ELG6108: Introduction to Convex Optimization

Lecture 3: Convex Functions

Dr. Sergey Loyka
EECS, University of Ottawa

February 10, 2021

Convex functions ${ }^{1}$

- Definition
- Examples
- 1st order condition
- 2nd order condition
- Operations that preserve convexity
- Quasiconvex functions
- Log-concave and log-convex functions
- Generalized inequalities
${ }^{1}$ adapted from Boyd \& Vandenberghe, Convex Optimization, Lecture slides.

Definition of convex/concave function

- $f(\mathbf{x})$ is convex if dom f is a convex set and

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \tag{1}
\end{equation*}
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f, 0 \leq \theta \leq 1$

Definition of convex/concave function

- $f(\mathbf{x})$ is convex if dom f is a convex set and

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \tag{1}
\end{equation*}
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- geometrically: any line segment is above the graph

Definition of convex/concave function

- $f(\mathbf{x})$ is convex if dom f is a convex set and

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \tag{1}
\end{equation*}
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- geometrically: any line segment is above the graph
- strictly convex: if the inequality is strict for any $\mathbf{x} \neq \mathbf{y}$ and $0<\theta<1$

Definition of convex/concave function

- $f(\mathbf{x})$ is convex if dom f is a convex set and

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \tag{1}
\end{equation*}
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- geometrically: any line segment is above the graph
- strictly convex: if the inequality is strict for any $\mathbf{x} \neq \mathbf{y}$ and $0<\theta<1$
- f is concave if $-f$ is convex (equivalently: opposite inequality)

Examples: convex $f(x)$ of scalar x

- quadratic: x^{2} (most simple, my favorite)

Examples: convex $f(x)$ of scalar x

- quadratic: x^{2} (most simple, my favorite)
- affine (linear): $a x+b$ for any a, b (convex and concave sim.)
- exponential: $e^{a x}$, for any a
- powers: x^{α} for $x>0, \alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^{p}$ for $p \geq 1$
- negative entropy: $x \log x$ for $x>0$

Examples: concave $f(x)$ of scalar x

- negative quadratic: $-x^{2}$ (most simple, my favorite)

Examples: concave $f(x)$ of scalar x

- negative quadratic: $-x^{2}$ (most simple, my favorite)
- affine (linear): $a x+b$ for any a, b
- powers: x^{α} for $x>0$ and $0 \leq \alpha \leq 1$
- logarithm: $\log x$ for $x>0$

Examples: vector argument \mathbf{x}

- affine functions are convex and concave; all norms are convex

Examples: vector argument \mathbf{x}

- affine functions are convex and concave; all norms are convex
- Euclidean norm $=$ length $|\mathbf{x}|=|\mathbf{x}|_{2}$
- affine function $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b$
- I_{p} norms: $|\mathbf{x}|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p \geq 1$
- $|x|_{\infty}=\max _{k}\left|x_{k}\right|$

Examples: convex $f(\mathbf{X})$ of matrix \mathbf{X}

- trace: $f(\mathbf{X})=t r(\mathbf{X})$ for any \mathbf{X} (convex and concave)
- affine function for any \mathbf{X} (convex and concave)

$$
\begin{equation*}
f(\mathbf{X})=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{X}\right)+b=\sum_{i, j} a_{i j} x_{i j}+b \tag{2}
\end{equation*}
$$

- max. eigenvalue: $f(\mathbf{X})=\lambda_{\max }(\mathbf{X})$ for $\mathbf{X}^{T}=\mathbf{X}$
- spectral norm (max. singular value) for any \mathbf{X}

$$
\begin{equation*}
f(\mathbf{X})=|\mathbf{X}|_{2}=\sigma_{\max }(\mathbf{X})=\left(\lambda_{\max }\left(\mathbf{X}^{T} \mathbf{X}\right)\right)^{1 / 2} \tag{3}
\end{equation*}
$$

Examples: concave $f(\mathbf{X})$ of matrix \mathbf{X}

- trace: $f(\mathbf{X})=t r(\mathbf{X})$ for any \mathbf{X} (convex and concave)
- min. eigenvalue: $f(\mathbf{X})=\lambda_{\text {min }}(\mathbf{X})$ for $\mathbf{X}^{T}=\mathbf{X}$
- log-det: $f(\mathbf{X})=\log |\mathbf{X}|$ for $\mathbf{X}>0$

Restriction to a line

- makes it simple to check convexity in many cases
- $f(\mathbf{x})$ is convex if and only if $g(t)$ is convex:

$$
\begin{equation*}
g(t)=f(\mathbf{x}+t \mathbf{y}) \tag{4}
\end{equation*}
$$

for any $\mathbf{x}, \mathbf{y}, t$ such that $(\mathbf{x}+t \mathbf{y}) \in \operatorname{dom} f$

- same applies to $f(\mathbf{X})$
- note that $g(t)$ is simpler than $f(\mathbf{x})$: t - scalar, but \mathbf{x} - vector
- can check convexity of $f(\mathbf{x})$ by checking convexity of $g(t)$

Example: $f(\mathbf{X})=\log |\mathbf{X}|, \mathbf{X}>0$

$$
\begin{align*}
g(t) & =\log |\mathbf{X}+t \mathbf{Y}| \tag{5}\\
& =\log |\mathbf{X}|+\log \left|\mathbf{I}+t \mathbf{X}^{-1 / 2} \mathbf{Y} \mathbf{X}^{-1 / 2}\right| \tag{6}\\
& =\log |\mathbf{X}|+\sum_{i} \log \left(1+t \lambda_{i}\right) \tag{7}
\end{align*}
$$

$\lambda_{i}=\lambda_{i}\left(\mathbf{X}^{-1 / 2} \mathbf{Y} \mathbf{X}^{-1 / 2}\right)$ are the eigenvalues
$g(t)$ is concave (why?), for any $t, \mathbf{X}, \mathbf{Y}$ such that $\mathbf{X}+t \mathbf{Y}>0$ hence, $f(\mathbf{X})$ is also concave

