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MIMO: Tx & Rx antenna arrays

• multiple Tx antennas

• multiple Rx antenna

• best Tx/Rx strategies?
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MIMO Channel Model

y(t) = Hx(t) + ξ(t) (1)

x(t) = Tx signal (vector)
y(t) = Rx signal (vector)
H = fixed channel vector; hij = channel gain from j-th Tx antenna to i -th
Rx antenna
ξ(t) = Rx noise (vector)

* Compare to the SIMO/MISO models.
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MIMO Channel Model

y(t) = Hx(t) + ξ(t)
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Tx/Rx Beamforming over the MIMO Channel

Tx beamforming:

x(t) = wt · x(t) (2)

x(t) = scalar Tx signal (complex amplitude, carriers the Tx data)
wt = fixed Tx beamforming vector.

Rx beamforming:

yr (t) = w+
r y(t) = w+

r Hwtx(t) + w+
r ξ(t) = ys(t) + yn(t) (3)

ys(t) = signal part(no noise),
yn(t) = noise part (no signal),
wr = (fixed) Rx beamforming vector.

S. Loyka Lecture 5, ELG7177: MIMO Comunications 5 / 27



February 13, 2019

Tx/Rx Beamforming

How to choose wt , wr ?

The Rx SNR γr (after the Rx beamformer) is

γr =
Ps

Pn

=
|ys |2

|yn|2
=

|w+
r Hwt |

2

|wr |2
γ1 (4)

where γ1 = σ2
x/σ

2
0 is the Rx SNR with single Tx/Rx antenna and h = 1.

How to maximize γr?
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Tx/Rx Beamforming

Maximizing γr :

γr =
|w+

r Hwt |
2

|wr |2
γ1

(a)

≤ |Hwt |
2γ1

(b)

≤ σ2
1(H)|wt |

2γ1
(c)
= σ2

1(H)γ1 (5)

where σ1(H) is the largest singular value of H.

(a): how ? equality ?

(b): via the SVD properties,

|Hx| ≤ σ1(H)|x| (6)

with equality iff x = αv1, where is the left singular vector of H
corresponding to its largest singular value.

(c): |wt | = 1, to satisfy power constraint.
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Tx/Rx Beamforming

Hence, γr is maximized by

wt = v1(H), wr = u1(H) (7)

where u1(H) is the left singular vector of H corresponding to its largest
singular value σ1(H).

The maximum Rx SNR is

γr ,max = max
wt ,wr

γr = σ2
1(H)γ1 (8)
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Singular Value Decomposition (SVD)12

Definition of singular value σi and its left/right singular vector vi/ui of H:

Hvi = σiui , u+i H = σiv
+
i (9)

Applies to any matrix (not only square),

H = UΣV+ =
∑

i

σiuiv
+
i (10)

U = unitary matrix of left singular vectors of H,
V = likewise for its right singular vectors,
Σ = diagonal matrix of its singular values,
ui , vi = i -th column of U,V,
σi ≥ 0 = i -th diagonal entry of Σ = i -th singular value of H,
ordering: σ1 ≥ σ2 ≥ ....

1R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 2013
2https://en.wikipedia.org/wiki/Singular value decomposition
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Eigenvalue Decomposition (EVD)34

EVD: applies to any square matrix.
Definition of eigenvalue λi and its eigenvector ui of W:

Wui = λiui (11)

For Hermitian W,

W = UΛU+ =
∑

i

λiuiu
+
i (12)

U = unitary matrix of eigenvectors of W,
Λ = diagonal matrix of its eigenvalues,
ui = i -th column of U = i -th eigenvector of W,
λi = i -th diagonal entry of Λ = i -th eigenvalue of W,

3R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985
4https://en.wikipedia.org/wiki/Eigendecomposition of a matrix
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Relationship of SVD and EVD

Set W = HH+. Then,

λi(W) = σ2
i (H), ui (W) = ui (H) (13)

and

W = UΛU+, H = UΣV+, Λ = ΣΣ+ (14)

i.e. the EVD can be obtained from the SVD and vice versa:

• eigenvectors of HH+ are the right singular vectors of H

• eigenvectors of H+H are the left singular vectors of H

• eigenvalues of HH+ are the squared singular values of H
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The Capacity of Tx/Rx beamforming

Extended channel: the channel + Tx/Rx beamforming.

System capacity: the extended channel capacity,

C = log(1 + γr ,max) = log(1 + σ2
1(H)γ1) (15)

This is the largest rate (SE) the Tx/Rx beamforming can deliver.

Can we do better than that???

Special cases:

• SIMO channel: H = h, σ1(H)= ? v1 = ?

• MISO channel: H = h+, σ1(H)= ? u1 = ?

• Free space: hij = 1 for all i , j .

S. Loyka Lecture 5, ELG7177: MIMO Comunications 12 / 27



February 13, 2019

The Capacity of MIMO Channel

Can we do better than Tx/Rx beamforming ???

The capacity of MIMO channel is

C = max
p(x)

I (X ;Y ) s.t. trRx ≤ P (16)

X = the random Tx vector,
Y = the random Rx vector.

How to find the max???
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The Capacity of MIMO Channel

How to find the max???

Key:

H(Y |X ) = H(Ξ) = log |Rξ|+ n log(πe) (17)

H(Y ) ≤ log |Ry|+ n log(πe) (18)

so that

I (X ;Y ) = H(Y )− H(Ξ) ≤ log
|Ry|

|Rξ|
(19)

Ry = yy+, Rξ = ξξ+ are covariance matrices of y, ξ.

