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Maximum SNR Beamforming 

Consider the same model as before: 
s

= +x x ξ . 

Note: we don’t assume 
s

x  is a plane wave -> generic case. 

The output signal power is 

2 *
, , ,s out s out s out s

x x
+

σ = = w S w   (8.1) 

The output noise power 

2 *
,

out
out out

+
ξ ξσ = ξ ξ = w S w    (8.2) 

The output SNR 

2
,

2
,

s out s

out

out

SNR

+

+
ξ ξ

σ
β = = =

σ

w S w

w S w

   (8.3) 

The optimum value of w is obtained by taking the derivative of 

β w.r.t. w+ and setting it to zero,  

0+∇ β =
w

 

and 

( )
2

0
s s

+

+ +
ξ ξ

+
+

ξ

−∂β
∇ β = = =

∂
w

S ww S w w S wS w

w
w S w

 (8.4) 

It follows that this is an eigenvalue problem, 

1

s

−
ξ = βS S w w  
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which can be presented as follows, 

1
,  =

s

−
ξ= βAw w A S S     (8.5) 

Since we want to maximize β, the solution is the eigenvector 

with the largest eigenvalue. 

This can be done numerically for any 
1

s

−
ξS S , i.e. for any signal 

and noise + interference.  

The largest eigenvalue becomes 
out

SNR . 

Plane-wave signal: 

2
,   

s s s s s s s
x

+
= = σx v S v v    (8.6) 

2 1

s s s

− +
ξσ = γS v v w w     (8.7) 

Since 
s

+
v w  is a scalar, (8.7) reduces to 

1

s
a

−
ξ=w S v . 

Note that β does not change if w  is multiplied by a scalar 

(which may be frequency-dependent). Hence, we may assume 

that a=1 and the maximum SNR beamformer is 

1

0 s

+ + −
ξ=w v S       (8.8) 
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Comparison of MVDR, MMSE and Max. 

SNR Beamformers 

 

Max SNR   MMSE    MVDR 

1

0 s

+ + −
ξ=w v S           

2
1

0 2

s

s

s

+ + −
ξ

σ γ
=

σ + γ

w v S        

1

0 1
=   

s

s s

+ −
ξ+

+ −
ξ

v S
w

v S v

 

 

This is essentially the same beamformer, up to a scalar factor. 

Hence , MVDR and MMSE can use the eigen-decomposition 

techniques as well. 

 

Note that all of them provide the same 
out

SNR : 

2
2 1

0
s

out s s s in
SNR SNR G

+ −
ξ

σ
= σ = = ⋅

γ
v S v    (8.9) 

where 
1

0 s n s
G

+ −
ξ= v S v  is the optimum array gain. 

Reminder: 
1

1

s s

−
+ −

ξ
 γ =
 
v S v . 

 



ELG5132 Smart Antennas ©  S.Loyka 

Lecture 8 11-Oct-17 4(23) 

Minimum Power Distortionless 

Response (MPDR) Beamformer 

Consider the same model as before: 
s

= +x x ξ . 

The basic idea is to minimize the total power at the output, 

2

out x
P

+ +
= =w x w S w    (8.10) 

subject to distortionless constraint  

1
ex

+
=w v        

where 
ex

v  is the array manifold vector for expected signal 

direction, ( )
ex ex

=v v k . Consider the case when 
ex
k  may not 

be equal to the actual signal direction. This is signal mis-match 

problem. 

Using the same argument as for the MVDR beamformer, we 

obtain, 
1

0 1

ex x

ex x ex

+ −

+

+ −
=

v S
w

v S v

    (8.11) 

Note that 
1

x

−

S  is used, rather than 
1−

ξS  (as for the MVDR). 

However, when 
ex s

=v v , the MPDR and MVDR weights are 

equal,  
11

1 1

ss x

s x s s s

+ −+ −
ξ

+ − + −
ξ

=

v Sv S

v S v v S v

     

Q: prove it! 
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This approach allows us  to estimate the effect of mismatch: 

ex s
≠v v . 

Since it is easier to measure 
x

S , this version is used more 

frequently in practice. In the literature, MVDR is often referred 

to both versions. 

General remark: we see that for a wide range of criteria, the 

optimum beamformer is MVDR followed by a scalar filter, 

1

o s
a

+ + −
ξ=w v S  



ELG5132 Smart Antennas ©  S.Loyka 

Lecture 8 11-Oct-17 6(23) 

Performance of Optimal Beamformers 

We consider the case of plane-wave interfering signals +white 

noise, and assume that 1
I

N N< −  

where 
I

N  is the number of interferers. We will see that all the 

processing is done in 1
I

N +  dimensional “signal+interference” 

subspace rather than original N dimensional space, this 

simplifies the problem significantly when  1
I

N N+ ≪  

The basic result is that the beamformer places nulls in the 

directions of interfering signals. 