First-order condition

Assume $f(\mathbf{x})$ is differentiable, the gradient $\nabla f(\mathbf{x})$

$$
\begin{equation*}
\nabla f(\mathbf{x})=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \frac{\partial f(\mathbf{x})}{\partial x_{2}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}\right)^{T} \tag{8}
\end{equation*}
$$

exists for each $\mathbf{x} \in \operatorname{dom} f$
1st-order condition: differentiable $f(\mathbf{x})$ with convex domain is convex iff

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \text { for all } \mathbf{x}, \mathbf{y} \in \operatorname{dom} f \tag{9}
\end{equation*}
$$

First-order condition

Differentiable $f(\mathbf{x})$ with convex domain is convex iff

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \quad \text { for all } \mathbf{x}, \mathbf{y} \in \operatorname{dom} f
$$

$$
f(y)
$$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

Geometry: first-order approximation of $f(\mathbf{x})$ is its global underestimator

Second-order condition

Twice differentiable $f(\mathbf{x})$, Hessian $\mathbf{H}=\nabla^{2} f(\mathbf{x})$ exists at each $\mathbf{x} \in \operatorname{dom} f$,

$$
\begin{equation*}
\mathbf{H}=\nabla^{2} f(\mathbf{x})=\frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x}^{T} \partial \mathbf{x}}=\left\{\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right\} \tag{10}
\end{equation*}
$$

2nd-order conditions: for twice differentiable $f(\mathbf{x})$ with convex domain

- $f(\mathbf{x})$ is convex if and only if

$$
\begin{equation*}
\mathbf{H}=\nabla^{2} f(\mathbf{x}) \geq 0 \text { for all } \mathbf{x} \in \operatorname{dom} f \tag{11}
\end{equation*}
$$

- strictly convex if $\nabla^{2} f(\mathbf{x})>0$

Examples

- quadratic function: $f(\mathbf{x})=(1 / 2) \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+r$

$$
\begin{equation*}
\nabla f(\mathbf{x})=\mathbf{P} \mathbf{x}+\mathbf{q}, \quad \nabla^{2} f(\mathbf{x})=\mathbf{P} \tag{12}
\end{equation*}
$$

convex if $\mathbf{P} \succeq 0$, concave if $\mathbf{P} \leq 0$

Examples

- quadratic function: $f(\mathbf{x})=(1 / 2) \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+r$

$$
\begin{equation*}
\nabla f(\mathbf{x})=\mathbf{P} \mathbf{x}+\mathbf{q}, \quad \nabla^{2} f(\mathbf{x})=\mathbf{P} \tag{12}
\end{equation*}
$$

convex if $\mathbf{P} \succeq 0$, concave if $\mathbf{P} \leq 0$

- least-squares objective: $f(\mathbf{x})=|\mathbf{A x}-\mathbf{b}|_{2}^{2}$

$$
\begin{equation*}
\nabla f(\mathbf{x})=2 \mathbf{A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}), \quad \nabla^{2} f(\mathbf{x})=2 \mathbf{A}^{T} \mathbf{A} \geq 0 \tag{13}
\end{equation*}
$$

convex for any \mathbf{A} (even non-square)

Examples

- quadratic-over-linear: $f(x, y)=x^{2} / y$ convex for $y>0$

Examples

- quadratic-over-linear: $f(x, y)=x^{2} / y$ convex for $y>0$

$$
\nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{c}
y \tag{14}\\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T} \succeq 0
$$

Examples

- log-sum-exp: $f(\mathbf{x})=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

Examples

- log-sum-exp: $f(\mathbf{x})=\log \sum_{k=1}^{n} \exp x_{k}$ is convex

$$
\begin{equation*}
\nabla^{2} f(\mathbf{x})=\frac{1}{\mathbf{1}^{T} \mathbf{z}} \operatorname{diag}(\mathbf{z})-\frac{1}{\left(\mathbf{1}^{T} \mathbf{z}\right)^{2}} \mathbf{z z} \quad\left(z_{k}=\exp x_{k}\right) \tag{15}
\end{equation*}
$$

Proof: show that $\nabla^{2} f(\mathbf{x}) \succeq 0$ via $\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v} \geq 0$ for all \mathbf{v} :

$$
\begin{equation*}
\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v}=\frac{\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)-\left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \geq 0 \tag{16}
\end{equation*}
$$

since $\left(\sum_{k} v_{k} z_{k}\right)^{2} \leq\left(\sum_{k} z_{k} v_{k}^{2}\right)\left(\sum_{k} z_{k}\right)$ (from Cauchy-Schwarz inequality)

Examples

- geometric mean: $f(\mathbf{x})=\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}$ is concave for $\left\{x_{k}>0, \forall k\right\}$ (similar proof as for log-sum-exp)

Sublevel set

- α-sublevel set of f :

$$
\begin{equation*}
C_{\alpha}=\{\mathbf{x} \in \operatorname{dom} f: f(\mathbf{x}) \leq \alpha\} \tag{17}
\end{equation*}
$$

i.e. the set of points where function values do not exceed given level $\alpha: f(\mathbf{x}) \leq \alpha$

- sublevel sets of convex functions are convex (converse is false)

Epigraph

- the set of points above the function's graph
- epigraph of $f(\mathbf{x})$:

$$
\begin{equation*}
\text { epi } f=\{(\mathbf{x}, t): \mathbf{x} \in \operatorname{dom} f, f(\mathbf{x}) \leq t\} \tag{18}
\end{equation*}
$$

Epigraph

- the set of points above the function's graph
- epigraph of $f(\mathbf{x})$:

$$
\begin{equation*}
\text { epi } f=\{(\mathbf{x}, t): \mathbf{x} \in \operatorname{dom} f, f(\mathbf{x}) \leq t\} \tag{18}
\end{equation*}
$$

