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Review of Signals, Systems & Fourier Analysis

® Fourier Transform/Series
® important tool
® time domain < frequency domain
® simplifies analysis
® key system parameter: bandwidth
® studied well at undergrad level
® only brief review here
® consult books/notes for more info!+2

IR.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley, 2009.
2B.P.Lathi, Z. Ding, Modern Digital and Analog Communication Systems, Oxford

University Press, 2009.
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Fourier Transform (FT)

® decompose signal into complex exponents (or sin/cos)
«(t) & S(f) :/ x(t)eT“tdt, w = 2nf (1)
x(t) = / S(F)etdf 0

® S(f) = FT or (double-sided) spectrum of x(t)
e f = (linear) frequency [Hz], w = radial frequency [rad./s]

® includes both positive and negative frequencies
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Fourier Transform (FT)

e if x(t) is real-valued: Im{x(t)} =0 or x(t) = x*(¢),
5(=f) = 5*(f)
® only positive frequencies suffice:
X(t) = /OOO IS(F)] cos(wt + 6(F))dF, B(F) = arg{S(F)}

® single-sided spectrum: S(f) V f >0
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Examples

e rectangular pulse M(t/T):

1, if [t]| < T/2
t)=N(t/T)&£< "
x(t) (t/T) {0, otherwise
< S(f) = Tsinc(Tf), sinc(f) = sm(7;f)
i

e triangular pulse x(t) = A(t/T):

1—t|/T, if|t|<T

_ < S(f) = Tsinc®(Tf)
0, otherwise

A(t/T) = {

® sinc pulse x(t) = sinc(t/T):

x(t) =sinc(t/T) <> S(f)= TN(Tr)

S. Loyka Lecture 3, ELG5375: Digital Communications January 17, 2026

5/32



Important Properties®*

® linearity, time shift, modulation, duality

® convolution

V(1) = xa() = (t) é/_oo (7)ot — 7)dr
< Sy(f) = S1(f)S(f) (7)

® Parseval identity:

/ T a0 (t)dt = / SRS (8)

—00

® j.e. scalar products in time and frequency domains are the same

3R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley, 2009.

*B.P.Lathi, Z. Ding, Modern Digital and Analog Communication Systems, Oxford
University Press, 2009.
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Important Properties

Rayleigh energy theorem (for energy-type signals):

£ [ " (e) Pt = / " Is()2af (9)

—Oo0

® j.e., energy in time domain = energy in frequency domain

x(t) = normalized voltage/current (in 1 Ohm resistor)

® F, = energy dissipated in 1 Ohm resistor
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Bandwidth

e defined for positive frequencies only (no negative frequencies in real
physical world)

¢ informally: smallest range of frequencies that contains all or
most of signal’s energy

® absolute bandwidth: contains all signal energy

e for baseband signals: minimum Af such that
|S(f)] =0 Vf > Af (10)
e for bandpass/RF signals: Af = min(f, — ;) such that

IS(O)l=0Vf¢[h,h], 0<hA<h (11)
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Examples

® sinc pulse x(t) = sinc(t/T):
1

S(f)=TN(Tf) — Af = 5T (12)

e i.e. shrinking pulse — increasing bandwidth (general property)
rectangular pulse x(t) = M(t/T):

S(f) = Tsinc(Tf) — Af =0 (13)

use 1st null bandwidth Afy (contains most energy):

Afy 2 min Af: S(Af)=0 — Al =1/T (14)

Q: find the bandwidth of (i) triangular pulse, (ii) sinc?(t/T), and (iii)
cos?(wot)
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Impulse Response

® simple way to find the output of linear time-invariant (LTI) system

(e.g. a filter)
x(t) — LTI = y(t) = x(t) = h(t) = /OO x(T)h(t —7)dr  (15)
® h(t) = impulse response:
o(t) — LTI — y(t) = h(t) (16)

® j.e impulse response is the response of LTI system to delta function at
its input
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Delta function

e §(t) = Dirack delta-function (generalized function or distribution)

e defined by action, not values!

