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Review of Optimization Theory

Consider a real-valued function f(x) of real valealx. The
function local minima points satisfy todcessary conditions)
d?f (x)

df (x)
=0, >0 1
o Ve (1)

and thesufficient conditions are

df (X) -0
dx dx

d?f (x)

2 >0

These conditions are easily derived from the Tageries
expansion up to" order term (e.g. see [3][4]). Maxima are
obtained from minima vid - —f .

There maybe several local minima. Global minimurme (t
minimum) is found by inspecting all the local mir@ms
choosing the smallest one. If f(x) is strictly cery

f (a0 +(1-a)x,) <af (x) +(1-a) f (x,) (2)
then there exists only one minimum, which is als® global
minimum. Example of a convex function:

f(X)=ax* +a,x+a,; & >0.

For a convex function, the*l1part of (1) is a sufficient
condition of the minimum.

In practice, a real-valued function f(z) of a compVariable z
is of interest,

z=x+jy, x=Re{z}, y=Im{Z}. (3)
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If the derivative df(z)/dz exists, a minimum canfband as in
(1). In many cases, however, this derivative dasserist. A

simple example of such a function 1z) :\22, which is of

large practical interest. Obviously, the minimum\zﬁ is at

z=0, but we cannot apply (1) adz*/dz does not exist
(Rieman-Cauchy conditions are not satisfied).

This difficulty can be resolved in 2 ways.

1). Express f(z) as f(x, y) and use (1) for x and vy
independently,

df
(x,y):O’ df(x,y):O
dx dy
d*f (x,y) d*f (x,y) #)
—2>0, —~2>0
dx? dy?
This results in a complicated (lengthy) analysis.
2). An elegant solution to this problem is to exsre
f(2)=1f(z2) (5)

where z and z* are consideréa be independent variables
(constant with respect to each other). Under tesimption,

for example,dz”/dz=0 and d|Z°/dz=2z". The minima of
f(z, z) are found using

df (z,2") _ df (z,2°)
=0
dz dz”
where we assumed that f(z) & a convex function (which is

the case for all our applications as f(z) are waiguadratic
forms).

=0 (6)
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When f is a function of complex- valued vector vhet
stationary points are found from

df _| df | df o df -0 7)
dw | dw dw, dw,
or, equivalently,
T
df df df df
- * I ’ I — O 8
dw” { Woodw; dwr?} ©

l.e. (6) is applied element-wise.

Example considerf (w,w") = \vv‘z =WAw,

di _ d(w'w) =

-+

dw

0

+

dw

l.e. , the minimum is achieved at w=0.

Differentiation with respect to a vector

Consider a scalar functidnof a vector argument, f(w).

Its derivative with respect tav (gradient) is the following
vector

:f {df of df} ©)
\W

) dw, dw,  dw,

i.e. it is a row vector. The derivative d¢f(w) with respect to

T

a row vectow  is the following column vector,
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.
o d [d o dr (10
dw’ | dw  dw, aw,

Derivative of a vectotl(W) with respect taw is the
following matrix D,

du {du du ﬂ}

_ du,
dw, dw,  dw,

=D . d; =—° 10
1 dw, (10)

dw

whered;; denotesj-th entry ofD.

Constrained optimization

Suppose we wish to find an extremum (maximum or
minimum) of a functionf (x) subject to a constrain of the
form h(x) =0 (all functions and arguments are assumed to be
real here, for simplicity),

min f (x), subject toh(x) =0 (10)
X

Introducing the Lagrangian,
L = f (x) +Ah(x) (11)

where A is the Lagrange multiplier, theecessary condition
for an extremum is

:a—L:
0X

which gives the solutiorxg(A) and A is found from the
constrain:

0L 0 (12)

h(xo(A)) =0 (13)
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The sufficient conditions are ' order condition in (12) plus
the following 2¢ order condition: if the Hessian
H=0%L=0°L/dxox"is positive definite on the tangent
plane of h(xg), y'Hy >00y :y"Oh(xq) =0, then xq is a
minimum; if y'THy <00y :y"Oh(Xo)=0, then it is a
maximum. This gives only local extrema and globa®can
only be found by inspection of all local ones, engral.

For convex problems [5], global extremum is unique and can
be easily found (unlike the generic, non-linearegad f (x)

is strictly convex,[0%f (x) >0, andh(x) is affine Ea'x+c),

then Xq is the unique, global minimum; if (x) is strictly

concave andh(x) is affine, thenxy is the unique, global
maximum.

Multiple constraints of the fornm (x) =0 can be handled via
the substitutioAh(x) — > Aih(x) in (11).

Example (from high school): among all rectangles of given
perimeterp, find one that has the maximum area.

f(X) = XXz, h(X) =X +X2=p
L = XXz +A(X1+ X2— p)
OL=0- X =X; =-A
A=—-p/2 X =X=pl2

l.e. the extremum area is for the square. To satthhis is
indeed the maximum,

01 X
H :DZL:L O} y:y'Oh(x)=0 - y=[a,-a]0az0
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yTHy =-2a2<0

l.e. indeed the maximum. Note that, in this cabg) is not
convex, so that the problem itself is not convext,the global
maximum is easily found (since there is only onantpo
satisfying the sufficient conditions).

Home exercise: among all rectangles inscribed in a given
circle, find the one with the maximum area.

More detailed review of matrix and vector diffeiatibn
techniques can be found in [3, Appendix E] andyapendix
7].

More detailed discussion of the optimization theozievant
to signal processing applications (including snartennas)
can be found in [3, Section 18] and [2, Appendix [@], or
by taking the Convex optimization course (base{bpn
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