- $f(\mathbf{x})$ is convex if and only if epi f is a convex set

Jensen's inequality

- the definition of convexity of $f(\mathbf{x})$: for $0 \leq \theta \leq 1$,

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \tag{19}
\end{equation*}
$$

- extension: if $f(\mathbf{x})$ is convex, then

$$
\begin{equation*}
f(\mathbb{E} \mathbf{z}) \leq \mathbb{E} f(\mathbf{z}) \tag{20}
\end{equation*}
$$

for any random vector $\mathbf{z} ; \mathbb{E}\{\cdot\}$ is statistical expectation

Jensen's inequality

- the definition of convexity of $f(\mathbf{x})$: for $0 \leq \theta \leq 1$,

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y}) \tag{19}
\end{equation*}
$$

- extension: if $f(\mathbf{x})$ is convex, then

$$
\begin{equation*}
f(\mathbb{E} \mathbf{z}) \leq \mathbb{E} f(\mathbf{z}) \tag{20}
\end{equation*}
$$

for any random vector $\mathbf{z} ; \mathbb{E}\{\cdot\}$ is statistical expectation

- the definition is special case with discrete distributions

$$
\begin{equation*}
\operatorname{Pr}(\mathbf{z}=\mathbf{x})=\theta, \quad \operatorname{Pr}(\mathbf{z}=\mathbf{y})=1-\theta \tag{21}
\end{equation*}
$$

Jensen's inequality

- powerful applications
- communications
- information theory
- signal processing
- control, etc.
- examples:
- entropy/mutual information/channel capacity
- error rate in fading channels
- mean square error

How to establish convexity ?

How to establish convexity?

1. Use definition (often simplified by restricting to a line)

How to establish convexity?

1. Use definition (often simplified by restricting to a line)
2. Use $\nabla^{2} f(\mathbf{x}) \succeq 0$ (for twice differentiable functions)

How to establish convexity?

1. Use definition (often simplified by restricting to a line)
2. Use $\nabla^{2} f(\mathbf{x}) \succeq 0$ (for twice differentiable functions)
3. Show that $f(\mathbf{x})$ is obtained from simple convex functions by operations that preserve convexity

How to establish convexity?

1. Use definition (often simplified by restricting to a line)
2. Use $\nabla^{2} f(\mathbf{x}) \succeq 0$ (for twice differentiable functions)
3. Show that $f(\mathbf{x})$ is obtained from simple convex functions by operations that preserve convexity

Some methods may be much simpler than others (example: $f(x)=x^{2}$)

Convexity-preserving operations

- nonnegative weighted sum
- composition with affine function
- pointwise maximum/supremum
- composition
- minimization
- perspective

Positive weighted sum

- nonnegative multiple: $\alpha f(\mathbf{x})$ is convex if $f(\mathbf{x})$ is convex and $\alpha \geq 0$
- sum: $f_{1}(\mathbf{x})+f_{2}(\mathbf{x})$ convex if $f_{1}(\mathbf{x}), f_{2}(\mathbf{x})$ convex (extends to infinite sums, integrals)
- positive weighted sum: convex if $f_{i}(\mathbf{x})$ are convex and $\alpha_{i} \geq 0$

$$
\begin{equation*}
\sum_{i} \alpha_{i} f_{i}(\mathbf{x}), \alpha_{i} \geq 0 \tag{22}
\end{equation*}
$$

- also extends to infinite sums and integrals

Composition with affine function

- composition with affine function: $f(\mathbf{A x}+\mathbf{b})$ is convex if f is convex
- proof?

Composition with affine function

- composition with affine function: $f(\mathbf{A} \mathbf{x}+\mathbf{b})$ is convex if f is convex
- proof?
- examples
- log barrier for linear inequalities

$$
\begin{equation*}
f(\mathbf{x})=-\sum_{i=1}^{m} \log \left(b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}\right), \quad \operatorname{dom} f=\left\{\mathbf{x}: \mathbf{a}_{i}^{T} \mathbf{x}<b_{i} \forall i\right\} \tag{23}
\end{equation*}
$$

Composition with affine function

- composition with affine function: $f(\mathbf{A} \mathbf{x}+\mathbf{b})$ is convex if f is convex
- proof?
- examples
- log barrier for linear inequalities

$$
\begin{equation*}
f(\mathbf{x})=-\sum_{i=1}^{m} \log \left(b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}\right), \quad \operatorname{dom} f=\left\{\mathbf{x}: \mathbf{a}_{i}^{T} \mathbf{x}<b_{i} \forall i\right\} \tag{23}
\end{equation*}
$$

- any norm of affine function: $f(\mathbf{x})=\|\mathbf{A} \mathbf{x}+\mathbf{b}\|$
- proof?

Pointwise maximum

- if f_{1}, \ldots, f_{m} are convex, then

$$
\begin{equation*}
f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\} \tag{24}
\end{equation*}
$$

is convex

- proof: via $\max \left\{a_{1}+b_{1}, a_{2}+b_{2}\right\} \leq \max \left\{a_{1}, a_{2}\right\}+\max \left\{b_{1}, b_{2}\right\}$

Pointwise maximum

- if f_{1}, \ldots, f_{m} are convex, then

$$
\begin{equation*}
f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\} \tag{24}
\end{equation*}
$$

is convex

- proof: via $\max \left\{a_{1}+b_{1}, a_{2}+b_{2}\right\} \leq \max \left\{a_{1}, a_{2}\right\}+\max \left\{b_{1}, b_{2}\right\}$
- examples
- piecewise-linear function: $f(\mathbf{x})=\max _{i=1, \ldots, m}\left(\mathbf{a}_{i}^{T} \mathbf{x}+b_{i}\right)$

Pointwise maximum: examples

- sum of r largest components of \mathbf{x} :

$$
\begin{equation*}
f(\mathbf{x})=x_{[1]}+x_{[2]}+\cdots+x_{[r]} \tag{25}
\end{equation*}
$$