Vx(t) @ x(t)*d(t) = x(t) — /_00 x(t)o(t)dt = x(0) (17)
® properties:

)>0, 5(t) =0V t#£0, x(t)d(t) = x(0)5(t)

/ 5(t (18)

® linear operations are OK, but non-linear - illegal! (e.g. cannot square)
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Frequency Response

* frequency response H(f) = response of LTI system to e/t

et o LTI — y(t) = H(w)e*t (19)

i.e e/t is an eigenfunction of LTI system

® important properties:

H(f) = FT{h(t)} (20)
y(t) = x(t) x h(t) < S,(F) = H(f)Sx(f) (21)

® greatly simplifies analysis!

LTI systems are best analysed in frequency domain, nonlinear - in
time domain
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Periodic Signals & Fourier Series

® periodic signal:

Vi x(t)=x(t+T), T>0

T = period

Fourier series (FS):

o0

. 1 .
()= Y et o= /T x(t)e—inotdt,

n—=—oo

wo = 2mfy, fo =1/ T = fundamental frequency [Hz]
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LTI Response to Periodic Signals

¢ x(t) = periodic, at the input:

o0 o0
x(t)= Y ™ o LTI — y(t) = > H(nwo)c,e™*!
n=—o00 n=—o0o
(24)
® i.e the output y(t) is also periodic (same fundamental frequency) and

{en} — LTI — {H(nwo)cn} (25)

® the input-output relationship in frequency domain

S. Loyka Lecture 3, ELG5375: Digital Communications January 17, 2026 14 /32



Energy and Power

® important resource in communications
® battery-operated devices: very limited (small) energy

® wireless communications: interference to other systems/users
(difficult to design)

® |imited-power amplifiers
® cost (and availability) of electricity

® energy/power efficiency is a key performance indicator
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Energy/Power Type Signals

® energy-type signals: finite energy

+o0
E. é/ Ix(£) 2t < o

—0o0
® power-type signals: finite, non-zero power

AT 1 T 2
Py = lim —— Ix(t)|“dt < 0o, P, >0

TL>OO 2T -T
i.e. power is (average) energy per time.
® cannot be both: P, > 0 implies Ex = oo (prove it!)
® |ikewise, Ex < oo implies P, =0
® x(t) = normalized voltage/current (in 1 Ohm resistor)

e £, P, = energy, power dissipated in 1 Ohm resistor
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Energy/Power Type Signals

® in the physical world/engineering, E; < oo (so that P, = 0)
® vet, power-type signals are useful model
® practical power is defined for large but finite T:

1 [T

A
PXT

il ICIRE (28)

so that Py 1 ~ Py.
e if x(t) is periodic with period Ty,

1
Py = P.1, = =/, |x(t)[%dt (29)
0

i.e. one can limit integration to 1 (or more) period(s) and all
equalities are exact.
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Examples

® sinusoidal signal
x(t) = Acos(wet +60) — Py = A?/2, E, = 0
e rectangular pulse (of duration T)
x(t) = AN(t/T) — Py=0, E, = A>T
e truncated sinusoid (of duration T):

x(t) = AN(t/T)cos(wet) — Py =0, Ex = A2T/2
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Energy Spectral Density (ESD)

Defined for energy-type signals. Tells us how the energy is distributed
across different frequencies.

Defining properties:

1. non—negative, measured in [J/Hz]:

E.(f)>0 (33)

2. for any interval [f1, f], its energy content Ejp is

Epy = / " E(F)df (34)

fi
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Energy Spectral Density (ESD)

#2 implies that ESD integrates to the total energy E,:

N +o0o ) - +o0
E. 2 Ix(t)]?dt = E.(f)df

and that the energy content AE, of small interval Af around fy is
AE, ~ E,(f) Af

justifying the term "energy density".
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Energy Spectral Density (ESD)
ESD via FT:
Ex(f) = [Sx(f)|* I/Hz], Sx(f) & FT{x(t)} (37)
Input-output relationship:
If y(t) = h(t)*x(t) is LTI filter's output, its ESD E,(f) is

Ex(f) — LTI — E,(f) = |H(f)|?Ex(f) (38)

and its total energy

+oo +oo
£2 [ “hoPd= [ IHEPE (39)
—0o0 —0o0
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Power Spectral Density (PSD)

Defined for power-type signals. Similar to ESD, using "power is energy per
time” principle.

