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ELG6108: Introduction to Convex Optimization, Winter 2024, © S. Loyka 

 

Assignment #3 
 
Due: by 4pm, Mar. 25 (in-class).  Late or email submissions will not be accepted. 

 

Reading: Chapter 4 of the course textbook (S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge 

University Press, 2004). Study carefully all examples, make sure you understand them and can repeat them with the 

book closed. You are encouraged to at least read all end-of-chapter problems and attempt to solve more than 

actually asked below. Remember the learning efficiency pyramid! 

 

1) Consider the following problem 

min  𝑓0(𝑥1, 𝑥2)   s.t.    2𝑥1 + 𝑥2 ≥ 1, 𝑥1 + 3𝑥2 ≥ 1,   𝑥1 ≥ 0, 𝑥2 ≥ 0. 

Make a sketch of the feasible set. For each of the following objective functions, give the optimal set and the 

optimal value. Additionally, indicate supporting hyperplane in each case. 

(a) 𝑓0(𝑥1, 𝑥2) = 2𝑥1 + 𝑥2. 

(b) 𝑓0(𝑥1, 𝑥2) = −𝑥1 − 2𝑥2. 

(c) 𝑓0(𝑥1, 𝑥2) = 𝑥1. 

(d) 𝑓0(𝑥1, 𝑥2) = max{𝑥1, 𝑥2}. 

(e) 𝑓0(𝑥1, 𝑥2) = 9𝑥1
2 + 𝑥2

2. 

 

2) A convex optimization problem can have only linear equality constraint functions. In some special cases, 

however, it is possible to handle convex equality constraint functions, i.e., constraints of the form ℎ(𝑥) = 0, 

where ℎ is convex. We explore this idea in the following problem. 

(P1) min   𝑓0(𝑥)   s.t.  𝑓𝑖(𝑥) ≤ 0,   ℎ(𝑥) = 0,  𝑖 = 1, … , 𝑚 

where 𝑓𝑖 and ℎ are convex functions.  

(a) Is (P1) a convex problem?  

Now, consider a related problem 

(P2) min   𝑓0(𝑥)   s.t.  𝑓𝑖(𝑥) ≤ 0,   ℎ(𝑥) ≤  0,  𝑖 = 1, … , 𝑚 

where the equality constraint has been relaxed to a convex inequality.  

(b) Is this problem convex?  

Now assume that for any optimal solution 𝑥∗ of (P2), we have ℎ(𝑥∗) = 0, i.e., the inequality ℎ(𝑥) ≤ 0 is 

always active at the solution. Then,  

(c) prove that any solution of (P2) also solves (P1).  

(d) prove that the above assumption holds if there is an index 𝑟 such that 

• 𝑓0 is monotonically increasing in 𝑥𝑟 

• 𝑓1, … , 𝑓𝑚 are nondecreasing in 𝑥𝑟 

• ℎ is monotonically decreasing in 𝑥𝑟. 

 

3) Give an explicit solution of each of the following LPs. 

(a) Minimizing a linear function over a rectangle:  min  𝑐𝑇𝑥    s.t.   u≤ 𝑥 ≤ 𝑙,  where 𝑙 and 𝑢 satisfy 𝑢 ≤ 𝑙. 

(b) Minimizing a linear function over a halfspace:  min  𝑐𝑇𝑥   s.t.   𝑎𝑇𝑥 ≤ 𝑏 , where 𝑎 ≠ 0. 

(c) Minimizing a linear function over an affine set:  min   𝑐𝑇𝑥   s.t.   𝐴𝑥 = 𝑏. 



ELG6108: Introduction to Convex Optimization   2(3) 

(d) Minimizing a linear function over the probability simplex:   min  𝑐𝑇𝑥    s.t.  1𝑇𝑥 = 1,  𝑥 ≥ 0. What happens 

if the equality constraint is replaced by an inequality 1𝑇𝑥 ≤ 1? 

4) Problems involving ℓ1- and ℓ∞-norms. Formulate the following problems as LPs. Explain in detail the relation 

between the optimal solution of each problem and the solution of its equivalent LP. 

(a) Minimize ‖𝐴𝑥 − 𝑏‖∞ (ℓ∞-norm approximation). 

(b) Minimize ‖𝐴𝑥 − 𝑏‖1 (ℓ1-norm approximation). 

 

5) Give an explicit solution of each of the following QCQPs. 

