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Review of Signals, Systems & Fourier Analysis

• Fourier Transform/Series
• important tool
• time domain ↔ frequency domain
• simplifies analysis
• key system parameter: bandwidth

• studied well at undergrad level

• only brief review here

• consult books/notes for more info1,2

1R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley, 2009.
2B.P.Lathi, Z. Ding, Modern Digital and Analog Communication Systems, Oxford

University Press, 2009.
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Fourier Transform (FT)

• decompose signal into complex exponents (or sin/cos)

x(t) ↔ S(f ) =

∫ ∞

−∞
x(t)e−jωtdt, ω = 2πf (1)

x(t) =

∫ ∞

−∞
S(f )e jωtdf (2)

• S(f ) = FT or (double-sided) spectrum of x(t)

• f = (linear) frequency [Hz], ω = radial frequency [rad./s]

• includes both positive and negative frequencies
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Fourier Transform (FT)

• if x(t) is real-valued: Im{x(t)} = 0 or x(t) = x∗(t),

S(−f ) = S∗(f ) (3)

• only positive frequencies suffice:

x(t) =

∫ ∞

0
|S(f )| cos(ωt + θ(f ))df , θ(f ) = arg{S(f )} (4)

• single-sided spectrum: S(f ) ∀ f ≥ 0
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Examples

• rectangular pulse Π(t/T ):

x(t) = Π(t/T ) ≜

{
1, if |t| ≤ T/2

0, otherwise

↔ S(f ) = T sinc(Tf ), sinc(f ) ≜
sin(πf )

πf
(5)

• triangular pulse x(t) = Λ(t/T ):

Λ(t/T ) ≜

{
1− |t|/T , if |t| ≤ T

0, otherwise
↔ S(f ) = T sinc2(Tf ) (6)

• sinc pulse x(t) = sinc(t/T ):

x(t) = sinc(t/T ) ↔ S(f ) = TΠ(Tf )
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Important Properties3,4

• linearity, time shift, modulation, duality

• convolution

y(t) = x1(t) ∗ x2(t) ≜
∫ ∞

−∞
x1(τ)x2(t − τ)dτ

↔ Sy (f ) = S1(f )S2(f ) (7)

• Parseval identity:∫ ∞

−∞
x1(t)x

∗
2 (t)dt =

∫ ∞

−∞
S1(f )S

∗
2 (f )df (8)

• i.e. scalar products in time and frequency domains are the same

3R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley, 2009.
4B.P.Lathi, Z. Ding, Modern Digital and Analog Communication Systems, Oxford

University Press, 2009.
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Important Properties

• Rayleigh energy theorem (for energy-type signals):

Ex ≜
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|S(f )|2df (9)

• i.e., energy in time domain = energy in frequency domain

• x(t) = normalized voltage/current (in 1 Ohm resistor)

• Ex = energy dissipated in 1 Ohm resistor
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Bandwidth

• defined for positive frequencies only (no negative frequencies in real
physical world)

• informally: smallest range of frequencies that contains all or
most of signal’s energy

• absolute bandwidth: contains all signal energy

• for baseband signals: minimum ∆f such that

|S(f )| = 0 ∀f > ∆f (10)

• for bandpass/RF signals: ∆f ≜ min(f2 − f1) such that

|S(f )| = 0 ∀f /∈ [f1, f2], 0 ≤ f1 ≤ f2 (11)
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Examples

• sinc pulse x(t) = sinc(t/T ):

S(f ) = TΠ(Tf ) → ∆f =
1

2T
(12)

• i.e. shrinking pulse → increasing bandwidth (general property)

• rectangular pulse x(t) = Π(t/T ):

S(f ) = T sinc(Tf ) → ∆f = ∞ (13)

• use 1st null bandwidth ∆f0 (contains most energy):

∆f0 ≜ min ∆f : S(∆f ) = 0 → ∆f0 = 1/T (14)

• Q: find the bandwidth of (i) triangular pulse, (ii) sinc2(t/T ), and (iii)
cos2(ω0t)
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Impulse Response

• simple way to find the output of linear time-invariant (LTI) system
(e.g. a filter)

x(t) → LTI → y(t) = x(t) ∗ h(t) ≜
∫ ∞

−∞
x(τ)h(t − τ)dτ (15)

• h(t) = impulse response:

δ(t) → LTI → y(t) = h(t) (16)

• i.e impulse response is the response of LTI system to delta function at
its input
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Delta function

• δ(t) = Dirack delta-function (generalized function or distribution)

• defined by action, not values!

