

# ELG5375: Digital Communications

## Lecture 3

Dr. Sergey Loyka

EECS, University of Ottawa

January 17, 2026

# Review of Signals, Systems & Fourier Analysis

- Fourier Transform/Series
  - important tool
  - time domain  $\leftrightarrow$  frequency domain
  - simplifies analysis
  - key system parameter: bandwidth
- studied well at undergrad level
- only brief review here
- consult books/notes for more info<sup>1,2</sup>

---

<sup>1</sup>R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley, 2009.

<sup>2</sup>B.P. Lathi, Z. Ding, Modern Digital and Analog Communication Systems, Oxford University Press, 2009.

# Fourier Transform (FT)

- decompose signal into complex exponents (or sin/cos)

$$x(t) \leftrightarrow S(f) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt, \quad \omega = 2\pi f \quad (1)$$

$$x(t) = \int_{-\infty}^{\infty} S(f) e^{j\omega t} df \quad (2)$$

- $S(f)$  = FT or (double-sided) spectrum of  $x(t)$
- $f$  = (linear) frequency [Hz],  $\omega$  = radial frequency [rad./s]
- includes both positive and negative frequencies

# Fourier Transform (FT)

- if  $x(t)$  is real-valued:  $\text{Im}\{x(t)\} = 0$  or  $x(t) = x^*(t)$ ,

$$S(-f) = S^*(f) \quad (3)$$

- only positive frequencies suffice:

$$x(t) = \int_0^{\infty} |S(f)| \cos(\omega t + \theta(f)) df, \quad \theta(f) = \arg\{S(f)\} \quad (4)$$

- single-sided spectrum:  $S(f) \forall f \geq 0$

## Examples

- rectangular pulse  $\Pi(t/T)$ :

$$x(t) = \Pi(t/T) \triangleq \begin{cases} 1, & \text{if } |t| \leq T/2 \\ 0, & \text{otherwise} \end{cases}$$
$$\Leftrightarrow S(f) = T \text{sinc}(Tf), \text{sinc}(f) \triangleq \frac{\sin(\pi f)}{\pi f} \quad (5)$$

- triangular pulse  $x(t) = \Lambda(t/T)$ :

$$\Lambda(t/T) \triangleq \begin{cases} 1 - |t|/T, & \text{if } |t| \leq T \\ 0, & \text{otherwise} \end{cases} \Leftrightarrow S(f) = T \text{sinc}^2(Tf) \quad (6)$$

- sinc pulse  $x(t) = \text{sinc}(t/T)$ :

$$x(t) = \text{sinc}(t/T) \Leftrightarrow S(f) = T \Pi(Tf)$$

## Important Properties<sup>3,4</sup>

- linearity, time shift, modulation, duality
- convolution

$$y(t) = x_1(t) * x_2(t) \triangleq \int_{-\infty}^{\infty} x_1(\tau) x_2(t - \tau) d\tau$$
$$\leftrightarrow S_y(f) = S_1(f) S_2(f) \quad (7)$$

- Parseval identity:

$$\int_{-\infty}^{\infty} x_1(t) x_2^*(t) dt = \int_{-\infty}^{\infty} S_1(f) S_2^*(f) df \quad (8)$$

- i.e. scalar products in time and frequency domains are the same

---

<sup>3</sup>R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley, 2009.

<sup>4</sup>B.P. Lathi, Z. Ding, Modern Digital and Analog Communication Systems, Oxford University Press, 2009.

# Important Properties

- Rayleigh energy theorem (for energy-type signals):

$$E_x \triangleq \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |S(f)|^2 df \quad (9)$$

- i.e., energy in time domain = energy in frequency domain
- $x(t)$  = normalized voltage/current (in 1 Ohm resistor)
- $E_x$  = energy dissipated in 1 Ohm resistor

# Bandwidth

- defined for positive frequencies only (no negative frequencies in real physical world)
- informally: **smallest range of frequencies that contains all or most of signal's energy**
- absolute bandwidth: contains all signal energy
- for baseband signals: minimum  $\Delta f$  such that

$$|S(f)| = 0 \quad \forall f > \Delta f \quad (10)$$

- for bandpass/RF signals:  $\Delta f \triangleq \min(f_2 - f_1)$  such that

$$|S(f)| = 0 \quad \forall f \notin [f_1, f_2], \quad 0 \leq f_1 \leq f_2 \quad (11)$$

