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Review of Matrix Theory 

Notations: 

A – capital bold denotes a matrix; 

a – lower case bold is a vector; 

a – lower case regular is a scalar; 

ija - ij -element of A ; 

( )det A  - determinant of A ; 

( )tr A  - a trace of A ; 

 

Basics 

Matrix A is defined by its elements ija : 
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a a a

a a a

a a a

 
 
 =
 
 
 

A          (1) 

 

Sometimes, elements of A are denoted as [ ]ijA . 

Sum of 2 matrices is defined element-wise: 

C = A + B  →  ij ij ijc a b= +     (2) 

Product of matrices is defined as: 

= ⋅С A B  →  
1

n

ij ik kj
k

c a b
=

=∑     (3) 
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Note that the product of A and B is defined only if the number 
of columns of A is the same as the number of rows of B, i.e. A 
and B are m n×  and n l×  matrices. 

 

Determinant of a square n n×  matrix det(A): 

( )
1

det( ) 1
n

i k
ik ik

k

a
+

+
= = −∑A A M     (4) 

where Mik is the minor of aik , i.e. the determinant of the 
submatrix of A, which is obtained by deleting i-th row and k-
th column from A. 

Example: 

11 12

21 22

a a

a a

 
=  
 

A  → ( ) 11 22 21 12det a a a a= −A   (5) 

The transpose of A is defined as 

T=B A  →  ij jib a=     (6) 

i.e. row and column indexes are exchanged.  

Complex conjugate operation is applied element-wise: 

∗=B A  →  ij ijb a∗=      (7) 

The Hermitian conjugate of A is 

( )T ∗+= =B A A  →  ij jib a∗=   (8) 

Product of a matrix A and a scalar c is defined element-wise: 

c= ⋅B A  → ij ijb c a= ⋅    (9) 
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Some properties of transpose: 

( ) ( ),
T T T + + += =AB B A AB B A   (10) 

Properties of det: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
det det det ;   det det

det det ;   det det ;

n

T

c c
∗+

= ⋅ =

= =

AB A B A A

A A A A
  (11) 

for square A and B. If det(A)=0, A is called singular. 

 

Trace of a matrix is the sum of diagonal elements: 

( )
1

n

ii
i

tr a
=

=∑A      (12) 

Some properties of trace: 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )

tr tr tr

tr tr

tr tr tr

+ = +

=

= =

A B A B

AB BA

ABC CAB BCA

    (13) 

Rank of a matrix is the number of linearly independent 
columns or rows. Some properties: 

( ) ( ) ( )
( ) ( ) ( )( )min ,

rank rank rank

rank rank rank

+ ≤ +

≤

A B A B

AB A B
   (14) 

Vector a is a 1n×  matrix: 

[ ]1 2 ..
T

na a a=a     (15) 
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Sometimes it is called column vector. 

Scalar product of two vectors a and b: 

1

n

i i
i

a b+ ∗

=
=∑a b       (16) 

Frobenius or Eucledian norm (length) of a vector is: 

2

1

n

i
i

a+

=
= = ∑a a a     (17) 

 

Similarly, Frobenius norm of a matrix: 

( )
1

2
2

1 1

n m

ij
i j

a tr +

= =

 
= =  
 
∑∑A A A    (18) 

Inverse of a n n×  matrix: 

1−=B A  if   AB = BA = I   (19) 

I - identity matrix, [ ] 1ijij
= δ =I  if i=j, 0 otherwise. 

If rank(A)<n, then det(A)=0 and the inverse does not exist →  
A is singular. 
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Some properties of the inverse: 

( )

( ) ( )

( ) ( )
( ) ( )

1 1 1

1

1 1

1 1

1det
det

TT

− − −

−

− −

− ++ −

=

=

=

=

AB B A

A
A

A A

A A

    (20) 

if all the inverses exist. 

The inverse of A can be calculated as 

( ) ( )1 ,   1
det

T
i j

ij ijc
+− = = −

C
A M

A
  (21) 

where M is the minor as before. 

 

The matrix inversion lemma (MIL): 

( ) ( ) 11 1 1 1 1 1−− − − − − −+ = − +A BCD A A B DA B C DA  (22) 

where A is n n× , B is n m× , C is m m× , D is m n×  and all the 
inverses are assumed to exist. 

A special case of (22) is Woodbury’s identity: 

( )
1 11 1

11

− + −−+ −
+ −+ = −

+
A xx A

A xx A
x A x

   (23) 

Note: the product +xx  is defined as 
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*
ij i jb x x+= → =B xx    (24) 

i.e. element-wise. 

Some special matrices 

Symmetric matrix: 

T
ij jia a= → =A A        (25) 

Hermitian matrix: 

*
ij jia a+= → =A A        (26) 

Unitary matrix: 

1+ + − += = → =UU I U U U U    (27) 

Columns of a unitary matrix are orthogonal, i j iju u+ = δ . 

Diagonal matrix A: 

0ija =  if i j≠ ; ( )11 22, .. nndiag a a a=A      (28) 

Positive definite matrix: 

if    0+ >x Ax  0∀ ≠x     (29) 

Positive semi-definite matrix: 

if    0+ ≥x Ax  0∀ ≠x     (30) 

If a matrix is (semi)positive-definite, it is also Hermitian. The 
converse is not true in general. 
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Projection Matrices 

Projection (indempotent) matrix: 

2 =P P      (31) 

Further, we consider only Hermitian projection matrices, 
+ =P P . 

