ELG7178W: Smart Antennas © S. Loyka

Note that the product of \mathbf{A} and \mathbf{B} is defined only if the number of columns of \mathbf{A} is the same as the number of rows of \mathbf{B}, i.e. \mathbf{A} and \mathbf{B} are $m \times n$ and $n \times l$ matrices.

Determinant of a square $n \times n$ matrix $\operatorname{det}(\mathbf{A})$:

$$
\begin{equation*}
\operatorname{det}(\mathbf{A})=|\mathbf{A}|=\sum_{k+1}^{n} a_{i k}(-1)^{i+k} \mathbf{M}_{i k} \tag{4}
\end{equation*}
$$

where \mathbf{M}_{ik} is the minor of $a_{i k}$, i.e. the determinant of the submatrix of \mathbf{A}, which is obtained by deleting i-th row and k th column from \mathbf{A}.
Example:

$$
\mathbf{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{5}\\
a_{21} & a_{22}
\end{array}\right] \rightarrow \operatorname{det}(\mathbf{A})=a_{11} a_{22}-a_{21} a_{12}
$$

The transpose of \mathbf{A} is defined as

$$
\begin{equation*}
\mathbf{B}=\mathbf{A}^{T} \quad \rightarrow \quad b_{i j}=a_{j i} \tag{6}
\end{equation*}
$$

i.e. row and column indexes are exchanged.

Complex conjugate operation is applied element-wise:

$$
\begin{equation*}
\mathbf{B}=\mathbf{A}^{*} \rightarrow b_{i j}=a_{i j}^{*} \tag{7}
\end{equation*}
$$

The Hermitian conjugate of A is

$$
\begin{equation*}
\mathbf{B}=\mathbf{A}^{+}=\left(\mathbf{A}^{T}\right)^{*} \rightarrow b_{i j}=a_{j i}^{*} \tag{8}
\end{equation*}
$$

Product of a matrix \mathbf{A} and a scalar \mathbf{c} is defined element-wise:

$$
\begin{equation*}
\mathbf{B}=c \cdot \mathbf{A} \rightarrow b_{i j}=c \cdot a_{i j} \tag{9}
\end{equation*}
$$

ELG7178W: Smart Antennas © S. Loyka

Some properties of transpose:

$$
\begin{equation*}
(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T},(\mathbf{A B})^{+}=\mathbf{B}^{+} \mathbf{A}^{+} \tag{10}
\end{equation*}
$$

Properties of det:

$$
\begin{align*}
& \operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B}) ; \operatorname{det}(c \cdot \mathbf{A})=c^{n} \operatorname{det}(\mathbf{A}) \\
& \operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A}) ; \operatorname{det}\left(\mathbf{A}^{+}\right)=(\operatorname{det}(\mathbf{A}))^{*} \tag{11}
\end{align*}
$$

for square \mathbf{A} and \mathbf{B}. If $\operatorname{det}(\mathbf{A})=0, \mathbf{A}$ is called singular.

Trace of a matrix is the sum of diagonal elements:

$$
\begin{equation*}
\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i} \tag{12}
\end{equation*}
$$

Some properties of trace:

$$
\begin{align*}
& \operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B}) \\
& \operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A}) \tag{13}\\
& \operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})=\operatorname{tr}(\mathbf{B C A})
\end{align*}
$$

Rank of a matrix is the number of linearly independent columns or rows. Some properties:

$$
\begin{align*}
& \operatorname{rank}(\mathbf{A}+\mathbf{B}) \leq \operatorname{rank}(\mathbf{A})+\operatorname{rank}(\mathbf{B}) \\
& \operatorname{rank}(\mathbf{A B}) \leq \min (\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})) \tag{14}
\end{align*}
$$

Vector a is a $n \times 1$ matrix:

$$
\mathbf{a}=\left[\begin{array}{llll}
a_{1} & a_{2} & . . & a_{n} \tag{15}
\end{array}\right]^{T}
$$

ELG7178W: Smart Antennas © S. Loyka

Sometimes it is called column vector.
$\underline{\text { Scalar product of two vectors } \mathbf{a} \text { and } \mathbf{b} \text { : }}$

$$
\begin{equation*}
\mathbf{a}^{+} \mathbf{b}=\sum_{i=1}^{n} a_{i}^{*} b_{i} \tag{16}
\end{equation*}
$$