## Examples

- sinc pulse  $x(t) = \text{sinc}(t/T)$ :

$$S(f) = T \Pi(Tf) \rightarrow \Delta f = \frac{1}{2T} \quad (12)$$

- i.e. shrinking pulse  $\rightarrow$  increasing bandwidth (general property)
- rectangular pulse  $x(t) = \Pi(t/T)$ :

$$S(f) = T \text{sinc}(Tf) \rightarrow \Delta f = \infty \quad (13)$$

- use 1st null bandwidth  $\Delta f_0$  (contains most energy):

$$\Delta f_0 \triangleq \min \Delta f : S(\Delta f) = 0 \rightarrow \Delta f_0 = 1/T \quad (14)$$

- **Q:** find the bandwidth of (i) triangular pulse, (ii)  $\text{sinc}^2(t/T)$ , and (iii)  $\cos^2(\omega_0 t)$

# Impulse Response

- simple way to find the output of linear time-invariant (LTI) system (e.g. a filter)

$$x(t) \rightarrow \text{LTI} \rightarrow y(t) = x(t) * h(t) \triangleq \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau \quad (15)$$

- $h(t)$  = impulse response:

$$\delta(t) \rightarrow \text{LTI} \rightarrow y(t) = h(t) \quad (16)$$

- i.e impulse response is the response of LTI system to delta function at its input

## Delta function

- $\delta(t)$  = Dirac delta-function (generalized function or distribution)
- defined by action, not values!

$$\forall x(t) : x(t) * \delta(t) = x(t) \rightarrow \int_{-\infty}^{\infty} x(t)\delta(t)dt = x(0) \quad (17)$$

- properties:

$$\begin{aligned} \delta(t) &\geq 0, \quad \delta(t) = 0 \quad \forall t \neq 0, \quad x(t)\delta(t) = x(0)\delta(t) \\ \int_{-\infty}^{\infty} \delta(t)dt &= 1, \end{aligned} \quad (18)$$

- linear operations are OK, but non-linear - illegal! (e.g. cannot square)

# Frequency Response

- frequency response  $H(f)$  = response of LTI system to  $e^{j\omega t}$

$$e^{j\omega t} \rightarrow \text{LTI} \rightarrow y(t) = H(\omega)e^{j\omega t} \quad (19)$$

- i.e  $e^{j\omega t}$  is an eigenfunction of LTI system
- important properties:

$$H(f) = \text{FT}\{h(t)\} \quad (20)$$

$$y(t) = x(t) * h(t) \leftrightarrow S_y(f) = H(f)S_x(f) \quad (21)$$

- greatly simplifies analysis!
- LTI systems are best analysed in frequency domain, nonlinear - in time domain

# Periodic Signals & Fourier Series

- periodic signal:

$$\forall t : x(t) = x(t + T), \quad T > 0 \quad (22)$$

- $T$  = period
- Fourier series (FS):

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}, \quad c_n = \frac{1}{T} \int_T x(t) e^{-jn\omega_0 t} dt, \quad (23)$$

- $\omega_0 = 2\pi f_0, \quad f_0 = 1/T$  = fundamental frequency [Hz]

# LTI Response to Periodic Signals

- $x(t) = \text{periodic, at the input:}$

$$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \rightarrow \text{LTI} \rightarrow y(t) = \sum_{n=-\infty}^{\infty} H(n\omega_0) c_n e^{jn\omega_0 t} \quad (24)$$

- i.e the output  $y(t)$  is also periodic (same fundamental frequency) and

$$\{c_n\} \rightarrow \text{LTI} \rightarrow \{H(n\omega_0) c_n\} \quad (25)$$

- the input-output relationship in frequency domain

# Energy and Power

- important resource in communications
- battery-operated devices: very limited (small) energy
- wireless communications: interference to other systems/users (difficult to design)
- limited-power amplifiers
- cost (and availability) of electricity
- energy/power efficiency is a key performance indicator

## Energy/Power Type Signals

- **energy-type signals:** finite energy

$$E_x \triangleq \int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty \quad (26)$$

- **power-type signals:** finite, non-zero power

$$P_x \triangleq \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{+T} |x(t)|^2 dt < \infty, \quad P_x > 0 \quad (27)$$

i.e. power is (average) energy per time.

- cannot be both:  $P_x > 0$  implies  $E_x = \infty$  (prove it!)
- likewise,  $E_x < \infty$  implies  $P_x = 0$
- $x(t) = \text{normalized voltage/current (in 1 Ohm resistor)}$
- $E_x, P_x = \text{energy, power dissipated in 1 Ohm resistor}$

## Energy/Power Type Signals

- in the physical world/engineering,  $E_x < \infty$  (so that  $P_x = 0$ )
- yet, power-type signals are useful model
- practical power is defined for large but finite  $T$ :

$$P_{x,T} \triangleq \frac{1}{2T} \int_{-T}^{+T} |x(t)|^2 dt \quad (28)$$

so that  $P_{x,T} \approx P_x$ .

