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Lab # 4: MF and BER via Monte-Carlo Simulations 
 

Preparation 

 

1. Consider a digital communication system when SNR = 5 dB/bit. Find the BER for  

 BPSK 

 OOK 

 QPSK 

 16 QAM 

Compare the answers and make conclusions. What is the impact of the baseband pulse shape? 

 

2. Sketch QPSK constellation which uses the phase values / 4, 3 / 4    and indicate bit-

to-symbol assignment using Gray mapping (so that 2 adjacent symbols differ by 1 bit only). 

3. Find the most general form of the impulse response of a filter matched to a rectangular 

pulse of duration � and amplitude �. 

 

 

Laboratory (Parts A and B) 

 

Part A: Matched Filter (MF) 

 

1. Consider binary baseband modulation whereby, for each symbol interval �, the transmitted 

signal is     k ks t a p t , where 1ka    and  p t  is a rectangular pulse of duration � and unit 

amplitude,  

 
1,  if 0

( )
0,  otherwise

t T
p t

 
 


  (1) 

We wish to transmit 4 bits using sequential bipolar 2-PAM transmission (baseband BPSK): 
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where ( 1)
k

ka    encodes the transmitted bits. Plot this transmitted waveform for 1T   (this is 

normalized time to any convenient unit, e.g. s ). 

 

2. In real system, the transmitted signal is corrupted by AWGN noise ( )t  so that the received 

signal ( )x t  is as follows: 

 ( ) ( ) ( )x t s t t     (3) 

To facilitate DSP implementation, we will consider the discrete-time (sampled) implementation: 

 ( ) ( ) ( )i i ix x i t s i t i t s           (4) 

where /t T N   is sufficiently small, 
210N   is the number of samples per symbol interval T , 

and i  is the discrete time variable. Plot ix  for 4 symbol intervals as in (2), so that 0 4t i t T   
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, assuming that the noise variance 
2

0 var{ } 1i     (note that, since the noise is AWGN, i  are 

i.i.d. Gaussian of zero mean) so that the per-sample SNR is 0 dB. Compare this to the plot of step 

1 and comment/explain the difference. Now set 
2

0  so that the per-sample SNR is 3 dB and plot 

again; compare to the previous plot and comment/explain the difference. Repeat for the per-sample 

SNR = 6 dB. 

 

3. Now, we consider a filter matched to ( )p t  and whose input is ( )x t  in (3). First, we consider 

only one symbol interval in (2), i.e. 0k    and 0 t T  , and use a running average implementation 

of the matched filter: 

 
0

1
( ) ( )

t

y t x d
t

     (5) 

Show that, for this implementation, its output ( )y T   at the sampling time t T  is exactly the same 

as that of the original MF for the pulse ( )p t  (as determined in Preparation question 3 with a proper 

selection of filter parameters). The discrete-time (DSP) implementation of this filter follows from 

(5): 

 
1 1

1 1
( ) ( )

i i

i n

n n

y y i t x n t t x
i t i 

     
     (6) 

i.e. the discrete-time implementation is also running average. Set the per-sample SNR = 0 dB and 

plot iy  for first symbol interval only, 0 t T  , and compare it to 1st symbol interval in (4); 

comment/explain the difference. Now, consider the MF operation for all 4 symbol intervals in (2) 

using discrete-time implementation as in (4), (6). Assume that, at the beginning of each symbol 

interval, the MF is set to zero initial state and the computation in (6) begins afresh (i.e. the 

summation in (6) corresponds only to time in that specific symbol interval and the values from 

previous interval are not carried over). Plot iy  for all 4 symbol intervals and the per-sample SNR 

= 0 dB, compare it to the plot of ix  in (4) and comment/explain the difference. Now, change the 

SNR to 3 dB, repeat and observe the impact of the SNR on iy  and ix . Do the same for 6 dB SNR. 
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Part B: BER of the Optimal Receiver 

 

In this part, we will use Monte-Carlo simulations to evaluate numerically error rates for digital 

communication systems operating in the AWGN channel. 

 

The system block diagram with an optimal receiver is as in Lecture 7, given below, where LPF is 

in fact the MF. We will use the baseband M-PAM modulation, where     i is t a p t , and ia  takes 

on any of M possible values (note that i  here is the symbol interval index, different from discrete 

time index of Part A). The impulse response of the MF, optimal sampling time and threshold have 

been established in Lecture 7 and further developed in Lecture 8 (see also the course textbook and 

other reference books). 

 

Optimal Rx structure: 

 

 

The time-domain model of our system is as follows: 

 

           ( ) ;     ,   i ii
r t a p t iT t y t r t h t y y t iT          (7) 

 

which can be reduced, after matched filtering and sampling, to the following discrete-time model: 

 

 i i iy s         (8) 

 

where is  and i  are the signal and noise samples at time t iT , so that i  serves as a discrete-time 

index (symbol #). i  is Gaussian random variable with zero mean and certain variance 2
0 , 

independent from sample to sample. 

 

1. Assume that baseband BPSK is used, so that 1ia    and, after proper normalization, you can 

also take 1is    and adjust 2
0  to obtain desired SNR (here we use the fact that the error rate 

performance depends on the SNR only, not signal or noise power individually). Generate N  

samples of the signal is  (using 1  with equal probability) and noise 2
0~ (0, )i N  . For each 

sample, compute  iy  and the output of the optimal receiver ˆ im . The BER can be estimated as 

follows: 

1

1
 

N

e i

i

P e
N 

        (9) 
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where ie  is an error indicator: 0ie   if ˆ i im m  and 1 otherwise. The simulation block diagram is 

shown below.  

 
 

 

Plot BER vs. SNR [dB] graph using log scale for the BER axis over the SNR range 0 to 10 dB (use 

1 dB or smaller step). Use appropriate number of samples N for each SNR value so that statistical 

fluctuations are small (hint: start with moderate value of N and increase it until the impact of 

fluctuations is small). Use internal Matlab functions (such as cumsum, histc, sum, etc.) and 

vectorized operations as much as possible since it speeds up simulations significantly; avoid using 

“for” and “do” loops as they slow down simulations. Compare your graph with that in Lecture 7: 

do they agree? Also plot the theoretical BER curve (via Q function; you may use the relationship 

between Q and erfc functions) on the same graph with simulated one for comparison purposes. 

 

2. Do #1 for OOK. Hint: what is the average power of OOK compared to BPSK for the same pulse 

shape and amplitude provided that 0 and 1 are equiprobable? Use this to set up 2
0  appropriately. 

 

3. Do # 1 for QPSK. Use Gray bit-to-symbol mapping (i.e. when two adjacent symbols differ by 1 

bit only – see Ref. 2 for more details; this bit mapping minimizes the BER.) Hint: use in-

phase/quadrature representation of  i i iy s    on a complex plane; observe that real and 

imaginary parts of noise are independent of each other and that the decisions on real and imaginary 

parts of is  are taken independently so that QPSK is equivalent to 2 independent BPSK 

transmissions (on I and Q branches). Compare it with the theoretical BER curve on the same graph. 

Do they agree? 

 

4. Do #1 for 16-QAM assuming Gray bit-to-symbol mapping. Hint: use the fact that  

 

- QAM PAM   PAM

I Q

M M M   
����� �����

   (10) 

 

5. Repeat #3 and 4 for the symbol (rather than bit) error rate and compare it to the BER (by plotting 

on the same graph). Comment on the difference, if any. How does it compare to the bounds in 

Lecture 8? 
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