Review of Optimization Theory

Consider a real-valued function $\mathrm{f}(\mathrm{x})$ of real variable x . The function local minima points satisfy to (necessary conditions)

$$
\begin{equation*}
\frac{d f(x)}{d x}=0, \quad \frac{d^{2} f(x)}{d x^{2}} \geq 0 \tag{1}
\end{equation*}
$$

and the sufficient conditions are

$$
\frac{d f(x)}{d x}=0, \quad \frac{d^{2} f(x)}{d x^{2}}>0
$$

These conditions are easily derived from the Taylor series expansion up to $2^{\text {nd }}$ order term (e.g. see [3][4]). Maxima are obtained from minima via $f \rightarrow-f$.
There maybe several local minima. Global minimum (the minimum) is found by inspecting all the local minima is choosing the smallest one. If $\mathrm{f}(\mathrm{x})$ is strictly convex,

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{2}
\end{equation*}
$$

then there exists only one minimum, which is also the global minimum. Example of a convex function: $f(x)=a_{1} x^{2}+a_{2} x+a_{3}, \quad a_{1}>0$.

For a convex function, the $1^{\text {st }}$ part of (1) is a sufficient condition of the minimum.

In practice, a real-valued function $f(z)$ of a complex variable z is of interest,

$$
\begin{equation*}
z=x+j y, \quad x=\operatorname{Re}\{z\}, \quad y=\operatorname{Im}\{z\} . \tag{3}
\end{equation*}
$$

If the derivative $\mathrm{df}(\mathrm{z}) / \mathrm{dz}$ exists, a minimum can be found as in (1). In many cases, however, this derivative does not exist. A simple example of such a function is $f(z)=|z|^{2}$, which is of large practical interest. Obviously, the minimum of $|z|^{2}$ is at $\mathrm{z}=0$, but we cannot apply (1) as $d z * / d z$ does not exist (Rieman-Cauchy conditions are not satisfied).
This difficulty can be resolved in 2 ways.
1). Express $f(z)$ as $f(x, y)$ and use (1) for x and y independently,

$$
\begin{gather*}
\frac{d f(x, y)}{d x}=0, \quad \frac{d f(x, y)}{d y}=0 \\
\frac{d^{2} f(x, y)}{d x^{2}}>0, \tag{4}
\end{gather*} \quad \frac{d^{2} f(x, y)}{d y^{2}}>0
$$

This results in a complicated (lengthy) analysis.
2). An elegant solution to this problem is to express

$$
\begin{equation*}
f(z)=f\left(z, z^{*}\right) \tag{5}
\end{equation*}
$$

where z and z^{*} are considered to be independent variables (constant with respect to each other). Under this assumption, for example, $d z^{*} / d z=0$ and $d|z|^{2} / d z=z^{*}$. The minima of $\mathrm{f}\left(\mathrm{z}, \mathrm{z}^{*}\right)$ are found using

$$
\begin{equation*}
\frac{d f\left(z, z^{*}\right)}{d z}=0 \quad \text { or } \quad \frac{d f\left(z, z^{*}\right)}{d z^{*}}=0 \tag{6}
\end{equation*}
$$

where we assumed that $f\left(z, z^{*}\right)$ is a convex function (which is the case for all our applications as $f(z)$ are various quadratic forms).

When f is a function of complex- valued vector w , the stationary points are found from

$$
\begin{equation*}
\frac{d f}{d \mathbf{w}}=\left[\frac{d f}{d w_{1}}, \quad \frac{d f}{d w_{2}}, \quad . \quad \frac{d f}{d w_{n}}\right]=\mathbf{0} \tag{7}
\end{equation*}
$$

or, equivalently,

$$
\frac{d f}{d \mathbf{w}^{+}}=\left[\begin{array}{llll}
\frac{d f}{d w_{1}^{*}}, & \frac{d f}{d w_{2}^{*}}, & . . & \frac{d f}{d w_{n}^{*}} \tag{8}
\end{array}\right]^{T}=\mathbf{0}
$$

i.e. (6) is applied element-wise.

Example: consider $f\left(w, w^{+}\right)=|w|^{2}=w^{2} w$,

$$
\frac{d f}{d w^{+}}=\frac{d\left(w^{+} w\right)}{d w^{+}}=w=0
$$

i.e. , the minimum is achieved at $\mathrm{w}=0$.

Differentiation with respect to a vector

Consider a scalar function f of a vector argument $\mathbf{w}, f(\mathbf{w})$. Its derivative with respect to \mathbf{w} (gradient) is the following vector

$$
\frac{d f}{d \mathbf{w}}=\left[\begin{array}{llll}
\frac{d f}{d w_{1}}, & \frac{d f}{d w_{2}}, & . & \frac{d f}{d w_{n}} \tag{9}
\end{array}\right]
$$

i.e. it is a row vector. The derivative of $f(\mathbf{w})$ with respect to a row vector \mathbf{w}^{T} is the following column vector,

$$
\nabla f=\frac{d f}{d \mathbf{w}^{T}}=\left[\begin{array}{llll}
\frac{d f}{d w_{1}}, & \frac{d f}{d w_{2}}, & . . & \frac{d f}{d w_{n}} \tag{10}
\end{array}\right]^{T}
$$

Derivative of a vector $\mathbf{u}(\mathbf{w})$ with respect to \mathbf{w} is the following matrix \mathbf{D},

$$
\frac{d \mathbf{u}}{d \mathbf{w}}=\left[\begin{array}{llll}
\frac{d \mathbf{u}}{d w_{1}}, & \frac{d \mathbf{u}}{d w_{2}}, & . . & \frac{d \mathbf{u}}{d w_{n}} \tag{10}
\end{array}\right]=\mathbf{D} \rightarrow d_{i j}=\frac{d u_{i}}{d w_{j}}
$$

where $d_{i j}$ denotes $i j$-th entry of \mathbf{D}.