- if  $x(t)$  is periodic with period  $T_0$ ,

$$P_x = P_{x,T_0} = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt \quad (29)$$

i.e. one can limit integration to 1 (or more) period(s) and all equalities are exact.

## Examples

- sinusoidal signal

$$x(t) = A \cos(\omega_c t + \theta) \rightarrow P_x = A^2/2, E_x = \infty \quad (30)$$

- rectangular pulse (of duration  $T$ )

$$x(t) = A \Pi(t/T) \rightarrow P_x = 0, E_x = A^2 T \quad (31)$$

- truncated sinusoid (of duration  $T$ ):

$$x(t) = A \Pi(t/T) \cos(\omega_c t) \rightarrow P_x = 0, E_x = A^2 T/2 \quad (32)$$

# Energy Spectral Density (ESD)

Defined for energy-type signals. Tells us how the energy is distributed across different frequencies.

## Defining properties:

1. non-negative, measured in [J/Hz]:

$$E_x(f) \geq 0 \quad (33)$$

2. for any interval  $[f_1, f_2]$ , its energy content  $E_{12}$  is

$$E_{12} = \int_{f_1}^{f_2} E_x(f) df \quad (34)$$

# Energy Spectral Density (ESD)

#2 implies that ESD integrates to the total energy  $E_x$ :

$$E_x \triangleq \int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} E_x(f) df \quad (35)$$

and that the energy content  $\Delta E_x$  of small interval  $\Delta f$  around  $f_0$  is

$$\Delta E_x \approx E_x(f_0) \Delta f \quad (36)$$

justifying the term "energy density".

# Energy Spectral Density (ESD)

**ESD via FT:**

$$E_x(f) = |S_x(f)|^2 \text{ [J/Hz]}, \quad S_x(f) \triangleq \text{FT}\{x(t)\} \quad (37)$$

**Input-output relationship:**

If  $y(t) = h(t) * x(t)$  is LTI filter's output, its ESD  $E_y(f)$  is

$$E_x(f) \rightarrow \text{LTI} \rightarrow E_y(f) = |H(f)|^2 E_x(f) \quad (38)$$

and its total energy

$$E_y \triangleq \int_{-\infty}^{+\infty} |y(t)|^2 dt = \int_{-\infty}^{+\infty} |H(f)|^2 E_x(f) df \quad (39)$$

# Power Spectral Density (PSD)

Defined for power-type signals. Similar to ESD, using "power is energy per time" principle.

## Defining properties:

1. non-negative, measured in [W/Hz]:

$$P_x(f) \geq 0 \quad (40)$$

2. for any interval  $[f_1, f_2]$ , its power content  $P_{12}$  is

$$P_{12} = \int_{f_1}^{f_2} P_x(f) df \quad (41)$$

## Power Spectral Density (PSD)

#2 implies that PSD integrates to the total power  $P_x$ :

$$P_x \triangleq \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{+T} |x(t)|^2 dt = \int_{-\infty}^{+\infty} P_x(f) df \quad (42)$$

and that the power content  $\Delta P_x$  of small interval  $\Delta f$  around  $f_0$  is

$$\Delta P_x \approx P_x(f_0) \Delta f \quad (43)$$

justifying the term "power density".

## Power Spectral Density (PSD)

Let  $x_T(t)$  be  $x(t)$  truncated to  $[-T, T]$ :

$$x_T(t) = \begin{cases} x(t), & \text{if } |t| \leq T \\ 0, & \text{otherwise} \end{cases} \quad (44)$$

and  $E_{x_T}(f) = |S_{x_T}(f)|^2$  be its ESD,  $S_{x_T}(f) \triangleq \text{FT}\{x_T(t)\}$ .

Then, it follows that

$$P_x(f) = \lim_{T \rightarrow \infty} \frac{1}{2T} E_{x_T}(f) = \lim_{T \rightarrow \infty} \frac{1}{2T} |S_{x_T}(f)|^2 \quad [\text{W/Hz}] \quad (45)$$

Eq. (45): complies with "power is energy per time" principle, i.e. "PSD is ESD per time".

Warning:  $P_x(f) \neq |S_x(f)|^2$  !

