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Convex functions!

e Definition

e Examples

® 1st order condition

® 2nd order condition

® QOperations that preserve convexity

® Quasiconvex functions

® Log-concave and log-convex functions

® Generalized inequalities

'adapted from Boyd & Vandenberghe, Convex Optimization, Lecture slides.
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Definition of convex/concave function

® f(x) is convex if dom f is a convex set and
f(Ox + (1 —0)y) < 0f(x) + (1 — 0)f(y)

forall x,y edom f,0<0<1
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Definition of convex/concave function

® f(x) is convex if dom f is a convex set and
F(Ox+ (1 —0)y) < 0 (x) + (1 — 0)F(y) (1)

forall x,y edom f,0<0<1

(x, f(z))~

® geometrically: any line segment is above the graph
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Definition of convex/concave function

® f(x) is convex if dom f is a convex set and
F(Ox+ (1 —0)y) < 0 (x) + (1 — 0)F(y) (1)
forall x,y edom f,0<0<1

(x, f(z))~

® geometrically: any line segment is above the graph

e strictly convex: if the inequality is strict for any x 2y and 0 < 6 < 1
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Definition of convex/concave function

® f(x) is convex if dom f is a convex set and
F(Ox+ (1 —0)y) < 0 (x) + (1 — 0)F(y) (1)

forall x,y edom f,0<0<1

(x, f(z))~

® geometrically: any line segment is above the graph
e strictly convex: if the inequality is strict for any x 2y and 0 < 6 < 1
e f is concave if —f is convex (equivalently: opposite inequality)
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Examples: convex f(x) of scalar x

2

¢ quadratic: x= (most simple, my favorite)
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Examples: convex f(x) of scalar x

S. Loyka

quadratic: x?

(most simple, my favorite)

affine (linear): ax + b for any a, b (convex and concave sim.)
exponential: e, for any a

powers: x* forx >0, a>1lora<0

powers of absolute value: |x|P for p > 1

negative entropy: x logx for x > 0
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Examples: concave f(x) of scalar x

* negative quadratic: —x2 (most simple, my favorite)
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Examples: concave f(x) of scalar x

2

® negative quadratic: —x~ (most simple, my favorite)

affine (linear): ax + b for any a, b

® powers: x“ forx >0and 0 < a <1

logarithm: log x for x > 0
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Examples: vector argument x

e affine functions are convex and concave; all norms are convex
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Examples: vector argument x

affine functions are convex and concave; all norms are convex

Euclidean norm = length |x| = |x|2

affine function f(x) =a’x + b
I, norms: |x|, = (320 |xi[P)Y/P for p > 1

|X|oo = maxy |x|
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Examples: convex f(X) of matrix X

trace: f(X) = tr(X) for any X (convex and concave)

affine function for any X (convex and concave)
F(X)=tr(ATX)+b=>ajx;+ b (2)
i
* max. eigenvalue: f(X) = Apmax(X) for X7 = X

spectral norm (max. singular value) for any X

F(X) = [X]2 = omax(X) = ()‘maX(XTX))l/2 3)
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Examples: concave f(X) of matrix X

e trace: f(X) = tr(X) for any X (convex and concave)
* min. eigenvalue: f(X) = A\pin(X) for X7 = X
® log-det: f(X) = log|X| for X >0
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Restriction to a line

® makes it simple to check convexity in many cases

e f(x) is convex if and only if g(t) is convex:

g(t) = f(x + ty) (4)

for any x,y, t such that (x + ty) € dom f
® same applies to 7(X)
® note that g(t) is simpler than f(x): t - scalar, but x - vector

e can check convexity of f(x) by checking convexity of g(t)
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Example: f(X) = log |X|, X >0

g(t) =log | X + tY| (5)
= log |X| + log |1 + tX1/2YX~1/?| (6)
= log |X| + Z log(1 + tA;) (7)

1

Ai = Mi(X7Y/2YX71/2) are the eigenvalues
g(t) is concave (why?), for any t,X,Y such that X +tY >0

hence, f(X) is also concave
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First-order condition

Assume f(x) is differentiable, the gradient Vf(x)

VH(x) = <8f(x) Of(x) 8f(x)>T

Ox1 ' Oxx "7 Oxp

(8)
exists for each x € dom f

1st-order condition: differentiable f(x) with convex domain is convex iff

f(y) > f(x) + VF(x)"(y —x) forall x,y € dom f )
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First-order condition

