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Review of Optimization Theory 

Consider a real-valued function f(x) of real variable x. The 
function local minima points satisfy to (necessary conditions) 
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dx
=  
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( )
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d f x
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≥      (1) 

and the sufficient conditions are 
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These conditions are easily derived from the Taylor series 
expansion up to 2nd order term (e.g. see [3][4]). Maxima are 
obtained from minima via f f→ − . 
There maybe several local minima. Global minimum (the 
minimum) is found by inspecting all the local minima is 
choosing the smallest one. If f(x) is strictly convex, 

( )( ) ( ) ( ) ( )1 2 1 21 1f ax a x af x a f x+ − < + −    (2) 

then there exists only one minimum, which is also the global 
minimum. Example of a convex function: 

2
1 2 3( )f x a x a x a= + + ,    1 0a > . 

For a convex function, the 1st part of (1) is a sufficient 
condition of the minimum. 
 
In practice, a real-valued function f(z) of a complex variable z 
is of interest, 

z x jy= + ,   { }Rex z= ,   { }Imy z= .   (3) 
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If the derivative df(z)/dz exists, a minimum can be found as in 
(1). In many cases, however, this derivative does not exist. A 

simple example of such a function is 
2

( )f z z= , which is of 

large practical interest. Obviously, the minimum of 
2

z  is at 

z=0, but we cannot apply (1) as * /dz dz  does not exist 
(Rieman-Cauchy conditions are not satisfied). 

This difficulty can be resolved in 2 ways. 

1). Express f(z) as f(x, y) and use (1) for x and y 
independently, 

( ) ( )

( ) ( )2 2

2 2

, ,
0, 0

, ,
0, 0

df x y df x y

dx dy

d f x y d f x y

dx dy

= =

> >
   (4) 

This results in a complicated (lengthy) analysis. 

2). An elegant solution to this problem is to express  

( ) ( , )f z f z z∗=     (5) 

where z and z* are considered to be independent variables 
(constant with respect to each other). Under this assumption, 

for example, / 0dz dz∗ =  and 
2

/d z dz z∗= . The minima of 

f(z, z*) are found using 

( , ) ( , )
0 0

df z z df z z
or

dz dz

∗ ∗

∗= =    (6) 

where we assumed that f(z, z*) is a convex function (which is 
the case for all our applications as f(z) are various quadratic 
forms). 
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When f is a function of complex- valued vector w, the 
stationary points are found from 

1 2

, , ..
n

df df df df

d dw dw dw

 
= = 
 

0
w

   (7) 

or, equivalently,  

*
1 2

, , ..

T
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df df df df
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= = 
 

0
w

  (8) 

i.e. (6) is applied element-wise. 

 

Example: consider 
2 2( , )f w w w w w+ = = , 

( )
0

df d w w
w

dw dw

+

+ += = =  

i.e. , the minimum is achieved at w=0. 

 

Differentiation with respect to a vector 

Consider a scalar function f of a vector argument w , ( )f w . 
Its derivative with respect to w  (gradient) is the following 
vector 

1 2

, , ..
n

df df df df

d dw dw dw

 
=  
 w

   (9) 

i.e. it is a row vector. The derivative of ( )f w  with respect to 

a row vector Tw  is the following column vector, 
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1 2
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df df df df
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∇ = =  

 w
   (10) 

Derivative of a vector ( )u w  with respect to w  is the 
following matrix D, 

1 2

, , .. i
ij

n j

dud d d d
d

d dw dw dw dw

 
= = → = 
 

u u u u
D

w
  (10) 

where ijd  denotes ij-th entry of D. 

 

Constrained optimization 

Suppose we wish to find an extremum (maximum or 
minimum) of a function ( )f x  subject to a constrain of the 
form ( ) 0h =x  (all functions and arguments are assumed to be 
real here, for simplicity), 

min ( )f
x

x , subject to ( ) 0h =x     (10) 

Introducing the Lagrangian, 

( ) ( )L f h= + λx x     (11) 

where λ  is the Lagrange multiplier, the necessary condition 
for an extremum is 

L
L

∂∇ = =
∂

0
x

      (12) 

which gives the solution 0( )λx  and λ  is found from the 
constrain: 

0( ( )) 0h λ =x      (13) 
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The sufficient conditions are 1st order condition in (12) plus 
the following 2nd order condition: if the Hessian 

2 2 / TL L= ∇ = ∂ ∂ ∂H x x is positive definite on the tangent 
plane of 0( )h x , 00 : ( ) 0T T h> ∀ ∇ =y Hy y y x , then 0x  is a 
minimum; if 00 : ( ) 0T T h< ∀ ∇ =y Hy y y x , then it is a 
maximum. This gives only local extrema and global ones can 
only be found by inspection of all local ones, in general. 

 

For convex problems [5], global extremum is unique and can 
be easily found (unlike the generic, non-linear case): if ( )f x  
is strictly convex, 2 ( ) 0f∇ >x , and ( )h x  is affine ( T c= +a x ), 
then 0x  is the unique, global minimum; if ( )f x  is strictly 
concave and ( )h x  is affine, then 0x  is the unique, global 
maximum.  

Multiple constraints of the form ( ) 0ih =x  can be handled via 
the substitution ( ) ( )i ii

h hλ → λ∑x x  in (11). 

 

Example (from high school): among all rectangles of given 
perimeter p , find one that has the maximum area. 

1 2 1 2( ) ,  ( )f x x h x x p= = + −x x  

1 2 1 2( )L x x x x p= + λ + −  
* *
1 1L x x∇ = → = = −λ0  

* *
1 1/ 2 / 2p x x pλ = − → = =  

i.e. the extremum area is for the square. To see that this is 
indeed the maximum, 

2 0 1

1 0
L

 = ∇ =  
 

H ; *: ( ) 0 [ , ] 0T h a a a∇ = → = − ∀ ≠y y x y  
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22 0T a= − <y Hy  

i.e. indeed the maximum. Note that, in this case, ( )f x  is not 
convex, so that the problem itself is not convex, yet the global 
maximum is easily found (since there is only one point 
satisfying the sufficient conditions). 

 

Home exercise: among all rectangles inscribed in a given 
circle, find the one with the maximum area. 

 

More detailed review of matrix and vector differentiation 
techniques can be found in [3, Appendix E] and [1, Appendix 
7]. 

More detailed discussion of the optimization theory relevant 
to signal processing applications (including smart antennas) 
can be found in [3, Section 18] and [2, Appendix C], [4], or 
by taking the Convex optimization course (based on [5]). 
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