∀x(t) : x(t) ∗ δ(t) = x(t) →
∫ ∞

−∞
x(t)δ(t)dt = x(0) (17)

• properties:

δ(t) ≥ 0, δ(t) = 0 ∀ t ̸= 0, x(t)δ(t) = x(0)δ(t)∫ ∞

−∞
δ(t)dt = 1, (18)

• linear operations are OK, but non-linear - illegal! (e.g. cannot square)
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Frequency Response

• frequency response H(f ) = response of LTI system to e jωt

e jωt → LTI → y(t) = H(ω)e jωt (19)

• i.e e jωt is an eigenfunction of LTI system

• important properties:

H(f ) = FT{h(t)} (20)

y(t) = x(t) ∗ h(t) ↔ Sy (f ) = H(f )Sx(f ) (21)

• greatly simplifies analysis!

• LTI systems are best analysed in frequency domain, nonlinear - in
time domain
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Periodic Signals & Fourier Series

• periodic signal:

∀t : x(t) = x(t + T ), T > 0 (22)

• T = period

• Fourier series (FS):

x(t) =
∞∑

n=−∞
cne

jnω0t , cn =
1

T

∫
T
x(t)e−jnω0tdt, (23)

• ω0 = 2πf0, f0 = 1/T = fundamental frequency [Hz]

S. Loyka Lecture 3, ELG5375: Digital Communications January 17, 2026 13 / 32



LTI Response to Periodic Signals

• x(t) = periodic, at the input:

x(t) =
∞∑

n=−∞
cne

jnω0t → LTI → y(t) =
∞∑

n=−∞
H(nω0)cne

jnω0t

(24)

• i.e the output y(t) is also periodic (same fundamental frequency) and

{cn} → LTI → {H(nω0)cn} (25)

• the input-output relationship in frequency domain
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Energy and Power

• important resource in communications

• battery-operated devices: very limited (small) energy

• wireless communications: interference to other systems/users
(difficult to design)

• limited-power amplifiers

• cost (and availability) of electricity

• energy/power efficiency is a key performance indicator
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Energy/Power Type Signals

• energy-type signals: finite energy

Ex ≜
∫ +∞

−∞
|x(t)|2dt < ∞ (26)

• power-type signals: finite, non-zero power

Px ≜ lim
T→∞

1

2T

∫ +T

−T
|x(t)|2dt < ∞, Px > 0 (27)

i.e. power is (average) energy per time.

• cannot be both: Px > 0 implies Ex = ∞ (prove it!)

• likewise, Ex < ∞ implies Px = 0

• x(t) = normalized voltage/current (in 1 Ohm resistor)

• Ex ,Px = energy, power dissipated in 1 Ohm resistor
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Energy/Power Type Signals

• in the physical world/engineering, Ex < ∞ (so that Px = 0)

• yet, power-type signals are useful model

• practical power is defined for large but finite T :

Px ,T ≜
1

2T

∫ +T

−T
|x(t)|2dt (28)

so that Px ,T ≈ Px .

• if x(t) is periodic with period T0,

Px = Px ,T0 =
1

T0

∫
T0

|x(t)|2dt (29)

i.e. one can limit integration to 1 (or more) period(s) and all
equalities are exact.
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Examples

• sinusoidal signal

x(t) = A cos(ωct + θ) → Px = A2/2, Ex = ∞ (30)

• rectangular pulse (of duration T )

x(t) = AΠ(t/T ) → Px = 0, Ex = A2T (31)

• truncated sinusoid (of duration T ):

x(t) = AΠ(t/T ) cos(ωct) → Px = 0, Ex = A2T/2 (32)
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Energy Spectral Density (ESD)

Defined for energy-type signals. Tells us how the energy is distributed
across different frequencies.