Differentiable f(x) with convex domain is convex iff

f(y) > f(x) 4+ VFf(x)"(y —x) forall x,y € dom f

fly)
fle) + Vfe) (y—2)

(2, f(2))

Geometry: first-order approximation of f(x) is its global underestimator
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Second-order condition

Twice differentiable f(x), Hessian H = V2f(x) exists at each x € dom f,

2 X 2 X
TR R

2nd-order conditions: for twice differentiable f(x) with convex domain

e f(x) is convex if and only if
H = V?f(x) > 0 for all x € domf (11)

® strictly convex if V2f(x) > 0
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Examples

e quadratic function: f(x) = (1/2)x"Px+q"x +r
Vf(x) =Px+q, V*f(x)=P (12)

convex if P >0, concave if P <0
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Examples

e quadratic function: f(x) = (1/2)x"Px+q"x +r
Vf(x)=Px+q, V3f(x)=P (12)
convex if P >0, concave if P <0
* least-squares objective: f(x) = |Ax —b|3
Vf(x) =2AT(Ax —b), V?*f(x)=2ATA>0 (13)

convex for any A (even non-square)
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Examples

* quadratic-over-linear: f(x,y) = x?/y convex for y > 0
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Examples

* quadratic-over-linear: f(x,y) = x?/y convex for y > 0
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Examples

* log-sum-exp: f(x) =log ) |_;expxx is convex
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Examples
* log-sum-exp: f(x) =log) |_;expxk is convex

1
V3f(x) = 1 diag(z) — 22" (zx = exp xx) (15)

(172)°
Proof: show that V2f(x) = 0 via v/ V2f(x)v > 0 for all v :

(X zvi) () — (X« Vka)
(>« Zk)

since (3, vizx)? < (X kzkv?) (X k z) (from Cauchy-Schwarz
inequality)

vIV2f(x)v = (16)

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 16 / 43



February 10, 2021

Examples

* geometric mean: f(x) = ([];_; xk)l/" is concave for {xx > 0, Vk}
(similar proof as for log-sum-exp)
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Sublevel set

® o-sublevel set of f:
Co ={xedomf:f(x)<a} (17)

i.e. the set of points where function values do not exceed given level
a: f(x) <«

e sublevel sets of convex functions are convex (converse is false)
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Epigraph
® the set of points above the function's graph
e epigraph of f(x):

epi f ={(x,t):x €domf, f(x) <t} (18)

epi f
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Epigraph
® the set of points above the function's graph
e epigraph of f(x):

epi f ={(x,t):x €domf, f(x) <t} (18)

epi f

® f(x) is convex if and only if epi f is a convex set
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Jensen’s inequality

e the definition of convexity of f(x): for 0 <6 <1,
F(Ox + (1 — 0)y) < 0F(x) + (1 — 0)f(y) (19)
e extension: if f(x) is convex, then
f(Ez) < Ef(z) (20)

for any random vector z; E{-} is statistical expectation
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Jensen’s inequality

e the definition of convexity of f(x): for 0 <6 <1,
f(Ox+ (1= 0)y) < 0f(x) + (1 — 0)F(y)
e extension: if f(x) is convex, then
f(Ez) < Ef(z)

for any random vector z; E{-} is statistical expectation

® the definition is special case with discrete distributions
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Jensen’s inequality

e powerful applications

communications
information theory
signal processing
control, etc.

® examples:

S. Loyka

entropy/mutual information/channel capacity
error rate in fading channels
mean square error
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How to establish convexity ?
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How to establish convexity ?

1. Use definition (often simplified by restricting to a line)
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How to establish convexity ?

1. Use definition (often simplified by restricting to a line)

2. Use V2f(x) = 0 (for twice differentiable functions)
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How to establish convexity ?

S. Loyka

Use definition (often simplified by restricting to a line)
Use V2f(x) = 0 (for twice differentiable functions)

Show that f(x) is obtained from simple convex functions by
operations that preserve convexity
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How to establish convexity ?