(a) Minimizing a linear function over an ellipsoid centered at the origin. 

min  𝑐𝑇𝑥        s.t.  𝑥𝑇𝐴𝑥 ≤ 1 

where 𝐴 > 0 and 𝑐 ≠ 0. What is the solution if the problem is not convex (𝐴 ∉ 𝐒+
𝑛)? 

(b) Minimizing a linear function over an ellipsoid. 

min  𝑐𝑇𝑥  s.t.  (𝑥 − 𝑥𝑐)𝑇𝐴(𝑥 − 𝑥𝑐) ≤ 1 

where 𝐴 > 0 and 𝑐 ≠ 0. 

(c) Minimizing a quadratic form over an ellipsoid centered at the origin. 

min    𝑥𝑇𝐵𝑥        s.t.   𝑥𝑇𝐴𝑥 ≤ 1 

where 𝐴 > 0 and 𝐵 ≥ 0. Also consider the nonconvex extension with 𝐵 ∉ 𝐒+
𝑛. (See Sec B.1 of the 

textbook.) 

 

6) Express the following problems as convex optimizations problems. 

(a) Minimize max{2𝑝(𝑥), 3𝑞(𝑥)}, where 𝑝 and 𝑞 are posynomials. 

(b) Minimize 3𝑝(𝑥) + 2𝑞(𝑥), where 𝑝 and 𝑞 are posynomials. 

 

7) Capacity of a communication channel. We consider a communication channel, with random input 𝑋(𝑡) ∈
{1, … , 𝑛}, and random output 𝑌(𝑡) ∈ {1, … , 𝑚}, where 𝑡 = 1,2, …,  is discrete time. The relation between the 

input and the output is given statically by conditional probabilities: 

𝑝𝑖𝑗 = Pr(𝑌(𝑡) = 𝑖|𝑋(𝑡) = 𝑗),   𝑖 = 1, … , 𝑚,   𝑗 = 1, … , 𝑛. 

The matrix 𝑃 ∈ 𝐑𝑚×𝑛is called the channel probability transition matrix, and the channel is called a discrete 

memoryless channel. 

The celebrated result of Shannon states that information can be sent over the communication channel, with 

arbitrary small probability of error, at any rate less than that a number 𝐶, called the channel capacity. Shannon 

also showed that the capacity of a discrete memoryless channel can be found by solving an optimization 

problem. Assume that 𝑋 has a probability distribution denoted 𝑥 ∈ 𝐑𝑛, i.e.,  

𝑥𝑗 = Pr(𝑋 = 𝑗),      𝑗 = 1, … , 𝑛. 

The mutual information between 𝑋 and 𝑌 is given by 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑥𝑗𝑝𝑖𝑗 log2

𝑝𝑖𝑗

∑ 𝑥𝑘𝑝𝑖𝑘
𝑛
𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

 

Then the channel capacity 𝐶 is given by 

𝐶 = max
𝑋

𝐼(𝑋; 𝑌) 
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where the supremum is over all possible probability distributions for the input 𝑋, i.e., over 𝑥 ≥ 0, 1𝑇𝑥 = 1. 

Show how the channel capacity can be computed using convex optimization. 

Hint. Introduce the variable 𝑦 = 𝑃𝑥, which gives the probability distribution of the output Y, and show that the 

mutual information can be expressed as 

𝐼(𝑋; 𝑌) = 𝑐𝑇𝑥 − ∑ 𝑦𝑖 log2 𝑦𝑖
𝑚
𝑖=1 , 

where 𝑐𝑗 = ∑ 𝑝𝑖𝑗 log2 𝑝𝑖𝑗 ,   𝑗 = 1, … , 𝑛.𝑚
𝑖=1  

 

Important rules (deviation will be penalized): 

 

Please give your solutions in the order indicated above. Start each new problem on a new page (no 2 problems on 

the same page). Staple the sheets. 

Please include in your solutions all the intermediate results and their numerical values (if applicable). Detailed 

solutions are required, not just the final answers. 

Make sure your handwriting is readable and is sufficiently large so it can be read without a microscope; otherwise, 

it will be ignored.  

 

Plagiarism (i.e. “cut-and-paste” from a student to a student, other forms of “borrowing” the material for the 

assignment) is absolutely unacceptable and will be penalized. Each student is expected to submit his own solutions. 

If two (or more) identical or almost identical sets of solutions are found, each student involved receives 0 (zero) for 

that particular assignment. If this happens twice, the students involved receive 0 (zero) for the entire assignment 

component of the course in the marking scheme and the case will be send to the Dean’s office for further 

investigation. 


