ... ≥ x[r ] (26)

• proof: via

f (x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n} (27)
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Pointwise maximum: examples

• sum of r largest components of x:

f (x) = x[1] + x[2] + · · ·+ x[r ] (25)

x[i ] is i -th largest component of x,

x[1] ≥ x[2] ≥ ... ≥ x[r ] (26)

• proof: via

f (x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n} (27)

• example: f (x) = x[1]
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Pointwise maximum: examples

• sum of r largest components of x:

f (x) = x[1] + x[2] + · · ·+ x[r ] (25)

x[i ] is i -th largest component of x,

x[1] ≥ x[2] ≥ ... ≥ x[r ] (26)

• proof: via

f (x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n} (27)

• example: f (x) = x[1]

• Q: what about smallest component?
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Pointwise maximum (supremum)

• if f (x, y) is convex in x for each y ∈ A, then g(x) is also convex,

g(x) = max
y∈A

f (x, y) (28)
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Pointwise maximum (supremum)

• if f (x, y) is convex in x for each y ∈ A, then g(x) is also convex,

g(x) = max
y∈A

f (x, y) (28)

• examples
• support function of a set C : SC (x) = maxy∈C yTx
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Pointwise maximum (supremum)

• if f (x, y) is convex in x for each y ∈ A, then g(x) is also convex,

g(x) = max
y∈A

f (x, y) (28)

• examples
• support function of a set C : SC (x) = maxy∈C yTx
• distance to farthest point in a set C :

f (x) = max
y∈C

|x− y| (29)
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Pointwise maximum (supremum)

• if f (x, y) is convex in x for each y ∈ A, then g(x) is also convex,

g(x) = max
y∈A

f (x, y) (28)

• examples
• support function of a set C : SC (x) = maxy∈C yTx
• distance to farthest point in a set C :

f (x) = max
y∈C

|x− y| (29)

• maximum eigenvalue of symmetric matrix X = XT :

λ1(X) = max
|y|2=1

yTXy (30)
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Pointwise maximum (supremum)

• if f (x, y) is convex in x for each y ∈ A, then g(x) is also convex,

g(x) = max
y∈A

f (x, y) (28)

• examples
• support function of a set C : SC (x) = maxy∈C yTx
• distance to farthest point in a set C :

f (x) = max
y∈C

|x− y| (29)

• maximum eigenvalue of symmetric matrix X = XT :

λ1(X) = max
|y|2=1

yTXy (30)

• Q: what about minimum eigenvalue? 2nd largest?
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Composition with scalar functions

• composition of g(x) and h(y) :

f (x) = h(g(x)) (31)

• f (x) is convex if:
• g(x) convex, h(y) convex and nondecreasing
• g(x) concave, h(y) convex and nonincreasing
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Composition with scalar functions

• composition of g(x) and h(y) :

f (x) = h(g(x)) (31)

• f (x) is convex if:
• g(x) convex, h(y) convex and nondecreasing
• g(x) concave, h(y) convex and nonincreasing

• proof for scalar x , differentiable g , h:

f ′′(x) = h′′(g(x))g ′(x)2 + h′(g(x))g ′′(x) (32)
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Composition with scalar functions

• composition of g(x) and h(y) :

f (x) = h(g(x)) (31)

• f (x) is convex if:
• g(x) convex, h(y) convex and nondecreasing
• g(x) concave, h(y) convex and nonincreasing

• proof for scalar x , differentiable g , h:

f ′′(x) = h′′(g(x))g ′(x)2 + h′(g(x))g ′′(x) (32)

examples

• eg(x) is convex if g(x) is convex

• 1/g(x) is convex if g(x) is concave and positive
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Vector composition

composition of g(x) and h(y) :

f (x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x)) (33)

f (x) is convex if:

• gi (x) convex, h(y) convex, h nondecreasing in each argument

• gi (x) concave, h(y) convex, h nonincreasing in each argument
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Vector composition

composition of g(x) and h(y) :

f (x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x)) (33)

f (x) is convex if:

• gi (x) convex, h(y) convex, h nondecreasing in each argument

• gi (x) concave, h(y) convex, h nonincreasing in each argument

proof for scalar x , differentiable g , h

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x) (34)
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Vector composition

composition of g(x) and h(y) :

f (x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x)) (33)

f (x) is convex if:

• gi (x) convex, h(y) convex, h nondecreasing in each argument

• gi (x) concave, h(y) convex, h nonincreasing in each argument

proof for scalar x , differentiable g , h

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x) (34)

examples:

• ∑m
i=1 log gi (x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi (x) is convex if gi are convex
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Minimization

If f (x, y) is (jointly) convex in (x, y) and C is a convex set, then g(x) is
convex,

g(x) = min
y∈C

f (x, y) (35)
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Minimization

If f (x, y) is (jointly) convex in (x, y) and C is a convex set, then g(x) is
convex,

g(x) = min
y∈C

f (x, y) (35)

examples

• distance to a set S : convex if S is convex,

dist(x,S) = min
y∈S

|x− y| (36)
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Minimization

examples

• distance to a set S : convex if S is convex,

dist(x,S) = min
y∈S

|x− y| (37)

• f (x, y) = xTAx+ 2xTBy + yTCy with

[

A B

BT C

]

� 0, C ≻ 0 (38)

minimizing over y gives

g(x) = min
y

f (x, y) = xT
(

A− BC−1BT
)

x (39)

Since g(x) is convex, Schur complement A− BC−1BT � 0
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Perspective

the perspective of a function f is the function g ,

g(x, t) = tf (x/t), dom g = {(x, t) | x/t ∈ dom f , t > 0} (40)

g(x, t) is convex if f (x) is convex
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Perspective

the perspective of a function f is the function g ,

g(x, t) = tf (x/t), dom g = {(x, t) | x/t ∈ dom f , t > 0} (40)

g(x, t) is convex if f (x) is convex

examples

• f (x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0
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Perspective

the perspective of a function f is the function g ,

g(x, t) = tf (x/t), dom g = {(x, t) | x/t ∈ dom f , t > 0} (40)

g(x, t) is convex if f (x) is convex

examples

• f (x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0

• negative logarithm f (x) = − log x is convex; hence relative entropy
g(x , t) = t log t − t log x is convex for x , t > 0
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Perspective

the perspective of a function f is the function g ,

g(x, t) = tf (x/t), dom g = {(x, t) | x/t ∈ dom f , t > 0} (40)

g(x, t) is convex if f (x) is convex

examples

• f (x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0

• negative logarithm f (x) = − log x is convex; hence relative entropy
g(x , t) = t log t − t log x is convex for x , t > 0

• if f is convex, then

g(x) =
(

cTx+ d
)

f

(

Ax+ b

cTx+ d

)

(41)

is convex on
{

x : cTx+ d > 0, (Ax+ b)/
(

cTx+ d
)

∈ dom f
}
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The conjugate function

the conjugate of a function f (x) is

f ∗(y) = max
x∈dom f

(

yTx− f (x)
)

(42)

• f ∗(y) is convex, even if f (x) is not

• Q: why?

• is used in duality theory
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The conjugate function: examples

• negative logarithm f (x) = − ln x

f ∗(y) = max
x>0

(xy + ln x) (43)

=

{

−1− ln(−y) y < 0
∞ otherwise

(44)
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The conjugate function: examples

• negative logarithm f (x) = − ln x

f ∗(y) = max
x>0

(xy + ln x) (43)

=

{

−1− ln(−y) y < 0
∞ otherwise

(44)

• strictly convex quadratic f (x) = (1/2)xTQx, Q > 0,

f ∗(y) = max
x

(

yTx− (1/2)xTQx
)

(45)