1. Use definition (often simplified by restricting to a line)
2. Use V2f(x) = 0 (for twice differentiable functions)

3. Show that f(x) is obtained from simple convex functions by
operations that preserve convexity

Some methods may be much simpler than others (example: f(x) = x?)
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Convexity-preserving operations

® nonnegative weighted sum

® composition with affine function
® pointwise maximum/supremum
® composition

® minimization

® perspective
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Positive weighted sum

S. Loyka

nonnegative multiple: af(x) is convex if f(x) is convex and a > 0

sum: fi(x) + f2(x) convex if fi(x), f2(x) convex (extends to infinite
sums, integrals)

positive weighted sum: convex if fi(x) are convex and «; > 0
Zaifi(x), a; >0 (22)
i

also extends to infinite sums and integrals
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Composition with affine function

e composition with affine function: f(Ax+b) is convex if f is convex

— proof?
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Composition with affine function

e composition with affine function: f(Ax+b) is convex if f is convex
— proof?

° examples
— log barrier for linear inequalities

f(x)=— Z log (b —a/x), dom f={x:a/x<b; Vi} (23)
i=1
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Composition with affine function

e composition with affine function: f(Ax+b) is convex if f is convex
— proof?

° examples
— log barrier for linear inequalities

f(x)=— Z log (b —a/x), dom f={x:a/x<b;Vi} (23)
i=1

— any norm of affine function: f(x) = ||[Ax + b]|
— proof?
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Pointwise maximum

e if f,...,f, are convex, then

f(x) = max {fA(x),...,fm(x)} (24)

is convex
— proof: via max{ay + b1, a> + by} < max{ay, a2} + max{by, b>}
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Pointwise maximum

e if f,...,f, are convex, then

f(x) = max {fA(x),...,fm(x)} (24)
is convex
— proof: via max{ay + b1, a> + by} < max{ay, a2} + max{by, b>}
® examples

* piecewise-linear function: f(x) = maxj—1,...m (a; x + b;)
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Pointwise maximum: examples
® sum of r largest components of x:
f(x) =X +x + -+ X1 (25)
X(i] is i-th largest component of x,

X[1] > X[2] > 2 X[r] (26)
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Pointwise maximum: examples
® sum of r largest components of x:
f(x) =X +x + -+ X1 (25)
X(i] is i-th largest component of x,
X[ = X = - = X (26)
® proof: via

f(x):max{x,-l—l—x;Z—i—---—l—x;,|1§i1<i2<---<i,§n} (27)
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Pointwise maximum: examples

® sum of r largest components of x:
f(x) = X+ X+ X (25)
X(i] is i-th largest component of x,
X[1] > X[2] > 2 X[r] (26)
® proof: via

f(x):max{x,-l—l—x;Z—i—---—l—x;,|1§i1<i2<---<i,§n} (27)

* example: f(x) = xp
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Pointwise maximum: examples
® sum of r largest components of x:
f(x) =X +x + -+ X1 (25)
X(i] is i-th largest component of x,
X[ = X = - = X (26)
® proof: via

f(x)=max{xy +xj, +--+x, |1 <i<ih<---<ir<n} (27)

* example: f(x) = xp

® Q: what about smallest component?
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Pointwise maximum (supremum)

e if f(x,y) is convex in x for each y € A, then g(x) is also convex,

g(x) = max f(x,y) (28)
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Pointwise maximum (supremum)

e if f(x,y) is convex in x for each y € A, then g(x) is also convex,

g(x) = max f(x,y) (28)

® examples
® support function of a set C : Sc(x) = maxyecy ' x
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Pointwise maximum (supremum)

e if f(x,y) is convex in x for each y € A, then g(x) is also convex,

g(x) = max f(x,y) (28)

® examples

® support function of a set C : Sc(x) = maxyecy ' x
® distance to farthest point in a set C :

F(x) = - 2
(x) = max|x (29)
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Pointwise maximum (supremum)

e if f(x,y) is convex in x for each y € A, then g(x) is also convex,

g(x) = max f(x,y) (28)

® examples

® support function of a set C : Sc(x) = maxyecy ' x
® distance to farthest point in a set C :

F(x) = - 2
(x) = max|x (29)

® maximum eigenvalue of symmetric matrix X = X' :

M(X) = max y Xy (30)
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Pointwise maximum (supremum)

e if f(x,y) is convex in x for each y € A, then g(x) is also convex,

g(x) = max f(x,y) (28)

® examples

® support function of a set C : Sc(x) = maxyecy ' x
® distance to farthest point in a set C :

F(x) = - 2
(x) = max|x (29)

® maximum eigenvalue of symmetric matrix X = X' :