Frobenius or Eucledian norm (length) of a vector is:

$$
\begin{equation*}
|\mathbf{a}|=\sqrt{\mathbf{a}^{+} \mathbf{a}}=\sqrt{\sum_{i=1}^{n}\left|a_{i}\right|^{2}} \tag{17}
\end{equation*}
$$

Similarly, Frobenius norm of a matrix:

$$
\begin{equation*}
\|\mathbf{A}\|=\left(\sum_{i=1}^{n} \sum_{j=1}^{m}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{+} \mathbf{A}\right)} \tag{18}
\end{equation*}
$$

Inverse of a $n \times n$ matrix:

$$
\begin{equation*}
\mathbf{B}=\mathbf{A}^{-1} \text { if } \mathbf{A B}=\mathbf{B} \mathbf{A}=\mathbf{I} \tag{19}
\end{equation*}
$$

\mathbf{I} - identity matrix, $[\mathbf{I}]_{i j}=\delta_{i j}=1$ if $\mathrm{i}=\mathrm{j}, 0$ otherwise.
If $\operatorname{rank}(\mathbf{A})<n$, then $\operatorname{det}(\mathbf{A})=0$ and the inverse does not exist \rightarrow \mathbf{A} is singular.

ELG7178W: Smart Antennas © S. Loyka
Some properties of the inverse:

$$
\begin{align*}
& (\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} \\
& \operatorname{det}\left(\mathbf{A}^{-1}\right)=1 / \operatorname{det}(\mathbf{A}) \\
& \left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T} \tag{20}\\
& \left(\mathbf{A}^{+}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{+}
\end{align*}
$$

if all the inverses exist.
The inverse of \mathbf{A} can be calculated as

$$
\begin{equation*}
\mathbf{A}^{-1}=\frac{\mathbf{C}^{T}}{\operatorname{det}(\mathbf{A})}, c_{i j}=(-1)^{i+j} \mathbf{M}_{i j} \tag{21}
\end{equation*}
$$

where \mathbf{M} is the minor as before.

The matrix inversion lemma (MIL):

$$
\begin{equation*}
(\mathbf{A}+\mathbf{B C D})^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{D A}^{-1} \mathbf{B}+\mathbf{C}^{-1}\right)^{-1} \mathbf{D A}^{-1} \tag{22}
\end{equation*}
$$

where \mathbf{A} is $n \times n, \mathbf{B}$ is $n \times m, \mathbf{C}$ is $m \times m, \mathbf{D}$ is $m \times n$ and all the inverses are assumed to exist.

A special case of (22) is Woodbury's identity:

$$
\begin{equation*}
\left(\mathbf{A}+\mathbf{x} \mathbf{x}^{+}\right)^{-1}=\mathbf{A}^{-1}-\frac{\mathbf{A}^{-1} \mathbf{x x}^{+} \mathbf{A}^{-1}}{1+\mathbf{x}^{+} \mathbf{A}^{-1} \mathbf{x}} \tag{23}
\end{equation*}
$$

Note: the product $\mathbf{x}{ }^{+}$is defined as

ELG7178W: Smart Antennas © S. Loyka

$$
\begin{equation*}
\mathbf{B}=\mathbf{x} \mathbf{x}^{+} \rightarrow b_{i j}=x_{i} x_{j}^{*} \tag{24}
\end{equation*}
$$

i.e. element-wise.

Some special matrices

Symmetric matrix:

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}^{T} \rightarrow a_{i j}=a_{j i} \tag{25}
\end{equation*}
$$

Hermitian matrix:

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}^{+} \rightarrow a_{i j}=a_{j i}^{*} \tag{26}
\end{equation*}
$$

Unitary matrix:

$$
\begin{equation*}
\mathbf{U U}^{+}=\mathbf{I}=\mathbf{U}^{+} \mathbf{U} \rightarrow \mathbf{U}^{-1}=\mathbf{U}^{+} \tag{27}
\end{equation*}
$$