$x_{[i]}$ is i-th largest component of \mathbf{x},

$$
\begin{equation*}
x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[r]} \tag{26}
\end{equation*}
$$

Pointwise maximum: examples

- sum of r largest components of \mathbf{x} :

$$
\begin{equation*}
f(\mathbf{x})=x_{[1]}+x_{[2]}+\cdots+x_{[r]} \tag{25}
\end{equation*}
$$

$x_{[i]}$ is i-th largest component of \mathbf{x},

$$
\begin{equation*}
x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[r]} \tag{26}
\end{equation*}
$$

- proof: via

$$
\begin{equation*}
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\} \tag{27}
\end{equation*}
$$

Pointwise maximum: examples

- sum of r largest components of \mathbf{x} :

$$
\begin{equation*}
f(\mathbf{x})=x_{[1]}+x_{[2]}+\cdots+x_{[r]} \tag{25}
\end{equation*}
$$

$x_{[i]}$ is i-th largest component of \mathbf{x},

$$
\begin{equation*}
x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[r]} \tag{26}
\end{equation*}
$$

- proof: via

$$
\begin{equation*}
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\} \tag{27}
\end{equation*}
$$

- example: $f(\mathbf{x})=x_{[1]}$

Pointwise maximum: examples

- sum of r largest components of \mathbf{x} :

$$
\begin{equation*}
f(\mathbf{x})=x_{[1]}+x_{[2]}+\cdots+x_{[r]} \tag{25}
\end{equation*}
$$

$x_{[i]}$ is i-th largest component of \mathbf{x},

$$
\begin{equation*}
x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[r]} \tag{26}
\end{equation*}
$$

- proof: via

$$
\begin{equation*}
f(x)=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq n\right\} \tag{27}
\end{equation*}
$$

- example: $f(\mathbf{x})=x_{[1]}$
- Q: what about smallest component?

Pointwise maximum (supremum)

- if $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$, then $g(\mathbf{x})$ is also convex,

$$
\begin{equation*}
g(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y}) \tag{28}
\end{equation*}
$$

Pointwise maximum (supremum)

- if $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$, then $g(\mathbf{x})$ is also convex,

$$
\begin{equation*}
g(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y}) \tag{28}
\end{equation*}
$$

- examples
- support function of a set $C: S_{C}(\mathbf{x})=\max _{\mathbf{y} \in C} \mathbf{y}^{T} \mathbf{x}$

Pointwise maximum (supremum)

- if $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$, then $g(\mathbf{x})$ is also convex,

$$
\begin{equation*}
g(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y}) \tag{28}
\end{equation*}
$$

- examples
- support function of a set $C: S_{C}(\mathbf{x})=\max _{\mathbf{y} \in C} \mathbf{y}^{\top} \mathbf{x}$
- distance to farthest point in a set C :

$$
\begin{equation*}
f(\mathbf{x})=\max _{\mathbf{y} \in C}|\mathbf{x}-\mathbf{y}| \tag{29}
\end{equation*}
$$

Pointwise maximum (supremum)

- if $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$, then $g(\mathbf{x})$ is also convex,

$$
\begin{equation*}
g(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y}) \tag{28}
\end{equation*}
$$

- examples
- support function of a set $C: S_{C}(\mathbf{x})=\max _{\mathbf{y} \in C} \mathbf{y}^{\top} \mathbf{x}$
- distance to farthest point in a set C :

$$
\begin{equation*}
f(\mathbf{x})=\max _{\mathbf{y} \in C}|\mathbf{x}-\mathbf{y}| \tag{29}
\end{equation*}
$$

- maximum eigenvalue of symmetric matrix $\mathbf{X}=\mathbf{X}^{T}$:

$$
\begin{equation*}
\lambda_{1}(\mathbf{X})=\max _{|\mathbf{y}|_{2}=1} \mathbf{y}^{\top} \mathbf{X} \mathbf{y} \tag{30}
\end{equation*}
$$

Pointwise maximum (supremum)

- if $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$, then $g(\mathbf{x})$ is also convex,

$$
\begin{equation*}
g(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y}) \tag{28}
\end{equation*}
$$

- examples
- support function of a set $C: S_{C}(\mathbf{x})=\max _{\mathbf{y} \in C} \mathbf{y}^{\top} \mathbf{x}$
- distance to farthest point in a set C :

$$
\begin{equation*}
f(\mathbf{x})=\max _{\mathbf{y} \in C}|\mathbf{x}-\mathbf{y}| \tag{29}
\end{equation*}
$$

- maximum eigenvalue of symmetric matrix $\mathbf{X}=\mathbf{X}^{T}$:

$$
\begin{equation*}
\lambda_{1}(\mathbf{X})=\max _{|\mathbf{y}|_{2}=1} \mathbf{y}^{\top} \mathbf{X} \mathbf{y} \tag{30}
\end{equation*}
$$

- Q: what about minimum eigenvalue? 2nd largest?

Composition with scalar functions

- composition of $g(\mathbf{x})$ and $h(y)$:

$$
\begin{equation*}
f(\mathbf{x})=h(g(\mathbf{x})) \tag{31}
\end{equation*}
$$

- $f(\mathbf{x})$ is convex if:
- $g(\mathbf{x})$ convex, $h(y)$ convex and nondecreasing
- $g(\mathbf{x})$ concave, $h(y)$ convex and nonincreasing

Composition with scalar functions

- composition of $g(\mathbf{x})$ and $h(y)$:

$$
\begin{equation*}
f(\mathbf{x})=h(g(\mathbf{x})) \tag{31}
\end{equation*}
$$

- $f(\mathbf{x})$ is convex if:
- $g(\mathbf{x})$ convex, $h(y)$ convex and nondecreasing
- $g(\mathbf{x})$ concave, $h(y)$ convex and nonincreasing
- proof for scalar x, differentiable g, h :

$$
\begin{equation*}
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x) \tag{32}
\end{equation*}
$$