Defining properties:

1. non–negative, measured in [J/Hz]:

Ex(f ) ≥ 0 (33)

2. for any interval [f1, f2], its energy content E12 is

E12 =

∫ f2

f1

Ex(f )df (34)
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Energy Spectral Density (ESD)

#2 implies that ESD integrates to the total energy Ex :

Ex ≜
∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
Ex(f )df (35)

and that the energy content ∆Ex of small interval ∆f around f0 is

∆Ex ≈ Ex(f0)∆f (36)

justifying the term ”energy density”.
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Energy Spectral Density (ESD)

ESD via FT:

Ex(f ) = |Sx(f )|2 [J/Hz], Sx(f ) ≜ FT{x(t)} (37)

Input-output relationship:

If y(t) = h(t) ∗ x(t) is LTI filter’s output, its ESD Ey (f ) is

Ex(f ) → LTI → Ey (f ) = |H(f )|2Ex(f ) (38)

and its total energy

Ey ≜
∫ +∞

−∞
|y(t)|2dt =

∫ +∞

−∞
|H(f )|2Ex(f )df (39)

S. Loyka Lecture 3, ELG5375: Digital Communications January 17, 2026 21 / 32



Power Spectral Density (PSD)

Defined for power-type signals. Similar to ESD, using ”power is energy per
time”principle.

Defining properties:

1. non–negative, measured in [W/Hz]:

Px(f ) ≥ 0 (40)

2. for any interval [f1, f2], its power content P12 is

P12 =

∫ f2

f1

Px(f )df (41)
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Power Spectral Density (PSD)

#2 implies that PSD integrates to the total power Px :

Px ≜ lim
T→∞

1

2T

∫ +T

−T
|x(t)|2dt =

∫ +∞

−∞
Px(f )df (42)

and that the power content ∆Px of small interval ∆f around f0 is

∆Px ≈ Px(f0)∆f (43)

justifying the term ”power density”.
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Power Spectral Density (PSD)

Let xT (t) be x(t) truncated to [−T ,T ]:

xT (t) =

{
x(t), if |t| ≤ T

0, otherwise
(44)

and ExT (f ) = |SxT (f )|2 be its ESD, SxT (f ) ≜ FT{xT (t)}.

Then, it follows that

Px(f ) = lim
T→∞

1

2T
ExT (f ) = lim

T→∞

1

2T
|SxT (f )|

2 [W/Hz] (45)

Eq. (45): complies with ”power is energy per time”principle, i.e. ”PSD is
ESD per time”.

Warning: Px(f ) ̸= |Sx(f )|2 !
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Power Spectral Density (PSD)

Input-output relationship:

If y(t) = h(t) ∗ x(t) is LTI filter’s output, its PSD Py (f ) is

Px(f ) → LTI → Py (f ) = |H(f )|2Px(f ) (46)

and its total power

Py =

∫ +∞

−∞
|H(f )|2Px(f )df (47)

|H(f )|2 = power gain.
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Importance of PSD/ESD

• determines signal’s bandwidth

• determines out of band emissions (interference)

• both must comply with regulations! (enforced)

• determines total power/energy and thus power/energy efficiency

• one of key characteristics for design
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Sampling Theorem

• foundation for all digital systems

• bridge between analog (physical) and digital (Internet) worlds

• analog-to-digital conversion (ADC) or pulse-code modulation (PCM)

• informally: band-limited signal can be completely recovered from its
samples

• i.e. samples carry all the information about signal

• sampling frequency: at least twice the bandwidth
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The Sampling Theorem

A continuous, bandlimited signal x(t) with absolutely-integrable FT can be
completely recovered from its samples {x(nTs)}:

x(t) =
∞∑

n=−∞
x(nTs)sinc

(
t

Ts
− n

)
(48)

• Ts is the sampling interval, Ts = 1/fs
• fs is the sampling frequency, fs ≥ 2∆f

• ∆f is the signal’s (absolute) bandwidth

i.e., knowing {x(nTs)} ⇔ knowing x(t)
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Sampling Theorem and The Internet
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Analog-to-Digital Conversion (ADC)

• also known as ”pulse-code modulation” (PCM)

• key idea: 1st sample x(t) then quantize {x(nTs)}
• quantizing: {x(nTs)} is rounded off to the closest allowed level (only
a finite number of levels are used)

• extensive applications: digital audio and video (.mp3, .mp4, etc)
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Summary

• signals & systems

• Fourier transform & series

• properties & use

• bandwidth

• impulse/frequency response

• ESD/PSD

• input-output relationship

• sampling theorem, ADC/PCM
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Reading

• R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley,
2009.

• B.P.Lathi, Z. Ding, Modern Digital and Analog Communication
Systems, Oxford University Press, 2009.

• S. Haykin, Digital Communication Systems, Wiley, 2014.
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