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How to send 1 bit?

® consider most simple case: distortionless

® no noise/interference
® no any other distortions (e.g., ISI)

key idea: encode bit b into signal amplitude a

pulse-amplitude modulation (PAM)

b — |Tx: x(t)=a-p(t)| = [Rx: y(t) =x(t)| = b (1)

® bit mapping: b — a[V]

b=1 — a=~A
b=0 — a=Ag (2)

p(t) = pulse shape/waveform
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How to send 1 bit: binary PAM (2-PAM)

b — x(t)=a-p(t) — y(t)=x(t) — b (3)

® normalize p(t): p(0) =1

® how to recover b at Rx?
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How to send 1 bit: binary PAM (2-PAM)

b — x(t)=a-p(t) — y(t)=x(t) — b (3)

normalize p(t): p(0) =1

® how to recover b at Rx?

]_, ifa:A1

0) = a- p(0) = _>B:
y(0) = a-p(0) = a {07 o

key: measure y(t) at t = 0 (or any other suitable t)

e distortionless: b = b (no errors)

pulse p(t): anything (reasonable)
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How to send N bits?

® sequential transmission

N—1
{b} = x(t)=>Y_aip(t—iTs) (5)
i=0
® | = discrete time
Ts = Tp = pulse/bit interval (duration) [s]
Ry =1/ T, = bit rate [bit/s]
Rs = 1/T¢ = symbol rate [sym/s]

Rs = Ry, for 2-PAM (6)

bit mapping: b; — a;

how to recover {b;} at Rx?
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How to send N bits?

® how to recover by at Rx?

y(kTs) = a + > _aip((k — i) Ts)
Tk

ISI

ISI = inter-symbol interference

zero-ISI| condition:
p(iTs) =0V i==4142,..
® 5o that

y(kTs) = ax — bk

zero-ISI: how?
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ISI: an example with ideal LPF

05

S. Loyka

ideal LPF, df=a/T =0.5

filtered x(t)
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ISI: an example with ideal LPF

ideal LPF, df=a/T =1

15 T T
Y
\
1 - 4 -
|
0 < a -t
05 1 1 1 1 1
a 1 2 3 4 5 6
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ISI: an example

with ideal LPF

ideal LPF, df=a/T =10

05}

05

S. Loyka
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ISI: an example with real RC LPF

1st order RC LPF, df3db=a/T =0.63662

filtered x(t)

05
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ISI: an example with real RC LPF

15 1st order RC LPF, df3db=a/T =1.2732
T T T T
1t _ 4
- 1
05 -1
\
~
0 -
05 I L L L L
0 1 2 3
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ISI: an example with real RC LPF

1st order RC LPF, df3db=a/T =6.3662

15 . .
()
filtered x(t)
i
b
05} 1 .
0 - : -
05 1 1 1 1 1
0 1 2 3 4 5 6
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Sequential transmission with ISI

(IS1). Input binary waveform Individual pulse response Received waveform &
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Zero-1SI: how?

® zero-ISI: Nyquist's 1st criterion?

if i =
p(iT,) = {(1) " #8 (10)

® how to find p(t)?
® Nyquist'24:
1 o0
T > Sp(f—nRs) =1Vf (11)
[ ]

Sp(f) = FT{p(t)}
Rs = 1/Ts = symbol rate [sym/s]

'H. Nyquist, Certain Factors Affecting Telegraph Speed, Bell System Technical
Journal, Apr. 1924,
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Zero-ISI for bandlimited channel/system

® Af = channel/system bandwidth, Af < oo

® Q: would rectangular pulse work? why?
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Zero-ISI for bandlimited channel/system

Af = channel/system bandwidth, Af < oo

Q: would rectangular pulse work? why?

Nyquist zero-ISI criterion:

1. Rs > 2Af — impossible

2. Rs =2Af — p(t) =sinc(t/Ts), unique

3. Rs < 2Af — many, e.g. raised-cosine (RC)

2Af = Nyquist rate

zero-IS| does not imply that pulses do not overlap!

i.e. zero ISI at sampling times only
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Zero-ISI for bandlimited channel/system

Case 1: 1/T = R, > 2Fy 3 s s+ )=z W = Finee
e T+|,v =W 0 W FI—W ?] T—I+H
Case 2 R, = 2Fpyuy 3 s,(7+2]-20
,IL 0 i L
T T T
Case 3. Ry < 2F Z s [f+ﬂ| Z(f)
: |
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Zero-ISI for bandlimited channel/system

sinc(t) pulse
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Maximizing Data Rate

® maximize Rp = Rs s.t. zero ISI:

‘max Rs s.t. no ISI‘ — Rs = 2Af, p(t) = sinc(tRs) (12)