Composition with scalar functions

- composition of $g(\mathbf{x})$ and $h(y)$:

$$
\begin{equation*}
f(\mathbf{x})=h(g(\mathbf{x})) \tag{31}
\end{equation*}
$$

- $f(\mathbf{x})$ is convex if:
- $g(\mathbf{x})$ convex, $h(y)$ convex and nondecreasing
- $g(\mathbf{x})$ concave, $h(y)$ convex and nonincreasing
- proof for scalar x, differentiable g, h :

$$
\begin{equation*}
f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x) \tag{32}
\end{equation*}
$$

examples

- $e^{g(x)}$ is convex if $g(x)$ is convex
- $1 / g(\mathbf{x})$ is convex if $g(\mathbf{x})$ is concave and positive

Vector composition

composition of $\mathbf{g}(\mathbf{x})$ and $h(\mathbf{y})$:

$$
\begin{equation*}
f(\mathbf{x})=h(\mathbf{g}(\mathbf{x}))=h\left(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})\right) \tag{33}
\end{equation*}
$$

$f(\mathbf{x})$ is convex if:

- $g_{i}(\mathbf{x})$ convex, $h(\mathbf{y})$ convex, h nondecreasing in each argument
- $g_{i}(\mathbf{x})$ concave, $h(\mathbf{y})$ convex, h nonincreasing in each argument

Vector composition

composition of $\mathbf{g}(\mathbf{x})$ and $h(\mathbf{y})$:

$$
\begin{equation*}
f(\mathbf{x})=h(\mathbf{g}(\mathbf{x}))=h\left(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})\right) \tag{33}
\end{equation*}
$$

$f(\mathbf{x})$ is convex if:

- $g_{i}(\mathbf{x})$ convex, $h(\mathbf{y})$ convex, h nondecreasing in each argument
- $g_{i}(\mathbf{x})$ concave, $h(\mathbf{y})$ convex, h nonincreasing in each argument proof for scalar x, differentiable g, h

$$
\begin{equation*}
f^{\prime \prime}(x)=\mathbf{g}^{\prime}(x)^{T} \nabla^{2} h(g(x)) \mathbf{g}^{\prime}(x)+\nabla h(\mathbf{g}(x))^{T} \mathbf{g}^{\prime \prime}(x) \tag{34}
\end{equation*}
$$

Vector composition

composition of $\mathbf{g}(\mathbf{x})$ and $h(\mathbf{y})$:

$$
\begin{equation*}
f(\mathbf{x})=h(\mathbf{g}(\mathbf{x}))=h\left(g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})\right) \tag{33}
\end{equation*}
$$

$f(\mathbf{x})$ is convex if:

- $g_{i}(\mathbf{x})$ convex, $h(\mathbf{y})$ convex, h nondecreasing in each argument
- $g_{i}(\mathbf{x})$ concave, $h(\mathbf{y})$ convex, h nonincreasing in each argument proof for scalar x, differentiable g, h

$$
\begin{equation*}
f^{\prime \prime}(x)=\mathbf{g}^{\prime}(x)^{T} \nabla^{2} h(g(x)) \mathbf{g}^{\prime}(x)+\nabla h(\mathbf{g}(x))^{T} \mathbf{g}^{\prime \prime}(x) \tag{34}
\end{equation*}
$$

examples:

- $\sum_{i=1}^{m} \log g_{i}(\mathbf{x})$ is concave if g_{i} are concave and positive
- $\log \sum_{i=1}^{m} \exp g_{i}(\mathbf{x})$ is convex if g_{i} are convex

Minimization

If $f(\mathbf{x}, \mathbf{y})$ is (jointly) convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then $g(\mathbf{x})$ is convex,

$$
\begin{equation*}
g(\mathbf{x})=\min _{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y}) \tag{35}
\end{equation*}
$$

Minimization

If $f(\mathbf{x}, \mathbf{y})$ is (jointly) convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then $g(\mathbf{x})$ is convex,

$$
\begin{equation*}
g(\mathbf{x})=\min _{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y}) \tag{35}
\end{equation*}
$$

examples

- distance to a set S : convex if S is convex,

$$
\begin{equation*}
\operatorname{dist}(\mathbf{x}, S)=\min _{\mathbf{y} \in S}|\mathbf{x}-\mathbf{y}| \tag{36}
\end{equation*}
$$

Minimization

examples

- distance to a set S : convex if S is convex,

$$
\begin{equation*}
\operatorname{dist}(\mathbf{x}, S)=\min _{\mathbf{y} \in S}|\mathbf{x}-\mathbf{y}| \tag{37}
\end{equation*}
$$

- $f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+2 \mathbf{x}^{\top} \mathbf{B y}+\mathbf{y}^{\top} \mathbf{C y}$ with

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \tag{38}\\
\mathbf{B}^{T} & \mathbf{C}
\end{array}\right] \succeq 0, \quad \mathbf{C} \succ 0
$$

minimizing over y gives

$$
\begin{equation*}
g(\mathbf{x})=\min _{\mathbf{y}} f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T}\left(\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{T}\right) \mathbf{x} \tag{39}
\end{equation*}
$$

Since $g(\mathbf{x})$ is convex, Schur complement $\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{T} \succeq 0$

Perspective

the perspective of a function f is the function g,

$$
\begin{equation*}
g(\mathbf{x}, t)=t f(\mathbf{x} / t), \quad \operatorname{dom} g=\{(\mathbf{x}, t) \mid \mathbf{x} / t \in \operatorname{dom} f, t>0\} \tag{40}
\end{equation*}
$$

$g(\mathbf{x}, t)$ is convex if $f(\mathbf{x})$ is convex

Perspective

the perspective of a function f is the function g,

$$
\begin{equation*}
g(\mathbf{x}, t)=t f(\mathbf{x} / t), \quad \operatorname{dom} g=\{(\mathbf{x}, t) \mid \mathbf{x} / t \in \operatorname{dom} f, t>0\} \tag{40}
\end{equation*}
$$