=
1

2
yTQ−1y (46)
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Quasiconvex functions

f (x) is quasiconvex if dom f is convex and the sublevel sets

Sα = {x : f (x) ≤ α} (47)

are convex for all α
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Quasiconvex functions

f (x) is quasiconvex if dom f is convex and the sublevel sets

Sα = {x : f (x) ≤ α} (47)

are convex for all α

• f is quasiconcave if −f is quasiconvex

• f is quasilinear if it is quasiconvex and quasiconcave
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Quasiconvex functions: examples

• √

|x | is quasiconvex
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Quasiconvex functions: examples

• √

|x | is quasiconvex
• ceil(x) = min{z ∈ Z : z ≥ x} is quasilinear
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Quasiconvex functions: examples

• √

|x | is quasiconvex
• ceil(x) = min{z ∈ Z : z ≥ x} is quasilinear

• log x is quasilinear on x > 0
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Quasiconvex functions: examples

• √

|x | is quasiconvex
• ceil(x) = min{z ∈ Z : z ≥ x} is quasilinear

• log x is quasilinear on x > 0

• f (x1, x2) = x1x2 is quasiconcave on x1, x2 > 0
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Quasiconvex functions: examples

• √

|x | is quasiconvex
• ceil(x) = min{z ∈ Z : z ≥ x} is quasilinear

• log x is quasilinear on x > 0

• f (x1, x2) = x1x2 is quasiconcave on x1, x2 > 0

• linear-fractional function is quasilinear,

f (x) =
aTx+ b

cTx+ d
, dom f =

{

x : cTx+ d > 0
}

(48)
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Quasiconvex functions: examples

• √

|x | is quasiconvex
• ceil(x) = min{z ∈ Z : z ≥ x} is quasilinear

• log x is quasilinear on x > 0

• f (x1, x2) = x1x2 is quasiconcave on x1, x2 > 0

• linear-fractional function is quasilinear,

f (x) =
aTx+ b

cTx+ d
, dom f =

{

x : cTx+ d > 0
}

(48)

• distance ratio is quasiconvex,

f (x) =
|x− a|2
|x− b|2

, dom f = {x : |x− a|2 ≤ |x− b|2} (49)
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Quasiconvex functions: properties
• modified Jensen inequality: for quasiconvex f (x)

0 ≤ θ ≤ 1 =⇒ f (θx+ (1− θ)y) ≤ max{f (x), f (y)} (50)
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Quasiconvex functions: properties
• modified Jensen inequality: for quasiconvex f (x)

0 ≤ θ ≤ 1 =⇒ f (θx+ (1− θ)y) ≤ max{f (x), f (y)} (50)

• first-order condition: differentiable f (x) with convex domain is
quasiconvex iff

f (y) ≤ f (x) =⇒ ∇f (x)T (y − x) ≤ 0 (51)

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions
a positive function f (x) is log-concave if log f (x) is concave:

f (θx+ (1− θ)y) ≥ f (x)θf (y)1−θ for 0 ≤ θ ≤ 1 (52)

f (x) is log-convex iff log f (x) is convex
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Log-concave and log-convex functions
a positive function f (x) is log-concave if log f (x) is concave:

f (θx+ (1− θ)y) ≥ f (x)θf (y)1−θ for 0 ≤ θ ≤ 1 (52)

f (x) is log-convex iff log f (x) is convex

examples

• powers: xp on x > 0 is log-convex for p ≤ 0, log-concave for p ≥ 0
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Log-concave and log-convex functions
a positive function f (x) is log-concave if log f (x) is concave:

f (θx+ (1− θ)y) ≥ f (x)θf (y)1−θ for 0 ≤ θ ≤ 1 (52)

f (x) is log-convex iff log f (x) is convex

examples

• powers: xp on x > 0 is log-convex for p ≤ 0, log-concave for p ≥ 0

• many common probability densities are log-concave, e.g. normal:

f (x) =
1

√

(2π)n|R|
e−

1
2
(x−x̄)TR−1(x−x̄) (53)

• cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞

e−u2/2du (54)
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Properties of log-concave functions

• twice differentiable f (x) with convex domain is log-concave iff

f (x)∇2f (x) � ∇f (x)∇f (x)T ∀ x ∈ dom f (55)
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Properties of log-concave functions