 

Single plane-wave interferer 

Since all the optimal beamformers are a scaled version of 

MVDR beamformer (for single plane-wave signal), we further 

consider MVDR. 

The total noise correlation matrix (noise + interferer):  

2 2

0 1 1 1

+
ξ = σ +σS I v v      (8.12) 

Using the M.I.L., 

2
1 1

1 12 2 2

0 0 1

1

N

− +
ξ

 σ
= − 
σ σ + σ  

S I v v    (8.13) 
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The optimal weights 

2

1
1 12 2 2

0 0 1

s

o

N

+

+ +
 γ σ

= − 
σ σ + σ  

v
w I v v  (8.14) 

Define the spatial correlation coefficient 

( )1
1 1

s

s c s
r F

N

+

= =

v v
k k    (8.15) 

In fact, 1sr is the conventional beam pattern steered to 
s

k  and 

evaluated at 1k . 

Then the optimum weights can be presented as 

2

1 1
0 12 2 2

0 0 1

s

s

NN
r

N NN

+ +

+
 σγ

= − 
σ σ + σ  

v v

w   (8.16) 

1
2

21
12 2 2

0 0 1

(1 )
s

NN
r

N

−

 σ
γ = − 

σ σ + σ  
 (8.17) 

The resulting beamformer is 

 

 

s

N

+
v

1

N

+
v

2

1

2 2

0 1

N

N

σ

σ + σ
1sr

2

0

Nγ

σ
+

x ( )
c s

F k

1
ˆ ˆ
s s
+x x

ˆ
s

y x=
+

−

1( )
c

F k
1
ˆ
s

x
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Note that the upper part forms a beam at 
s

k , the lower part 

forms a beam at 1k , and finally, the interferer contribution is 

subtracted out. This is a sidelobe cancellation. 

The optimum array gain is 

2

11

0

1 (1 )
(1 )

1

s

s n s

N r
G N

N

+ −
ξ

 + α −
 = = + α

+ α  

v S v   (8.18) 

where 
2 2

1 0/α = σ σ  is the interference-to-noise ratio (INR). 

Q.: prove (8.18). 

Note the 0G  depends on both α  and 1sr  (and of course on N). 

Consider the case of large INR, 1Nα≫  , then 

 

1

0 1 1 1 12

0

,   s I I

−
+ + ⊥ ⊥ + +γ  = = −  σ

w v P P I v v v v  (8.19) 

where I

⊥
P  - projection matrix onto the subspace orthogonal to 

the interferer subspace. 

The beamformer is 

 

I

⊥
P s

+
v 2

0

γ

σ

x 1
ˆ ˆ−x x

ˆ
s

y = x

int. cancel. 

(via projection) 
beamform. 
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Optimum gain for 1 1
s
r <  is  

2

0 1(1 )
s

G N r≈ α −  

Q.: Explain why the gain is given by this expression when 

1 0  
s
r = . 

Note that when 1 1,   
s
r =  0

(1 )
1

1

N
G

N

+ α
= ≈

+ α

 for 1α≫ . 

In this case, the beamformer is not able to discriminate between 

the required signal and interferer. 

Q: Why? What to do in this case? 

Q: Consider (8.18) when 1Nα≪  (low INR regime). 

 

The output SNR is 

2 2 2
21

0 12 2 2

0 0 1

2
2

12

0

(1 )

(1 ) for 1

s s

out in s

s

s

N
SNR SNR G N r

N

N r

σ σ σ
= = = −

γ σ σ + σ

σ
≈ − α

σ

≫

 

 (8.20) 

When 1 1,  
s
r =  

2 2

2 2 2

0 1 1

s s

out

N
SNR

N

σ σ

= ≈

σ + σ σ

    (8.21) 

Hence in this case the beamformer is not able to cancel the 

interference. 



ELG5132 Smart Antennas ©  S.Loyka 

Lecture 8 11-Oct-17 10(23) 

When 1 1 
s
r <  and 

2 2

1 0Nσ σ≫ , 

2
2

12

0

(1 )s

out s
SNR N r

σ

= ⋅ −

σ

    (8.22) 

Note that if 1 0
s
r = , the interference is cancelled completely,  

2

2

0

s

out
SNR N

σ

= ⋅

σ

     (8.23) 

as if there would be no interference at all. The beamformer 

places a perfect null at 1k . 