$g(\mathbf{x}, t)$ is convex if $f(\mathbf{x})$ is convex

examples

- $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{x}$ is convex; hence $g(\mathbf{x}, t)=\mathbf{x}^{T} \mathbf{x} / t$ is convex for $t>0$

Perspective

the perspective of a function f is the function g,

$$
\begin{equation*}
g(\mathbf{x}, t)=t f(\mathbf{x} / t), \quad \operatorname{dom} g=\{(\mathbf{x}, t) \mid \mathbf{x} / t \in \operatorname{dom} f, t>0\} \tag{40}
\end{equation*}
$$

$g(\mathbf{x}, t)$ is convex if $f(\mathbf{x})$ is convex

examples

- $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{x}$ is convex; hence $g(\mathbf{x}, t)=\mathbf{x}^{T} \mathbf{x} / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x, t)=t \log t-t \log x$ is convex for $x, t>0$

Perspective

the perspective of a function f is the function g,

$$
\begin{equation*}
g(\mathbf{x}, t)=t f(\mathbf{x} / t), \quad \operatorname{dom} g=\{(\mathbf{x}, t) \mid \mathbf{x} / t \in \operatorname{dom} f, t>0\} \tag{40}
\end{equation*}
$$

$g(\mathbf{x}, t)$ is convex if $f(\mathbf{x})$ is convex

examples

- $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{x}$ is convex; hence $g(\mathbf{x}, t)=\mathbf{x}^{T} \mathbf{x} / t$ is convex for $t>0$
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x, t)=t \log t-t \log x$ is convex for $x, t>0$
- if f is convex, then

$$
\begin{equation*}
g(\mathbf{x})=\left(\mathbf{c}^{T} \mathbf{x}+d\right) f\left(\frac{\mathbf{A} \mathbf{x}+\mathbf{b}}{\mathbf{c}^{T} \mathbf{x}+d}\right) \tag{41}
\end{equation*}
$$

is convex on $\left\{\mathbf{x}: \mathbf{c}^{T} \mathbf{x}+d>0,(\mathbf{A x}+\mathbf{b}) /\left(\mathbf{c}^{T} \mathbf{x}+d\right) \in \operatorname{dom} f\right\}$

The conjugate function

the conjugate of a function $f(\mathbf{x})$ is

$$
\begin{equation*}
f^{*}(\mathbf{y})=\max _{\mathbf{x} \in \operatorname{dom} f}\left(\mathbf{y}^{\top} \mathbf{x}-f(\mathbf{x})\right) \tag{42}
\end{equation*}
$$

- $f^{*}(\mathbf{y})$ is convex, even if $f(\mathbf{x})$ is not
- Q: why?
- is used in duality theory

The conjugate function: examples

- negative logarithm $f(x)=-\ln x$

$$
\begin{align*}
f^{*}(y) & =\max _{x>0}(x y+\ln x) \tag{43}\\
& = \begin{cases}-1-\ln (-y) & y<0 \\
\infty & \text { otherwise }\end{cases} \tag{44}
\end{align*}
$$

The conjugate function: examples

- negative logarithm $f(x)=-\ln x$

$$
\begin{align*}
f^{*}(y) & =\max _{x>0}(x y+\ln x) \tag{43}\\
& = \begin{cases}-1-\ln (-y) & y<0 \\
\infty & \text { otherwise }\end{cases} \tag{44}
\end{align*}
$$

- strictly convex quadratic $f(\mathbf{x})=(1 / 2) \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}, \mathbf{Q}>0$,

$$
\begin{align*}
f^{*}(\mathbf{y}) & =\max _{\mathbf{x}}\left(\mathbf{y}^{\top} \mathbf{x}-(1 / 2) \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}\right) \tag{45}\\
& =\frac{1}{2} \mathbf{y}^{\top} \mathbf{Q}^{-1} \mathbf{y} \tag{46}
\end{align*}
$$

Quasiconvex functions

$f(\mathbf{x})$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
\begin{equation*}
S_{\alpha}=\{\mathbf{x}: f(\mathbf{x}) \leq \alpha\} \tag{47}
\end{equation*}
$$

are convex for all α

Quasiconvex functions

$f(\mathbf{x})$ is quasiconvex if $\operatorname{dom} f$ is convex and the sublevel sets

$$
\begin{equation*}
S_{\alpha}=\{\mathbf{x}: f(\mathbf{x}) \leq \alpha\} \tag{47}
\end{equation*}
$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Quasiconvex functions: examples

- $\sqrt{|x|}$ is quasiconvex

Quasiconvex functions: examples

- $\sqrt{|x|}$ is quasiconvex
- $\operatorname{ceil}(x)=\min \{z \in \mathbf{Z}: z \geq x\}$ is quasilinear

Quasiconvex functions: examples

- $\sqrt{|x|}$ is quasiconvex
- $\operatorname{ceil}(x)=\min \{z \in \mathbf{Z}: z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on $x>0$

Quasiconvex functions: examples

- $\sqrt{|x|}$ is quasiconvex
- $\operatorname{ceil}(x)=\min \{z \in \mathbf{Z}: z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on $x>0$
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on $x_{1}, x_{2}>0$

Quasiconvex functions: examples

- $\sqrt{|x|}$ is quasiconvex
- $\operatorname{ceil}(x)=\min \{z \in \mathbf{Z}: z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on $x>0$
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on $x_{1}, x_{2}>0$
- linear-fractional function is quasilinear,

$$
\begin{equation*}
f(\mathbf{x})=\frac{\mathbf{a}^{T} \mathbf{x}+b}{\mathbf{c}^{T} \mathbf{x}+d}, \quad \operatorname{dom} f=\left\{\mathbf{x}: \mathbf{c}^{T} \mathbf{x}+d>0\right\} \tag{48}
\end{equation*}
$$