Columns of a unitary matrix are orthogonal, $u_{i}^{+} u_{j}=\delta_{i j}$.
Diagonal matrix A:

$$
\begin{equation*}
a_{i j}=0 \quad \text { if } i \neq j ; \mathbf{A}=\operatorname{diag}\left(a_{11}, \quad a_{22} \quad . . \quad a_{n n}\right) \tag{28}
\end{equation*}
$$

Positive definite matrix:

$$
\begin{equation*}
\text { if } \quad \mathbf{x}^{+} \mathbf{A} \mathbf{x}>0 \quad \forall \mathbf{x} \neq 0 \tag{29}
\end{equation*}
$$

Positive semi-definite matrix:

$$
\begin{equation*}
\text { if } \quad \mathbf{x}^{+} \mathbf{A} \mathbf{x} \geq 0 \quad \forall \mathbf{x} \neq 0 \tag{30}
\end{equation*}
$$

If a matrix is (semi)positive-definite, it is also Hermitian. The converse is not true in general.

Projection Matrices

Projection (indempotent) matrix:

$$
\begin{equation*}
\mathbf{P}^{2}=\mathbf{P} \tag{31}
\end{equation*}
$$

Further, we consider only Hermitian projection matrices, $\mathbf{P}^{+}=\mathbf{P}$.

Consider a linear vector space spanned by the columns of $n \times m$ matrix \mathbf{V},

$$
\begin{equation*}
\mathbf{S}=\operatorname{span}(\mathbf{V}) \tag{32}
\end{equation*}
$$

Assume columns of \mathbf{V} are linearly-independent. Projection of \mathbf{x} onto \mathbf{S} is

$$
\begin{equation*}
\mathbf{x}_{S}=\mathbf{P} \mathbf{x} \quad, \quad \mathbf{P}=\mathbf{V}\left(\mathbf{V}^{+} \mathbf{V}\right)^{-1} \mathbf{V}^{+} \tag{33}
\end{equation*}
$$

Projection of \mathbf{x} onto S_{\perp} is

$$
\begin{equation*}
\mathbf{x}_{S \perp}=\mathbf{P}_{\perp} \mathbf{x}, \quad \mathbf{P}_{\perp}=\mathbf{I}-\mathbf{P} \tag{34}
\end{equation*}
$$

where \mathbf{S}_{\perp} is the space orthogonal to \mathbf{S}.

Eigenvalue Decomposition

Eigenvector of a $n \times n$ matrix:

$$
\begin{equation*}
\mathbf{A} \mathbf{u}=\lambda \mathbf{u} \rightarrow(\mathbf{A}-\lambda \mathbf{I}) \mathbf{u}=0 \tag{35}
\end{equation*}
$$

where λ is an eigenvalue. Eigenvectors give "invariant" directions if \mathbf{A} is considered as linear transformation.

Solution to

$$
\begin{equation*}
|\mathbf{A}-\lambda \mathbf{I}|=0 \tag{36}
\end{equation*}
$$

gives n eigenvalues λ. There are n orthonormal eigenvectors. Define:

$$
\begin{aligned}
\mathbf{U} & =\left[\begin{array}{llll}
\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{n}
\end{array}\right], \quad \mathbf{U U}^{+}=\mathbf{I} \\
\boldsymbol{\Lambda} & =\operatorname{diag}\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{n}
\end{array}\right]
\end{aligned}
$$

Then,

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \mathbf{\Lambda} \mathbf{U}^{+}=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{+} \tag{37}
\end{equation*}
$$

This is eigenvalue decomposition of \mathbf{A}.

Some properties

$$
\begin{align*}
& \operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i} \tag{38}\\
& \operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i} \tag{39}\\
& \mathbf{A}^{-1}=\mathbf{U} \mathbf{\Lambda}^{-1} \mathbf{V}^{+}=\sum_{i=1}^{n} \lambda_{i}^{-1} \mathbf{u}_{i} \mathbf{v}_{i}^{+} \tag{40}
\end{align*}
$$

Let $\lambda(\mathbf{A})$ denotes the eigenvalues of \mathbf{A}. Then:

$$
\begin{align*}
& \lambda(c \mathbf{A})=c \lambda(\mathbf{A}), \quad c-\text { scalar } \tag{41}\\
& \lambda\left(\mathbf{A}^{m}\right)=\lambda^{m}(\mathbf{A}), \quad \mathrm{m}=1,2,3 \ldots . \tag{42}
\end{align*}
$$