• twice differentiable f (x) with convex domain is log-concave iff

f (x)∇2f (x) � ∇f (x)∇f (x)T ∀ x ∈ dom f (55)

• product of log-concave functions is log-concave

• sum of log-concave functions is not always log-concave

• integration: if f (x, y) is log-concave, then

g(x) =

∫

f (x, y)dy (56)

is log-concave (not easy to show)
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Consequences of integration property

• convolution f ∗ g of log-concave functions f , g is log-concave

(f ∗ g)(x) =
∫

f (x − y)g(y)dy (57)
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Consequences of integration property

• convolution f ∗ g of log-concave functions f , g is log-concave

(f ∗ g)(x) =
∫

f (x − y)g(y)dy (57)

• if set C convex and y is a random variable with log-concave pdf, then
f (x) is log-concave,

f (x) = Pr(x+ y ∈ C ) (58)
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Consequences of integration property

• convolution f ∗ g of log-concave functions f , g is log-concave

(f ∗ g)(x) =
∫

f (x − y)g(y)dy (57)

• if set C convex and y is a random variable with log-concave pdf, then
f (x) is log-concave,

f (x) = Pr(x+ y ∈ C ) (58)

• proof: write f (x) as integral of product of log-concave functions,

f (x) =

∫

g(x+ y)p(y)dy, g(u) =

{

1 u ∈ C

0 u /∈ C ,
(59)

p(y) is the pdf of y
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Example: yield function

Y (x) = Pr(x+ w ∈ S) (60)

• x : nominal parameter values for product

• w : random variations of parameters in manufactured product

• S : set of acceptable values
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Example: yield function

Y (x) = Pr(x+ w ∈ S) (60)

• x : nominal parameter values for product

• w : random variations of parameters in manufactured product

• S : set of acceptable values

if S is convex and w has a log-concave pdf, then

• Y (x) is log-concave

• yield regions {x : Y (x) ≥ α} are convex

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 42 / 43



February 10, 2021

Convexity with respect to generalized inequalities

• matrix inequality (positive semi-definite):

A ≥ B ⇔ A− B ≥ 0 ⇔ zT (A −B)z ≥ 0 ∀ z (61)
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Convexity with respect to generalized inequalities

• matrix inequality (positive semi-definite):

A ≥ B ⇔ A− B ≥ 0 ⇔ zT (A −B)z ≥ 0 ∀ z (61)

• f (X) is matrix-convex if dom f is convex and

f (θX+ (1− θ)Y) � θf (X) + (1− θ)f (Y) (62)

for X,Y ∈ dom f , 0 ≤ θ ≤ 1
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Convexity with respect to generalized inequalities

• matrix inequality (positive semi-definite):

A ≥ B ⇔ A− B ≥ 0 ⇔ zT (A −B)z ≥ 0 ∀ z (61)

• f (X) is matrix-convex if dom f is convex and

f (θX+ (1− θ)Y) � θf (X) + (1− θ)f (Y) (62)

for X,Y ∈ dom f , 0 ≤ θ ≤ 1

• example: f (X) = X2 is matrix-convex on X = XT
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Convexity with respect to generalized inequalities

• matrix inequality (positive semi-definite):

A ≥ B ⇔ A− B ≥ 0 ⇔ zT (A −B)z ≥ 0 ∀ z (61)

• f (X) is matrix-convex if dom f is convex and

f (θX+ (1− θ)Y) � θf (X) + (1− θ)f (Y) (62)

for X,Y ∈ dom f , 0 ≤ θ ≤ 1

• example: f (X) = X2 is matrix-convex on X = XT

proof: for fixed z, g(X) = zTX2z = |Xz|22 is convex in X, i.e.

zT (θX+ (1− θ)Y)2z ≤ θzTX2z+ (1− θ)zTY2z (63)

therefore, (θX+ (1− θ)Y)2 � θX2 + (1− θ)Y2, as required

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 43 / 43