Quasiconvex functions: examples

- $\sqrt{|x|}$ is quasiconvex
- $\operatorname{ceil}(x)=\min \{z \in \mathbf{Z}: z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on $x>0$
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on $x_{1}, x_{2}>0$
- linear-fractional function is quasilinear,

$$
\begin{equation*}
f(\mathbf{x})=\frac{\mathbf{a}^{T} \mathbf{x}+b}{\mathbf{c}^{T} \mathbf{x}+d}, \quad \operatorname{dom} f=\left\{\mathbf{x}: \mathbf{c}^{T} \mathbf{x}+d>0\right\} \tag{48}
\end{equation*}
$$

- distance ratio is quasiconvex,

$$
\begin{equation*}
f(\mathbf{x})=\frac{|\mathbf{x}-\mathbf{a}|_{2}}{|\mathbf{x}-\mathbf{b}|_{2}}, \quad \operatorname{dom} f=\left\{\mathbf{x}:|\mathbf{x}-\mathbf{a}|_{2} \leq|\mathbf{x}-\mathbf{b}|_{2}\right\} \tag{49}
\end{equation*}
$$

Quasiconvex functions: properties

- modified Jensen inequality: for quasiconvex $f(\mathbf{x})$

$$
\begin{equation*}
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \max \{f(\mathbf{x}), f(\mathbf{y})\} \tag{50}
\end{equation*}
$$

Quasiconvex functions: properties

- modified Jensen inequality: for quasiconvex $f(\mathbf{x})$

$$
\begin{equation*}
0 \leq \theta \leq 1 \quad \Longrightarrow \quad f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \max \{f(\mathbf{x}), f(\mathbf{y})\} \tag{50}
\end{equation*}
$$

- first-order condition: differentiable $f(\mathbf{x})$ with convex domain is quasiconvex iff

$$
\begin{equation*}
f(\mathbf{y}) \leq f(\mathbf{x}) \quad \Longrightarrow \quad \nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq 0 \tag{51}
\end{equation*}
$$

sums of quasiconvex functions are not necessarily quasiconvex

Log-concave and log-convex functions

a positive function $f(\mathbf{x})$ is log-concave if $\log f(\mathbf{x})$ is concave:

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \geq f(\mathbf{x})^{\theta} f(\mathbf{y})^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1 \tag{52}
\end{equation*}
$$

$f(\mathbf{x})$ is log-convex iff $\log f(\mathbf{x})$ is convex

Log-concave and log-convex functions

a positive function $f(\mathbf{x})$ is log-concave if $\log f(\mathbf{x})$ is concave:

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \geq f(\mathbf{x})^{\theta} f(\mathbf{y})^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1 \tag{52}
\end{equation*}
$$

$f(\mathbf{x})$ is log-convex iff $\log f(\mathbf{x})$ is convex

examples

- powers: x^{p} on $x>0$ is log-convex for $p \leq 0$, log-concave for $p \geq 0$

Log-concave and log-convex functions

a positive function $f(\mathbf{x})$ is \log-concave if $\log f(\mathbf{x})$ is concave:

$$
\begin{equation*}
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \geq f(\mathbf{x})^{\theta} f(\mathbf{y})^{1-\theta} \quad \text { for } 0 \leq \theta \leq 1 \tag{52}
\end{equation*}
$$

$f(\mathbf{x})$ is log-convex iff $\log f(\mathbf{x})$ is convex

examples

- powers: x^{p} on $x>0$ is log-convex for $p \leq 0$, log-concave for $p \geq 0$
- many common probability densities are log-concave, e.g. normal:

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n}|\mathbf{R}|}} e^{-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{T} \mathbf{R}^{-1}(\mathbf{x}-\overline{\mathbf{x}})} \tag{53}
\end{equation*}
$$

- cumulative Gaussian distribution function Φ is log-concave

$$
\begin{equation*}
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u \tag{54}
\end{equation*}
$$

Properties of log-concave functions

- twice differentiable $f(\mathbf{x})$ with convex domain is log-concave iff

$$
\begin{equation*}
f(\mathbf{x}) \nabla^{2} f(\mathbf{x}) \preceq \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \forall \mathbf{x} \in \operatorname{dom} f \tag{55}
\end{equation*}
$$

Properties of log-concave functions

- twice differentiable $f(\mathbf{x})$ with convex domain is log-concave iff

$$
\begin{equation*}
f(\mathbf{x}) \nabla^{2} f(\mathbf{x}) \preceq \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \forall \mathbf{x} \in \operatorname{dom} f \tag{55}
\end{equation*}
$$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f(\mathbf{x}, \mathbf{y})$ is log-concave, then

$$
\begin{equation*}
g(\mathbf{x})=\int f(\mathbf{x}, \mathbf{y}) d \mathbf{y} \tag{56}
\end{equation*}
$$

is log-concave (not easy to show)

Consequences of integration property

- convolution $f * g$ of log-concave functions f, g is log-concave

$$
\begin{equation*}
(f * g)(x)=\int f(x-y) g(y) d y \tag{57}
\end{equation*}
$$

Consequences of integration property

- convolution $f * g$ of log-concave functions f, g is log-concave

$$
\begin{equation*}
(f * g)(x)=\int f(x-y) g(y) d y \tag{57}
\end{equation*}
$$

- if set C convex and \mathbf{y} is a random variable with log-concave pdf, then $f(\mathbf{x})$ is log-concave,

$$
\begin{equation*}
f(\mathbf{x})=\operatorname{Pr}(\mathbf{x}+\mathbf{y} \in C) \tag{58}
\end{equation*}
$$