Constrained optimization

Suppose we wish to find an extremum (maximum or minimum) of a function $f(\mathbf{x})$ subject to a constrain of the form $h(\mathbf{x})=0$ (all functions and arguments are assumed to be real here, for simplicity),

$$
\begin{equation*}
\min _{\mathbf{x}} f(\mathbf{x}), \text { subject to } h(\mathbf{x})=0 \tag{10}
\end{equation*}
$$

Introducing the Lagrangian,

$$
\begin{equation*}
L=f(\mathbf{x})+\lambda h(\mathbf{x}) \tag{11}
\end{equation*}
$$

where λ is the Lagrange multiplier, the necessary condition for an extremum is

$$
\begin{equation*}
\nabla L=\frac{\partial L}{\partial \mathbf{x}}=\mathbf{0} \tag{12}
\end{equation*}
$$

which gives the solution $\mathbf{x}_{0}(\lambda)$ and λ is found from the constrain:

$$
\begin{equation*}
h\left(\mathbf{x}_{0}(\lambda)\right)=0 \tag{13}
\end{equation*}
$$

The sufficient conditions are $1^{\text {st }}$ order condition in (12) plus the following $2^{\text {nd }}$ order condition: if the Hessian $\mathbf{H}=\nabla^{2} L=\partial^{2} L / \partial \mathbf{x} \partial \mathbf{x}^{T}$ is positive definite on the tangent plane of $h\left(\mathbf{x}_{0}\right), \mathbf{y}^{T} \mathbf{H y}>0 \forall \mathbf{y}: \mathbf{y}^{T} \nabla h\left(\mathbf{x}_{0}\right)=0$, then \mathbf{x}_{0} is a minimum; if $\mathbf{y}^{T} \mathbf{H y}<0 \forall \mathbf{y}: \mathbf{y}^{T} \nabla h\left(\mathbf{x}_{0}\right)=0$, then it is a maximum. This gives only local extrema and global ones can only be found by inspection of all local ones, in general.

For convex problems [5], global extremum is unique and can be easily found (unlike the generic, non-linear case): if $f(\mathbf{x})$ is strictly convex, $\nabla^{2} f(\mathbf{x})>0$, and $h(\mathbf{x})$ is affine ($=\mathbf{a}^{T} \mathbf{x}+c$), then \mathbf{x}_{0} is the unique, global minimum; if $f(\mathbf{x})$ is strictly concave and $h(\mathbf{x})$ is affine, then \mathbf{x}_{0} is the unique, global maximum.

Multiple constraints of the form $h_{i}(\mathbf{x})=0$ can be handled via the substitution $\lambda h(\mathbf{x}) \rightarrow \sum_{i} \lambda_{i} h_{i}(\mathbf{x})$ in (11).

Example (from high school): among all rectangles of given perimeter p, find one that has the maximum area.

$$
\begin{aligned}
& f(\mathbf{x})=x_{1} x_{2}, h(\mathbf{x})=x_{1}+x_{2}-p \\
& L=x_{1} x_{2}+\lambda\left(x_{1}+x_{2}-p\right) \\
& \nabla L=\mathbf{0} \rightarrow x_{1}^{*}=x_{1}^{*}=-\lambda \\
& \lambda=-p / 2 \rightarrow x_{1}^{*}=x_{1}^{*}=p / 2
\end{aligned}
$$

i.e. the extremum area is for the square. To see that this is indeed the maximum,

$$
\mathbf{H}=\nabla^{2} L=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] ; \mathbf{y}: \mathbf{y}^{T} \nabla h\left(\mathbf{x}^{*}\right)=0 \rightarrow \mathbf{y}=[a,-a] \forall a \neq 0
$$

$$
\mathbf{y}^{T} \mathbf{H y}=-2 a^{2}<0
$$

i.e. indeed the maximum. Note that, in this case, $f(\mathbf{x})$ is not convex, so that the problem itself is not convex, yet the global maximum is easily found (since there is only one point satisfying the sufficient conditions).

Home exercise: among all rectangles inscribed in a given circle, find the one with the maximum area.

More detailed review of matrix and vector differentiation techniques can be found in [3, Appendix E] and [1, Appendix 7].
More detailed discussion of the optimization theory relevant to signal processing applications (including smart antennas) can be found in [3, Section 18] and [2, Appendix C], [4], or by taking the Convex optimization course (based on [5]).

References

[1] H.L. Van Trees, Optimum Array Processing, Wiley, 2002. Appendix 7.
[2] D.H. Johnson, D.E. Dudgeon, Array Signal Processing, Prentice Hall, 1993. Appendix C
[3] T.K. Moon, W.C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000.
[4] D. G. Luenberger, Linear and Nonlinear Programming, Springer, 2005.
[5] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