® constrained optimization via Nyquist criterion
® sinc pulse as the (unique) solution of the problem
® max rate = Nyquist rate 2Af

® max. rate is bounded by system bandwidth
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Maximizing Data Rate

Tx signal - sampling theorem reversed:

N—1 1
agsinc < — k> Ts = SAF
k=0

® 3, are not samples, but encoded bits!
bandwidth: Af, = Af
also works for M-PAM

x(t) is a random signal/process, since ay are random
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Sequential sinc-pulse transmission of random data

10
random data -> random signal x(7)= > a,sinc(r—n), a,=+1
n=-10

- 10 0 10
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Sequential sinc-pulse transmission of random data

50
random data -> random signal x(7)= > a,sinc(r—n), a,==*1
n==50

At

u |
1L

-50 0 50
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Max. rate transmission: an example

o Af =20 MHz, 2-PAM

® max rate s.t. zero-ISI?
max Ry = max Rs = 2Af = 40 [Mb/s] (14)
® and for wireless ? (BPSK)

max R, = max Rs = Af =20 [Mb/s] (15)
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Zero-IS| via Sampling Theorem

e Standard view: analog — digital - analog

x(1) x(nTs c(nT. x(t
—A> Sampler \(H 2 )> Internet A(H S)> LPF Akv
: A A A

analog digital digital analog

= f

x(t)= D x(nTs )sinc{— — n]
H=—u TS
VLY
2
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Zero-IS| via Sampling Theorem

e PAM: digital -

analog - digital

{an} x(l.‘) x(t) {a”}
—AJ» Modulator >| Channel Demodulator f—
: A A A
digital analog analog digital
Z a, SlIlC { —_— n}
n=—= S
Ay < E
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sinc pulse drawbacks

® sinc pulse has 2 practical (and serious) drawbacks

| |
0.5
0
- 10 -5 0 5 10

S. Loyka Lecture 4, ELG5375: Digital Communications January 26, 2026 25 /46



Raised cosine (RC) pulse

® sinc pulse has 2 practical drawbacks
® raised-cosine (RC) pulse partially overcomes those

¢ used extensively as a model of practical pulses
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Raised cosine (RC) pulse

e RC spectrum (FT): 3 distinct regions

1. flat: 0 < |f| < f
Se(f) = T,

2. transition: f; < |f| < £
Src(f) = (1 + cos [n Tsa (| f| — £)]) Ts/2

3. zero: |f| > 1
Se(f)=0

® fi,f, are low/high roll-off (transition) frequencies:
f £ (1 - CY)F\)S/27 f £ (1 + Oé)RS/2,

® « is roll-off factor, 0 < a <1
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Raised cosine (RC) pulse

® transition region: "glues” flat and zero regions
RC pulse bandwidth:

1+«
2

RC pulse reduces to sinc if & = 0 (so that 1 = fo = Rs)

excess bandwidth (above sinc): aRs/2, needed for smooth transition
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Raised cosine (RC) pulse/spectrum

Raised Cosine Spectrum

Time-Domain pulse
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Practical sinc (measured in lab)
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Raised cosine (RC) pulse

® in time domain: via inverse FT

. t \ cos(rat/Ts)
pre(t) = sinc <T5> 1 (at/T.) (21)

® its shape is closer to practical pulses

® note that, for large t, its peaks scale as

pre()] ~ (TS)3 (22)

t

® so that small sampling time errors are not catastrophic
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Maximizing rate with RC pulse

® maximum rate for zero ISI and given Af, «:

2Af
max Rs s.t. no IS, Af a| = maxRs =
14+«
® via
1+« 2Af
Afpe = 5 Rs < Af :>Rs§1+a
® reduces to max Rs = 2Af if & = 0 (sinc)
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Max. rate transmission with RC pulse: an example

Af =20 MHz, 2-PAM, a =1

® max rate s.t. zero-ISI?

2Af
Ry = Rs = —— =20 [Mb 25
max R, = max ita [Mb/s] (25)
® and for wireless ? (BPSK)
Af
max Rb = maxX RS = 1—'_70{ =10 [Mb/s] (26)

® compare to sinc pulse and make conclusions
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RC pulse: an example

+ R,=1Mb/s, binary PAM (BPAM) or BPSK, RCP with o =1
* Bandwidth =?