Consequences of integration property

- convolution $f * g$ of log-concave functions f, g is log-concave

$$
\begin{equation*}
(f * g)(x)=\int f(x-y) g(y) d y \tag{57}
\end{equation*}
$$

- if set C convex and \mathbf{y} is a random variable with log-concave pdf, then $f(\mathbf{x})$ is log-concave,

$$
\begin{equation*}
f(\mathbf{x})=\operatorname{Pr}(\mathbf{x}+\mathbf{y} \in C) \tag{58}
\end{equation*}
$$

- proof: write $f(\mathbf{x})$ as integral of product of log-concave functions,

$$
f(\mathbf{x})=\int g(\mathbf{x}+\mathbf{y}) p(\mathbf{y}) d \mathbf{y}, \quad g(\mathbf{u})= \begin{cases}1 & \mathbf{u} \in C \tag{59}\\ 0 & \mathbf{u} \notin C\end{cases}
$$

$p(\mathbf{y})$ is the pdf of \mathbf{y}

Example: yield function

$$
\begin{equation*}
Y(\mathbf{x})=\operatorname{Pr}(\mathbf{x}+\mathbf{w} \in S) \tag{60}
\end{equation*}
$$

- x : nominal parameter values for product
- w : random variations of parameters in manufactured product
- S : set of acceptable values

Example: yield function

$$
\begin{equation*}
Y(\mathbf{x})=\operatorname{Pr}(\mathbf{x}+\mathbf{w} \in S) \tag{60}
\end{equation*}
$$

- x : nominal parameter values for product
- \mathbf{w} : random variations of parameters in manufactured product
- S : set of acceptable values
if S is convex and \mathbf{w} has a log-concave pdf, then
- $Y(\mathbf{x})$ is log-concave
- yield regions $\{\mathbf{x}: Y(\mathbf{x}) \geq \alpha\}$ are convex

Convexity with respect to generalized inequalities

- matrix inequality (positive semi-definite):

$$
\begin{equation*}
\mathbf{A} \geq \mathbf{B} \Leftrightarrow \mathbf{A}-\mathbf{B} \geq 0 \Leftrightarrow \mathbf{z}^{\top}(\mathbf{A}-\mathbf{B}) \mathbf{z} \geq 0 \forall \mathbf{z} \tag{61}
\end{equation*}
$$

Convexity with respect to generalized inequalities

- matrix inequality (positive semi-definite):

$$
\begin{equation*}
\mathbf{A} \geq \mathbf{B} \Leftrightarrow \mathbf{A}-\mathbf{B} \geq 0 \Leftrightarrow \mathbf{z}^{\top}(\mathbf{A}-\mathbf{B}) \mathbf{z} \geq 0 \forall \mathbf{z} \tag{61}
\end{equation*}
$$

- $f(\mathbf{X})$ is matrix-convex if dom f is convex and

$$
\begin{equation*}
f(\theta \mathbf{X}+(1-\theta) \mathbf{Y}) \preceq \theta f(\mathbf{X})+(1-\theta) f(\mathbf{Y}) \tag{62}
\end{equation*}
$$

for $\mathbf{X}, \mathbf{Y} \in \operatorname{dom} f, 0 \leq \theta \leq 1$

Convexity with respect to generalized inequalities

- matrix inequality (positive semi-definite):

$$
\begin{equation*}
\mathbf{A} \geq \mathbf{B} \Leftrightarrow \mathbf{A}-\mathbf{B} \geq 0 \Leftrightarrow \mathbf{z}^{\top}(\mathbf{A}-\mathbf{B}) \mathbf{z} \geq 0 \forall \mathbf{z} \tag{61}
\end{equation*}
$$

- $f(\mathbf{X})$ is matrix-convex if $\operatorname{dom} f$ is convex and

$$
\begin{equation*}
f(\theta \mathbf{X}+(1-\theta) \mathbf{Y}) \preceq \theta f(\mathbf{X})+(1-\theta) f(\mathbf{Y}) \tag{62}
\end{equation*}
$$

for $\mathbf{X}, \mathbf{Y} \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- example: $f(\mathbf{X})=\mathbf{X}^{2}$ is matrix-convex on $\mathbf{X}=\mathbf{X}^{T}$

Convexity with respect to generalized inequalities

- matrix inequality (positive semi-definite):

$$
\begin{equation*}
\mathbf{A} \geq \mathbf{B} \Leftrightarrow \mathbf{A}-\mathbf{B} \geq 0 \Leftrightarrow \mathbf{z}^{\top}(\mathbf{A}-\mathbf{B}) \mathbf{z} \geq 0 \forall \mathbf{z} \tag{61}
\end{equation*}
$$

- $f(\mathbf{X})$ is matrix-convex if dom f is convex and

$$
\begin{equation*}
f(\theta \mathbf{X}+(1-\theta) \mathbf{Y}) \preceq \theta f(\mathbf{X})+(1-\theta) f(\mathbf{Y}) \tag{62}
\end{equation*}
$$

for $\mathbf{X}, \mathbf{Y} \in \operatorname{dom} f, 0 \leq \theta \leq 1$

- example: $f(\mathbf{X})=\mathbf{X}^{2}$ is matrix-convex on $\mathbf{X}=\mathbf{X}^{T}$ proof: for fixed $\mathbf{z}, g(\mathbf{X})=\mathbf{z}^{T} \mathbf{X}^{2} \mathbf{z}=|\mathbf{X} \mathbf{z}|_{2}^{2}$ is convex in \mathbf{X}, i.e.

$$
\begin{equation*}
\mathbf{z}^{T}(\theta \mathbf{X}+(1-\theta) \mathbf{Y})^{2} \mathbf{z} \leq \theta \mathbf{z}^{T} \mathbf{X}^{2} \mathbf{z}+(1-\theta) \mathbf{z}^{T} \mathbf{Y}^{2} \mathbf{z} \tag{63}
\end{equation*}
$$

therefore, $(\theta \mathbf{X}+(1-\theta) \mathbf{Y})^{2} \preceq \theta \mathbf{X}^{2}+(1-\theta) \mathbf{Y}^{2}$, as required