If \mathbf{A} is Hermitian, $\mathbf{A}=\mathbf{A}^{+}$, then $\operatorname{Im}\{\lambda(\mathbf{A})\}=0$. If \mathbf{A} is positive definite, then $\lambda_{i}(\mathbf{A})>0$.

$$
\begin{align*}
& \lambda_{i}(\mathbf{I})=1, \quad i=1,2 \ldots n \tag{43}\\
& \lambda_{i}(\mathbf{P})=1, \quad i=1 \ldots k, \quad \lambda_{i}(\mathbf{P})=0, \quad i=k+1 \ldots . n \tag{44}
\end{align*}
$$

where \mathbf{P} is a projection matrix onto k-dimentional space.

ELG7178W: Smart Antennas © S. Loyka

$$
\begin{equation*}
\lambda_{\max }(\mathbf{A})=\max _{\mathbf{x}}\left[\mathbf{x}^{+} \mathbf{A x}\right],|\mathbf{x}|=1 \tag{45}
\end{equation*}
$$

If \mathbf{A} is singular, $\operatorname{rank}(\mathbf{A})=k<n$, "preudoinverse" can be defined using non-zero eigenvalues only,

$$
\mathbf{A}^{\sim 1}=\sum_{i=1}^{K} \lambda_{i}^{-1} \mathbf{u}_{i} \mathbf{u}_{i}^{+}
$$

Singular Value Decomposition

Arbitrary $n \times m$ matrix \mathbf{A} can be decomposed as

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{+}=\sum_{i=1}^{l} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{+} \tag{46}
\end{equation*}
$$

where \mathbf{U}, \mathbf{V} are unitary $n \times n$ and $m \times m$ matrices, and Σ is $n \times m$ matrix,

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \mathbf{0} \tag{47}\\
\mathbf{0} & \mathbf{0}
\end{array}\right], \quad \boldsymbol{\Sigma}_{1}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2} \ldots \sigma_{l}\right)
$$

where $\sigma_{i} \geq 0$ are singular values of \mathbf{A}, and \mathbf{u}_{i} are the columns of \mathbf{U} (the left singular vectors of \mathbf{A}), \mathbf{v}_{i} are the columns of \mathbf{V} (the right singular vectors of \mathbf{A}).

Note: singular values of \mathbf{A} are non-negative square roots of the eigenvalues of $\mathbf{A} \mathbf{A}^{+}$. The right singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A}^{+} \mathbf{A}$. Note from (46) that

$$
\begin{equation*}
\mathbf{A} \mathbf{V}_{K}=\sigma_{K} \mathbf{u}_{K}, \mathbf{V}_{K}^{+} \mathbf{A}=\sigma_{K} \mathbf{v}_{K}^{+} \tag{49}
\end{equation*}
$$

Pseudoinverse $\mathbf{A}^{\sim 1}$ of a $m \times n$ matrix \mathbf{A} for $\mathrm{m}>\mathrm{n}$ is defined from the following

ELG7178W: Smart Antennas © S. Loyka

$$
\begin{equation*}
\mathbf{A}^{\sim 1} \mathbf{A}=\mathbf{I}_{n \times n} \tag{50}
\end{equation*}
$$

where $\mathbf{I}_{n \times n}$ is $n \times n$ identity matrix. Using the SVD of \mathbf{A},

$$
\begin{equation*}
\mathbf{A}^{\sim 1}=\sum_{i=1}^{n} \sigma_{i}^{-1} \mathbf{u}_{i} \mathbf{v}_{i}^{+}=\mathbf{U} \boldsymbol{\Sigma}^{-1} \mathbf{V}^{+} \tag{51}
\end{equation*}
$$

where

$$
\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{1}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]
$$

$\mathbf{A}^{\sim 1}$ can be expressed as :

$$
\begin{equation*}
\mathbf{A}^{\sim 1}=\left(\mathbf{A}^{+} \mathbf{A}\right)^{-1} \mathbf{A}^{+} \tag{52}
\end{equation*}
$$

The above discussion assumes that \mathbf{A} has the full column rank, i. e. linearly-independent columns. If $\mathrm{n}>\mathrm{m}$ and \mathbf{A} has full row rank, similar expressions hold true.