« Solution: BPAM
R, =R, = fy =1 Msymb./s

1+a
Afgpav = Tfo =1MHz

« Solution: BPSK
Afppsg =20 pays =2 MHz

4-PAM, 4-PSK (QPSK): bandwidth = ?
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Sequential RC-pulse transmission of random data

10
* RCrandomsignal x(1)= > a,p,(t-n). a,=%L a=1

n=-10

RIRARIEN
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Sequential sinc-pulse transmission of random data

10
random data -> random signal x(7)= > a,sinc(t—n). a, ==l
n=—10

-10 0 10
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PSD of 2-PAM

® sequential 2-PAM transmission:

o0

x(t) =Y awp(t — kTs), ax = A, iid

k=—00
® truncate to 2N + 1 pulses: —N < k< N
N

xn(t) = ) aup(t — kTs)

k=—N
® and find its ESD via FT:

San(f) = FT{xn(t)} = Sp(f)Sa(f),

® where
_ —jwkT.
Sp(F) = FT{p(t)}, Sa(f) = § e ST
k=—N
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PSD of 2-PAM

® so that the ESD is
Ean(f) = [San(F)? = |Sp(F)P1Sa(F)2 = (2N + 1A?[S,(F)I> (31)

® and therefore the PSD is

: 1 A2
P.(f) = AllinoomEXN( ) = *|5 (f )‘ (32)
® where |S,(f)|? is the (single) pulse ESD
° e
| PAM PSD ~ single pulse ESD (33)
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PSD of 2-PAM
® 5o that the ESD is

E(f) = [Sau(F)? = [Sp(F)P[Sa(F)2 = (2N + 1)A%|S, ()|

® and therefore the PSD is
A2

Pe(f) = li al
() im T

1 2
W N T D) T, 12 ()

Exn(f) =

® this also holds for any (finite) N, not only N — oo !

1

Pun(f) = GN+1)T,

® average power (for any N):

[e'¢) A2
Pw = / PXN(f)df = —F
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PSD of 2-PAM: correlated data

e correlated {ax}:
ay, dk, = A2rAk, Ak =ki — ko, 3, =0 (38)

® rn, = normalized correlation
® the PSD is (for any N):

Pa(f) = *!5 (A

142 Z (1— 2N+1> rak cos(AkwTs)

Ak=1
(39)

® Q1: prove this!
® Q2: work out the special case of raxy =0 VAk >1and N — oo.

® Q3: plot it for p(t) = sinc(t/Ts) and different values of ry, e.g.
rp1 = 0,40.5,+1 and explain what you observe. What is the impact of
data correlation on the PSD of 2-PAM?
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PSD of 2-PAM: bandwidth

® show that, for any N,
Af, = Af, (40)

® ie. 2-PAM bandwidth = pulse bandwidth

® QQ: what is the impact of data correlation on the bandwidth?
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M-PAM

® how to increase Rj at the same bandwidth Af?
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M-PAM

® how to increase Ry at the same bandwidth Af?

* multi-level PAM — M-PAM:

{bl,...,bnb} — ac [A07A1--~AIVI—1], M = 2" (41)
® j.e. 1 symbols carrier ny, bits
[ ]

block bit mapping: {b1,...,bn,} — a

® and sequential transmission

N—-1
x(t) =Y aup(t — kTs) (42)
i=0
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M-PAM
® how to increase Ry at the same bandwidth Af?
* multi-level PAM — M-PAM:

{b1,....;bn,} — ac[Aog,Ar...Ay—1], M =2" (41)

i.e. 1 symbols carrier np bits

block bit mapping: {b1,...,bn,} — a

® and sequential transmission

N—-1
x(t) =Y aup(t — kTs) (42)
i=0

Ts 75 Tbi

Ts=npTp — Rp=npRs (43)

much higher rate if np > 1
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M-PAM

Nyquist criterion still applies

® j.e. sinc pulse maximizes data rate

Q: find PSD and average power of M-PAM when all a, are iid and

ai € [/41,/42.../4/\/]]7 M = 2””,
Apm=AR2m—M—1), m=1..M (44)

where each ay is uniformly distributed on [A1, Az...Ap]
® eg. for M =4:

M=4: a~uni[—3A,—A, A, 3A] (45)
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Max. rate transmission with M-PAM

Af =20 MHz, M-PAM, usually M = 2"

® max rate s.t. zero-ISI?

max R, = log M - max Rs = 2np, Af = 40n, [Mb/s] (46)

and for wireless ? (BPSK)
max Rp = npmax Rs = npAf = 20n, [Mb/s] (47)

® max-rate pulse p(t) = sinc(t/Ts)
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Summary

® how to transmit 1 bit?

® pulse-amplitude modulation

® bandlimited channels and ISI

e Nyquist zero-ISI criterion

® sinc and RC pulses

® max. rate over bandlimited channels
e PSD of PAM, bandwidth

e M-PAM
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e S. Haykin, Digital Communication Systems, Wiley, 2014.

e R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley,

2009 (also 2015).

e B.P.Lathi, Z. Ding, Modern Digital and Analog Communication
Systems, Oxford University Press, 2009.
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