# Power Spectral Density (PSD)

## Input-output relationship:

If  $y(t) = h(t) * x(t)$  is LTI filter's output, its PSD  $P_y(f)$  is

$$P_x(f) \rightarrow \text{LTI} \rightarrow P_y(f) = |H(f)|^2 P_x(f) \quad (46)$$

and its total power

$$P_y = \int_{-\infty}^{+\infty} |H(f)|^2 P_x(f) df \quad (47)$$

$|H(f)|^2$  = power gain.

# Importance of PSD/ESD

- determines signal's bandwidth
- determines out of band emissions (interference)
- both must comply with regulations! (enforced)
- determines total power/energy and thus power/energy efficiency
- one of key characteristics for design

# Sampling Theorem

- foundation for all digital systems
- bridge between analog (physical) and digital (Internet) worlds
- analog-to-digital conversion (ADC) or pulse-code modulation (PCM)
- informally: band-limited signal can be completely recovered from its samples
- i.e. samples carry all the information about signal
- sampling frequency: at least twice the bandwidth

# The Sampling Theorem

A continuous, bandlimited signal  $x(t)$  with absolutely-integrable FT can be completely recovered from its samples  $\{x(nT_s)\}$ :

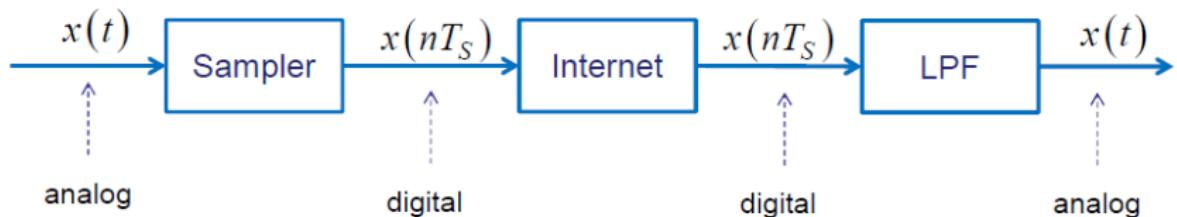
$$x(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \text{sinc} \left( \frac{t}{T_s} - n \right) \quad (48)$$

- $T_s$  is the sampling interval,  $T_s = 1/f_s$
- $f_s$  is the sampling frequency,  $f_s \geq 2\Delta f$
- $\Delta f$  is the signal's (absolute) bandwidth

i.e., knowing  $\{x(nT_s)\} \Leftrightarrow$  knowing  $x(t)$

# Sampling Theorem and The Internet

(somewhat simplified: no quantizing yet)

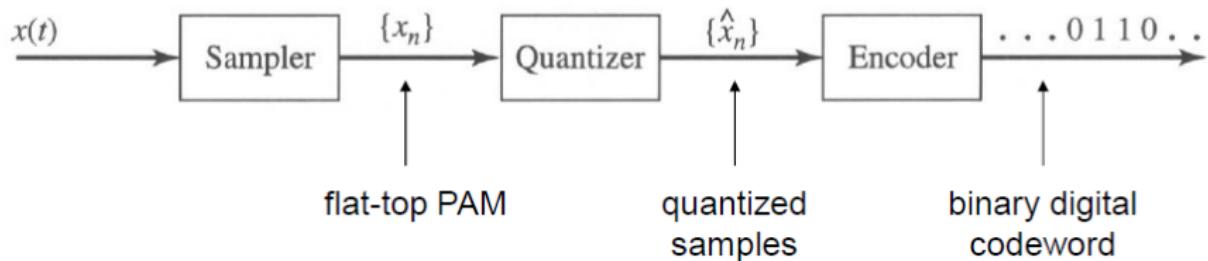


$$x(t) = \sum_{n=-\infty}^{\infty} x(nT_S) \operatorname{sinc}\left(\frac{t}{T_S} - n\right)$$

# Analog-to-Digital Conversion (ADC)

- also known as "pulse-code modulation" (PCM)
- key idea: 1st sample  $x(t)$  then quantize  $\{x(nT_s)\}$
- **quantizing**:  $\{x(nT_s)\}$  is rounded off to the closest allowed level (only a finite number of levels are used)
- extensive applications: digital audio and video (.mp3, .mp4, etc)

Block Diagram of a PCM Modulator



# Summary

- signals & systems
- Fourier transform & series
- properties & use
- bandwidth
- impulse/frequency response
- ESD/PSD
- input-output relationship
- sampling theorem, ADC/PCM

# Reading

- R.E. Ziemer, W.H. Tranter, Principles of Communications, Wiley, 2009.
- B.P. Lathi, Z. Ding, Modern Digital and Analog Communication Systems, Oxford University Press, 2009.
- S. Haykin, Digital Communication Systems, Wiley, 2014.