M(X) = max y Xy (30)

® Q: what about minimum eigenvalue? 2nd largest?
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Composition with scalar functions

e composition of g(x) and h(y) :

f(x) = h(g(x)) (31)
e f(x) is convex if:

® g(x) convex, h(y) convex and nondecreasing
® g(x) concave, h(y) convex and nonincreasing

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 29 /43



Composition with scalar functions

e composition of g(x) and h(y) :

f(x) = h(g(x))

e f(x) is convex if:
® g(x) convex, h(y) convex and nondecreasing
® g(x) concave, h(y) convex and nonincreasing

® proof for scalar x, differentiable g, h:

f"(x) = h"(g(x))g(x)? + H'(g(x))g" (x)
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Composition with scalar functions

e composition of g(x) and h(y) :

f(x) = h(g(x))

e f(x) is convex if:
® g(x) convex, h(y) convex and nondecreasing
® g(x) concave, h(y) convex and nonincreasing

® proof for scalar x, differentiable g, h:
f"(x) = h"(g(x))g'(x)* + H'(g(x))g" (x)
examples

e e8(¥) is convex if g(x) is convex

® 1/g(x) is convex if g(x) is concave and positive
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Vector composition
composition of g(x) and h(y) :

f(x) = h(g(x)) = h(g1(x), &2(x), .- -, 8k(x)) (33)
f(x) is convex if:

® gi(x) convex, h(y) convex, h nondecreasing in each argument

® gi(x) concave, h(y) convex, h nonincreasing in each argument
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Vector composition
composition of g(x) and h(y) :

f(x) = h(g(x)) = h(g1(x), &2(x), .- -, 8k(x)) (33)
f(x) is convex if:

® gi(x) convex, h(y) convex, h nondecreasing in each argument

® gi(x) concave, h(y) convex, h nonincreasing in each argument

proof for scalar x, differentiable g, h

f"(x) = g'(x)" V?h(g(x))g'(x) + Vh(g(x)) " g"(x) (34)

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 30 /43



February 10, 2021

Vector composition

composition of g(x) and h(y) :

f(x) = h(g(x)) = h(g1(x), &2(x), .- -, 8k(x)) (33)
f(x) is convex if:

® gi(x) convex, h(y) convex, h nondecreasing in each argument

® gi(x) concave, h(y) convex, h nonincreasing in each argument

proof for scalar x, differentiable g, h

f'(x) = g'(x) " V*h(g(x))g(x) + Vh(g(x))"&"(x) (34)
examples:

e > loggi(x) is concave if g; are concave and positive

® log ) 7, expgi(x) is convex if g; are convex
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Minimization

If £(x,y) is (jointly) convex in (x,y) and C is a convex set, then g(x) is
convex,

g(x) = g;ig f(x,y) (35)
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Minimization
If £(x,y) is (jointly) convex in (x,y) and C is a convex set, then g(x) is

convex,

g(x) = ;gig f(x,y) (35)

examples

® distance to a set S: convex if S is convex,

dist(x, S) = min |x — 36
ist(x, S) rynelglx y| (36)
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Minimization
examples

® distance to a set S: convex if S is convex,

dist(x, S) = min |x — 37
ist(x, S) rynelglx y| (37)

* f(x,y) = x"Ax + 2x"By + y ' Cy with

A B
—
[BT C}_O, C>0 (38)
minimizing over y gives
g(x) =minf(x,y) =x" (A—BC'B")x (39)
y

Since g(x) is convex, Schur complement A — BC™!B” » 0
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Perspective

the perspective of a function f is the function g,
g(x, t) = tf(x/t), domg ={(x,t)|x/t €domf,t >0} (40)

g(x, t) is convex if f(x) is convex
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Perspective
the perspective of a function f is the function g,

g(x, t) = tf(x/t), domg ={(x,t)|x/t €domf,t >0} (40)

g(x, t) is convex if f(x) is convex

examples

e f(x) = x"x is convex; hence g(x, t) = x"x/t is convex for t > 0
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Perspective

the perspective of a function f is the function g,
g(x, t) = tf(x/t), domg ={(x,t)|x/t €domf,t >0} (40)

g(x, t) is convex if f(x) is convex
examples
e f(x) = x"x is convex; hence g(x, t) = x"x/t is convex for t > 0