 

Q.: Explain why (8.23) corresponds to the case of no 

interference at all. 

 

If 1 0
s
r ≠ , the term 1sr  describes the residual interference at 

the output, going through the required signal channel. 
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Performance Examples: MMSE Beamformer 

2 2

1

2 2

0 0

5;  / 2;  0 ;  40 ;

10;  10;

o o

s I

s

N d

SNR INR

= = λ θ = θ =

σ σ
= = = =

σ σ
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0.9;  47.6;
in out

SNIR SNIR= =  

0 52.3G =  <- explain this! 

broadside angle, deg. 
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Performance Examples: MMSE Beamformer 

2 2

1

2 2

0 0
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in out

SNIR SNIR= =  

0 5.4G =  <- explain this! 

broadside angle, deg. 
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Performance Examples: MMSE Beamformer 
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o o
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Performance: Examples 

10 element array 

 

array gain vs. correlation 
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Performance: Examples 

 

Optimum and conventional gains vs. interferer AOA 

0  and 20INR dB dB= ; cos sinu = θ = θ  

2
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λ
=  is the null-to-null beamwidth in sinu = θ  

A0=N*INR when the interferer is out of the main beam 

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

u
I
 /BW

NN

d
B

A
o

A
o
 /A

c

H
.L
. V

a
n
 T
re
e
s
, O

p
tim

u
m
 A
rra

y
 P
ro
c
e
s
s
in
g
, W

ile
y
  



ELG5132 Smart Antennas ©  S.Loyka 

Lecture 8 11-Oct-17 16(23) 

Performance: Examples, sidelobe interferer 
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Performance: Examples, main beam interferer 
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Performance: Examples, main beam interferer 
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Performance: Sensitivity Function 

 

 

 

 

Explain the graph! 
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The array pattern is 

( )
2

1
0 1 12 2 2

0 0 1

/ ( / ) ( / ) ( / ) 
s c s c c s

NN
F F F F

N

 σγ
= − 
σ σ + σ  

k k k k k k k k

(8.24) 

The 1st term is a conventional pattern steered at 
s
k , the 2nd 

term is a conventional pattern steered at 1k (interferer) times 

conv. pattern steered at 
s
k  and evaluated at 1k . The total pattern 

is a difference of two. 

Note that for high INR, 1α≫ , 

[ ]0 1 12

0

( ) ( / ) ( / ) ( / ) 
c s c c s

N
F F F F

γ
≈ − ⋅

σ

k k k k k k k  (8.25) 

i.e. perfect null at the interferer direction, 0 1( ) 0F =k  

Performance analysis 

Performance is best when the interfere is outside of the main 

beam. In this case, 0G N≈ α  and 
out in

SNR N SNR= α ⋅ , the 

array gain is large. The pattern is almost the same as 

conventional , except for the region close to the null. 
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Performance Analysis 

• When the interfere approaches the main beam, there are two 

effects: 

1) The main beam is shifted away from the null, its height is 

larger than unity. 

2) The height of the sidelobe (closest to the null) increases (to 

about a few dBs). Performance is worse than above. 

• When the interferer is inside of the main beam, the beam 

splits in two “side lobes” whose heights are large ( > signal 

direction heights). The peak of the pattern is no longer pointed at 

the signal. 

This is bad -> may result in increased noise from those 

directions, as well as in increased interference if there is any at 

that region. In this case, the beamformer is sensitive to the signal 

AOA mismatch. 

Sometimes, this is acceptable, but in many cases we need to 

impose additional constraint to decrease this sensitivity.  

Consider sensitivity function  

( )
2

( )
s s s
T

+
=k w k     (8.26) 

For MVDR in the single-interferer case , we obtain 

2 22 2

1 1

2
2

1

1 2 (1 ) (1 )

1 (1 )

s s

s

s

N r N r
T

N N r

+ α − + α −
=

 + α −
  

  (8.27) 
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Consider the case of  
2

1(1 ) 1
s

N rα − >>  and 1 1
s
r < , 

s 2

1

1
 

(1 )
s

T

N r

≈

−

     (8.28) 

i.e. the sensitivity increases when the correlation increases. 

Q: for 1

1
1 ,   

s
r T

N
= =      Explain this! 

Q: what is T  when 1Nα≪ ? Explain it. 
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Summary 

 

• Maximum SNR and MPDR beamformers. 

• Comparison of MVDR, MMSE, max. SNR and MPDR 

beamformers. 

• Performance analysis. The optimum pattern and null 
formation. 

• Examples of patters. 

• Effect of the interferer AOA. 
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Homework 

 

Fill in the details in the derivations above. Do the examples 

yourself. 

 