Defining properties:

1. non—negative, measured in [W/Hz]:

P.(f)>0 (40)

2. for any interval [f1, f], its power content Pi is

P1r = /f2 Py (f)df (41)

fi
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Power Spectral Density (PSD)

#2 implies that PSD integrates to the total power Py:

P2 fim +T\ (t)|%dt /+OOP (f)df
x — Iim — X = '
T—o0 2T -T

—00
and that the power content AP, of small interval Af around fy is
APy =~ Py (fo) Af

justifying the term "power density”.
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Power Spectral Density (PSD)

Let x7(t) be x(t) truncated to [T, T|:

() = {x(t), if [t < T (44)

0, otherwise

and Ex. (f) = Sy, (F)]? be its ESD, S, (f) 2 FT{xr(t)}.

Then, it follows that

PAf) = lim S=Eq(f) = Jim SIS, (NP W/H)  (45)

Eq. (45): complies with "power is energy per time” principle, i.e. "PSD is
ESD per time".

Warning: Py (f) # |Sx(f)|? !
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Power Spectral Density (PSD)

Input-output relationship:
If y(t) = h(t)*x(t) is LTI filter's output, its PSD P, (f) is

Pu(f) = LTI — Py(f) = [H(F)]*Px(f) (46)
and its total power

P, = /+o<> |H(F)|? Py (f)df (47)

|H(f)|? = power gain.
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Importance of PSD/ESD

® determines signal’'s bandwidth

® determines out of band emissions (interference)

both must comply with regulations! (enforced)

¢ determines total power/energy and thus power/energy efficiency

one of key characteristics for design
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Sampling Theorem

e foundation for all digital systems
® bridge between analog (physical) and digital (Internet) worlds
® analog-to-digital conversion (ADC) or pulse-code modulation (PCM)

® informally: band-limited signal can be completely recovered from its
samples

® j.e. samples carry all the information about signal

® sampling frequency: at least twice the bandwidth
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The Sampling Theorem

A continuous, bandlimited signal x(t) with absolutely-integrable FT can be

completely recovered from its samples {x(nTs)}:
G t
x(t) = nz_:oo x(nTs)sinc <Ts - n>

® T, is the sampling interval, T, = 1/f;
® f. is the sampling frequency, s > 2Af
e Af is the signal’'s (absolute) bandwidth

i.e., knowing {x(nTs)} < knowing x(t)
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Sampling Theorem and The Internet

(somewhat simplified: no quantizing yet)

x(f (nT. c(nT. x(t
# Sampler )(n 5): Internet ,\(n S)‘ LPF #)
| A M A
analog digital digital analog

()= x(nTS)sinc[TL—nJ

5

n=—w
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Analog-to-Digital Conversion (ADC)

® also known as "pulse-code modulation” (PCM)
® key idea: 1st sample x(t) then quantize {x(nT5)}

e quantizing: {x(nT;)} is rounded off to the closest allowed level (only
a finite number of levels are used)

® extensive applications: digital audio and video (.mp3, .mp4, etc)

Block Diagram of a PCM Modulator

x(f) {x,} (%} ...0110..
——> Sampler > Quantizer Encoder P———
flat-top PAM quantized binary digital
samples codeword
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Summary

® signals & systems

® Fourier transform & series

® properties & use

® bandwidth

® impulse/frequency response

e ESD/PSD

® input-output relationship

® sampling theorem, ADC/PCM
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Reading

e R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley,

20009.
e B.P.Lathi, Z. Ding, Modern Digital and Analog Communication
Systems, Oxford University Press, 2009.

® S. Haykin, Digital Communication Systems, Wiley, 2014.
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