® negative logarithm f(x) = — log x is convex; hence relative entropy
g(x,t) =tlogt — tlogx is convex for x,t > 0
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Perspective

the perspective of a function f is the function g,
g(x, t) = tf(x/t), domg ={(x,t)|x/t €domf,t >0} (40)

g(x, t) is convex if f(x) is convex
examples
e f(x) = x"x is convex; hence g(x, t) = x"x/t is convex for t > 0

® negative logarithm f(x) = — log x is convex; hence relative entropy
g(x,t) =tlogt — tlogx is convex for x,t > 0

e if f is convex, then

g(x):(ch+d)f<Ax+b>

c’x+d
is convex on {x:¢c"x+d >0,(Ax+b)/(c"x+d) € domf}
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The conjugate function

the conjugate of a function f(x) is

*(y) = max (yTx — f(x)) (42)

xedom f

® f*(y) is convex, even if f(x) is not
° Q: why?

® is used in duality theory
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The conjugate function: examples

® negative logarithm f(x) = — Inx
*(y) = m>a(>)<(xy + In x) (43)
_ [ -1=In(~y) y<O0 (44)
00 otherwise
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The conjugate function: examples

® negative logarithm f(x) = — Inx
*(y) = m>a(>)<(xy + In x) (43)
_ [ -1=In(~y) y<O0 (44)
00 otherwise

® strictly convex quadratic f(x) = (1/2)x"Qx, Q > 0,
*(y) = max (yTx - (1/2)xTQx) (45)

1
= §yTQ‘1y (46)
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Quasiconvex functions

f(x) is quasiconvex if dom f is convex and the sublevel sets
So = {x:f(x) <a} (47)

are convex for all «
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Quasiconvex functions

f(x) is quasiconvex if dom f is convex and the sublevel sets
So = {x:f(x) <a}

are convex for all

® f is quasiconcave if —f is quasiconvex

® f is quasilinear if it is quasiconvex and quasiconcave
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Quasiconvex functions: examples

® /|x| is quasiconvex
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Quasiconvex functions: examples

® /|x| is quasiconvex

e ceil(x) = min{z € Z: z > x} is quasilinear
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Quasiconvex functions: examples
® /|x| is quasiconvex

e ceil(x) = min{z € Z: z > x} is quasilinear

® |og x is quasilinear on x > 0
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Quasiconvex functions: examples
® /|x| is quasiconvex
e ceil(x) = min{z € Z: z > x} is quasilinear

® |og x is quasilinear on x > 0

® f(x1,x2) = x1x2 is quasiconcave on xj, xp > 0
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Quasiconvex functions: examples

\/|x| is quasiconvex

ceil(x) = min{z € Z: z > x} is quasilinear

log x is quasilinear on x > 0

f (x1,x2) = x1x2 is quasiconcave on x1,x2 > 0

® linear-fractional function is quasilinear,

B alx+b
Cc’x+d’

f(x) dom f = {x:c"x+d >0} (48)
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Quasiconvex functions: examples

\/|x| is quasiconvex

ceil(x) = min{z € Z: z > x} is quasilinear

log x is quasilinear on x > 0

f (x1,x2) = x1x2 is quasiconcave on x1,x2 > 0

® linear-fractional function is quasilinear,

alx+b
c’x+d’

f(x) = dom f = {x:c"x+d >0} (48)

distance ratio is quasiconvex,

[x—al2

f(x)= x—bl,’ domf ={x:|x—alp <|x—b2} (49)
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Quasiconvex functions: properties
¢ modified Jensen inequality: for quasiconvex f(x)
0<0<1 = f(Ox+(1—0)y)<max{f(x),f(y)} (50)

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 38 /43



February 10, 2021

Quasiconvex functions: properties
¢ modified Jensen inequality: for quasiconvex f(x)
0<0<1 = f(Ox+(1—0)y)<max{f(x),f(y)} (50)

e first-order condition: differentiable f(x) with convex domain is
quasiconvex iff

fly)<f(x) = VFx)(y-x)<0 (51)

—Vf{r)