Consider a linear vector space spanned by the columns of 
n m×  matrix V, 

S=span (V)    (32) 

Assume columns of V are linearly-independent. Projection of 
x onto S is  

S =x Px     ,    ( ) 1−+ +=P V V V V    (33) 

Projection of x onto S⊥  is 

S⊥ ⊥=x P x    ,   ⊥ = −P I P    (34) 

where ⊥S  is the space orthogonal to S. 
 
Eigenvalue Decomposition 
 
Eigenvector of a n n×  matrix: 

λAu = u  →  ( ) 0− λ =A I u     (35) 

where λ  is an eigenvalue. Eigenvectors give “invariant” 
directions if A is considered as linear transformation. 
 
Solution to 

0λ =A - I      (36) 

ELG7178W: Smart Antennas  © S. Loyka 

27-Feb-07 Review of Matrix Theory  8(12) 

gives n  eigenvalues λ . There are n  orthonormal eigenvectors.  
Define: 

[ ]1 2 ... n=U u u u , + =UU I      

[ ]1 2 ... ndiag= λ λ λΛ       

 
Then, 

1

n

i i i
i

+ +

=
= = λ∑A UΛU u u     (37) 

This is eigenvalue decomposition of A. 

Some properties 

( )
1

n

i
i

tr
=

= λ∑A       (38) 

( )
1

det
n

i
i=

= λ∏A      (39) 

1 1 1

1

n

i i i
i

− − + − +

=
= = λ∑A UΛ V u v    (40) 

Let ( )λ A  denotes the eigenvalues of A. Then: 

( ) ( )c cλ = λA A ,   c -  scalar    (41) 

( ) ( )m mλ = λA A ,   m=1, 2, 3….   (42) 

If A is Hermitian, +=A A , then ( ){ }Im 0λ =A . If A is 

positive definite, then ( ) 0iλ >A . 

( ) 1iλ =I ,   1,2... .i n=       (43) 

( ) 1iλ =P ,   1...i k= ,   ( ) 0iλ =P ,   1....i k n= +  (44) 

where P is a projection matrix onto k -dimentional space. 
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( )max max ,  1+ λ = = x
A x Ax x    (45) 

If A is singular, rank( ) k n= <A , “preudoinverse” can be 

defined using non-zero eigenvalues only, 

~1 1

1

K

i i i
i

− +

=
= λ∑A u u       

Singular Value Decomposition 
 
Arbitrary n m×  matrix A can be decomposed as 

1

l

i i i
i

+ +

=
= = σ∑A UΣV u v     (46) 

where U, V are unitary n n×  and m m×  matrices, and Σ  is 
n m×  matrix, 

1 
=  
 

Σ 0
Σ

0 0
,  ( )1 1 2, ... ldiag= σ σ σΣ  (47) 

where 0iσ ≥  are singular values of A, and iu  are the columns 
of U (the left singular vectors of A), iv  are the columns of V 
(the right singular vectors of A). 
 
Note: singular values of A are non-negative square roots of 
the eigenvalues of +AA . The right singular vectors of A are 
the eigenvectors of +A A . Note from (46)  that 

K K K= σAV u , K K K
+ += σV A v     (49) 

Pseudoinverse ~1A  of a m n×  matrix A for m>n is defined 
from the following 
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~1
n n×=A A I       (50) 

 
where n n×I  is n n×  identity matrix. Using the SVD of A, 
 

~1 1 1

1

n

i i i
i

− + − +

=
= σ =∑A u v UΣ V    (51) 

 
where 

1
1 1

−
−  
=  
 

Σ 0
Σ

0 0
. 

~1A  can be expressed as : 

( ) 1~1 −+ +=A A A A     (52) 

 
The above discussion assumes that A has the full column 
rank,   i. e. linearly-independent columns. If n>m and A has 
full row rank, similar expressions hold true. 
 
Pseudoinverse and projection matrix: 
 

~1
A =P AA  ,     ~1

A⊥ = −P I AA   (53) 
 

Properties of pseudoinverse: 
 

~1 =AA A A  ,  ~1 ~1 ~1=A AA A   (54) 

( ) ( )~1 ~1 ++ =A A         

( ) ( )~1 ~1 ~1 ++ =A A A A      (55) 
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( )~1 ~1+ + =A A A A         

 
If B is invertible , then 
 

( )~1 ~1=BA B A       (56) 

 
If a is a column vector, then 
 

~1
2

+

=
a

a
a

      (57) 

 
 
Miscellaneous 
 
Let ( )ia  be i -th column of A, and ( )

T
ib  be i -th row of B, then 

( ) ( )
1

n
T

i i
i

a b
=

=∑AB     (58) 

Null space of a matrix A is a set of vectors x that satisfy 

  Ax=0      (59) 

Range of a matrix A is a set of vectors y that satisfy 

  Ax=y      (60) 

for any x. Note that  

  rank(A)=dim(y)    (61) 

where dim(y) is the dimensionality of the y. Additionally, 

  dim(x)+dim(y)=n    (62) 
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for n n×  matrix. 

Important property: 

( ) ( )det detn n m m× ×+ = +I AB I BA    (63) 

where A, B are n m×  and n m×  matrices, and n n×I  is n n×  
identity matrix. 
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1 strongly recommended to everybody interested in smart antennas, 
array processing, MIMO systems. Solid knowledge of matrix theory 
is essential for these fields. 