Pseudoinverse and projection matrix:

$$
\begin{equation*}
\mathbf{P}_{A}=\mathbf{A} \mathbf{A}^{\sim 1}, \quad \mathbf{P}_{\perp A}=\mathbf{I}-\mathbf{A} \mathbf{A}^{\sim 1} \tag{53}
\end{equation*}
$$

Properties of pseudoinverse:

$$
\begin{align*}
& \mathbf{A}^{\sim 1} \mathbf{A}=\mathbf{A}, \quad \mathbf{A}^{\sim 1} \mathbf{A} \mathbf{A}^{\sim 1}=\mathbf{A}^{\sim 1} \tag{54}\\
& \left(\mathbf{A}^{+}\right)^{\sim}=\left(\mathbf{A}^{\sim 1}\right)^{+} \\
& \left(\mathbf{A}^{+} \mathbf{A}\right)^{\sim 1}=\mathbf{A}^{\sim 1}\left(\mathbf{A}^{\sim 1}\right)^{+} \tag{55}
\end{align*}
$$

ELG7178W: Smart Antennas © S. Loyka

$$
\left(\mathbf{A}^{+} \mathbf{A}\right)^{\sim 1} \mathbf{A}^{+}=\mathbf{A}^{\sim 1}
$$

If \mathbf{B} is invertible , then

$$
\begin{equation*}
(\mathbf{B A})^{\sim 1} \mathbf{B}=\mathbf{A}^{\sim 1} \tag{56}
\end{equation*}
$$

If \mathbf{a} is a column vector, then

$$
\begin{equation*}
\mathbf{a}^{\sim 1}=\frac{\mathbf{a}^{+}}{|\mathbf{a}|^{2}} \tag{57}
\end{equation*}
$$

Miscellaneous

Let $a_{(i)}$ be i-th column of \mathbf{A}, and $b_{(i)}^{T}$ be i-th row of \mathbf{B}, then

$$
\begin{equation*}
\mathbf{A B}=\sum_{i=1}^{n} a_{(i)} b_{(i)}^{T} \tag{58}
\end{equation*}
$$

Null space of a matrix \mathbf{A} is a set of vectors \mathbf{x} that satisfy

$$
\begin{equation*}
\mathbf{A x}=\mathbf{0} \tag{59}
\end{equation*}
$$

Range of a matrix \mathbf{A} is a set of vectors \mathbf{y} that satisfy

$$
\begin{equation*}
\mathbf{A x}=\mathbf{y} \tag{60}
\end{equation*}
$$

for any \mathbf{x}. Note that

$$
\begin{equation*}
\operatorname{rank}(\mathbf{A})=\operatorname{dim}(\mathbf{y}) \tag{61}
\end{equation*}
$$

where $\operatorname{dim}(\mathbf{y})$ is the dimensionality of the \mathbf{y}. Additionally,

$$
\begin{equation*}
\operatorname{dim}(\mathbf{x})+\operatorname{dim}(\mathbf{y})=\mathrm{n} \tag{62}
\end{equation*}
$$

for $n \times n$ matrix.
Important property:

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{I}_{n \times n}+\mathbf{A B}\right)=\operatorname{det}\left(\mathbf{I}_{m \times m}+\mathbf{B} \mathbf{A}\right) \tag{63}
\end{equation*}
$$

where A, B are $n \times m$ and $n \times m$ matrices, and $\mathbf{I}_{n \times n}$ is $n \times n$ identity matrix.

References

Brief reviews of matrices

1. H.L. Van Trees, Optimum Array Processing, Appendix 6.
2. D.H. Johnson, D.E. Dudgeon, Array Signal Processing, Appendix B
3. T.K. Moon, W.C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Appendix C

Books

4. F. Zhang, Matrix theory, Springer, 1999.
5. J.N. Franklin, Matrix Theory, Dover, New York, 1993.
6. M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover, New York, 1992.

Comprehensive modern textbooks ${ }^{I}$
7. R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
8. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.

[^0]
[^0]: ${ }^{1}$ strongly recommended to everybody interested in smart antennas, array processing, MIMO systems. Solid knowledge of matrix theory is essential for these fields.