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions
a positive function f(x) is log-concave if log f(x) is concave:

fOx+ (1 —0)y) > F(x)?F(y)! ™ foro<o<1

f(x) is log-convex iff log f(x) is convex
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Log-concave and log-convex functions
a positive function f(x) is log-concave if log f(x) is concave:

fOx+ (1 —0)y) > F(x)?F(y)! ™ foro<o<1 (52)

f(x) is log-convex iff log f(x) is convex
examples

® powers: xP on x > 0 is log-convex for p < 0, log-concave for p > 0
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Log-concave and log-convex functions
a positive function f(x) is log-concave if log f(x) is concave:

fOx+ (1 —0)y) > F(x)?F(y)! ™ foro<o<1 (52)

f(x) is log-convex iff log f(x) is convex
examples
® powers: xP on x > 0 is log-convex for p < 0, log-concave for p > 0

® many common probability densities are log-concave, e.g. normal:

f(x) = __1 e 3 (%) R (%) (53)
(2m)"[R|

e cumulative Gaussian distribution function ¢ is log-concave

O(x) = \/Lz_w/_ ey (54)
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Properties of log-concave functions

e twice differentiable f(x) with convex domain is log-concave iff

f(x)V3f(x) < VF(x)VF(x)" ¥ x € dom f (55)
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Properties of log-concave functions

e twice differentiable f(x) with convex domain is log-concave iff

f(x)V3f(x) < VF(x)VF(x)" ¥ x € dom f (55)

e product of log-concave functions is log-concave
® sum of log-concave functions is not always log-concave

® integration: if f(x,y) is log-concave, then

g(x) = / F(x,y)dy (56)

is log-concave (not easy to show)
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Consequences of integration property

e convolution f % g of log-concave functions f, g is log-concave

(7 <)) = [ Flx~ y)etr)dy (57)

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 41 / 43



February 10, 2021

Consequences of integration property

® convolution f x g of log-concave functions f, g is log-concave

(7 <)) = [ Flx~ y)etr)dy (57)

e if set C convex and y is a random variable with log-concave pdf, then
f(x) is log-concave,

f(x) =Pr(x+ye () (58)
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Consequences of integration property

® convolution f x g of log-concave functions f, g is log-concave

(7 <)) = [ Flx~ y)etr)dy (57)

e if set C convex and y is a random variable with log-concave pdf, then
f(x) is log-concave,

f(x) =Pr(x+ye () (58)

e proof: write f(x) as integral of product of log-concave functions,

)= [etxt vy, sw={g aSC 69

p(y) is the pdf of y
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Example: yield function

Y(x) =Pr(x+web) (60)

® x : nominal parameter values for product
® w : random variations of parameters in manufactured product

® S : set of acceptable values
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Example: yield function

Y(x) =Pr(x+web) (60)

® x : nominal parameter values for product

® w : random variations of parameters in manufactured product

S : set of acceptable values

if S is convex and w has a log-concave pdf, then

Y (x) is log-concave

yield regions {x : Y(x) > a} are convex

S. Loyka Lecture 3, ELG6108: Introduction to Convex Optimization 42 / 43



February 10, 2021

Convexity with respect to generalized inequalities
® matrix inequality (positive semi-definite):

A>B=A-B>0<2z'(A-B)z>0Vz (61)
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Convexity with respect to generalized inequalities
® matrix inequality (positive semi-definite):

A>B=A-B>0<2z'(A-B)z>0Vz (61)

e f(X) is matrix-convex if dom f is convex and
fOX+ (1 —-0)Y) X 0f(X)+ (1 - 0)f(Y) (62)
for X, Y edomf,0<6<1
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Convexity with respect to generalized inequalities
® matrix inequality (positive semi-definite):

A>B=A-B>0<2z'(A-B)z>0Vz (61)

e f(X) is matrix-convex if dom f is convex and
fOX+ (1 —-0)Y) X 0f(X)+ (1 - 0)f(Y) (62)
for X, Y edomf,0<6<1

o example: f(X) = X2 is matrix-convex on X = X
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Convexity with respect to generalized inequalities
® matrix inequality (positive semi-definite):

A>B=A-B>0<2z'(A-B)z>0Vz (61)

e f(X) is matrix-convex if dom f is convex and
FOX+ (1 —0)Y) < 0f(X)+ (1 —0)F(Y) (62)

for X, Y edomf,0<6<1

o example: f(X) = X2 is matrix-convex on X = X
proof: for fixed z, g(X) = 2”7 X3z = |Xz|3 is convex in X i.e.
2T (OX+(1—-0)Y)?2<02"X%z2+(1-0)2" Yz (63)
therefore, (X 4 (1 — 0)Y)? < X2 4 (1 — 6)Y?, as required
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