The UB is achieved by X ∼ CN(0,Rx ).
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The Capacity of MIMO Channel

Observe that

Ry = HRxH
+ + σ2

0I (20)

so that

I (X ;Y ) ≤ log |I+ σ−2
0 WRx | (21)

where W = H+H, and hence

C = max
p(x)

I (X ;Y ) s.t. trRx ≤ P (22)

≤ max
trRx≤P

log |I+ σ−2
0 WRx | (23)

Since the UB is achieved by X ∼ CN(0,Rx ), it is the capacity.
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The Capacity of MIMO Channel

Thus, the capacity is

C = max
trRx≤P

log |I+ σ−2
0 WRx | (24)

and an optimal input is X ∼ CN(0,Rx ).

We will further normalize the noise power, σ2
0 = 1.
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The Capacity of MIMO Channel

Thus, the capacity is

C = max
trRx≤P

log |I+ σ−2
0 WRx | (24)

and an optimal input is X ∼ CN(0,Rx ).

We will further normalize the noise power, σ2
0 = 1.

But: How to find the max???
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The Capacity of MIMO Channel

How to find the max???
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The Capacity of MIMO Channel

How to find the max???

Key: Hadamard inequality.

Jacques Hadamard: 8 Dec. 1865
(Versailles, France) - 17 Oct. 1963
(Paris, France).
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The Capacity of MIMO Channel

The capacity is

C = max
trRx≤P

log |I+WRx |

= max
trRx≤P

log |I+ ΛWU+
WRxUW | (25)

= max
tr R̃x≤P

log |I+ ΛW R̃x | (26)

≤ max
tr D̃x≤P

log |I+ ΛW D̃x | (27)

= max
di

∑

i

log(1 + λwidi) s.t. di ≥ 0,
∑

i

di ≤ P (28)

R̃x = U+
WRxUW , di = i -th diagonal entry of D̃x

The UB is achieved by Uw = URx , so that di = λi(R̃x) = λi (Rx)
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The Capacity of MIMO Channel

Thus, the capacity is

C = max
λi

∑

i

log(1 + λwiλi) s.t. λi ≥ 0,
∑

i

λi ≤ P

and the signaling on the eigenvectors of W = H+H (or right singular
vectors of H) is optimal,

R∗ = UWΛ∗U+
W =

∑

i

λ∗
i uwiu

+
wi (29)

where Λ∗ = diag{λ∗
i }, i.e. an optimal power allocation to the channel

eigenmodes.

But: How to find the max??? How to implement (29)???
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The Water-Filling (WF) Algorithm

The maxλi
is given by

λ∗
i = (µ−1 − λ−1

wi )+ (30)

where (x)+ = max(x , 0) is positive part; µ is the Lagrange multiplier
responsible for the total power constraint

∑
i λi ≤ P.

µ is the (unique) solution to

∑

i

(µ−1 − λ−1
wi )+ = P (31)

Numerically: via e.g. bisection method. Analytically: possible in some
special cases.

This is the optimal power allocation among the eigenmodes and is known
as ”water-filling”(WF).
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The MIMO Capacity via the WF

The MIMO capacity is

C =
∑

i

log(1 + λwiλ
∗
i ) =

∑

i :λwi>µ

log(µ−1λwi ) (32)

so that active eigenmodes satisfy λwi > µ.

Proof of WF: via the KKT conditions for constrained optimization
(Lagrange multipliers).

Q.: prove that (31) (i) always has a solution, and (ii) the solution is
unique. Hint: show that the l.h.s of (31) is monotonically decreasing in µ.
When µ = 0? µ = ∞?
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WF Examples

1. Identical eigenvalues of W: λwi = λw ∀ i ,

λ∗
i =

P

m
, R∗ =

P

m
I, C = m log

(
1 +

P

m
λw

)
(33)

where P = γ = SNR (with m = 1).

2. Rank-1 W: λw1 = λw , λw2 = ... = λwm = 0,

λ∗
1 = P, λ∗

2 = ... = λ∗
m = 0, R∗ = Pu1u

+
1

C = log (1 + λwP) (34)

3. Optimal Tx structure?
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WF Examples

1. Identical eigenvalues of W: λwi = λw ∀ i ,
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WF Properties

Q1: prove that only the strongest eigenmode is active at low SNR, while all
eigenmodes are active at high SNR. Derive conditions for low/high SNR.

Q2: prove that the number of active eigenmodes increases with the SNR.

Q3: prove that stronger eigenmodes get more power, i.e. ”rich get richer”
or, equivalently, ”capitalism is better than communism”.
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The Capacity of MIMO Channel

Q4: compare the MIMO channel capacity in (32) to that of the Tx-Rx
beamforming in (15). Which is better (consider the most general case)?
When are they equal?

Q5: consider now the MIMO channel with correlated noise,

y(t) = Hx(t) + ξ(t) (35)

where ξ ∼ CN(0,Rξ), Rξ = noise covariance matrix. Find its capacity.
Correlated (”colored”) noise can model interference.

Q6: In Q5, what happens if Rξ is singular?
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Summary

• MIMO channel: Tx & Rx antenna arrays

• Tx/Rx beamforming, its capacity

• The MIMO channel capacity

• Water-filling algorithm

• Examples and special cases
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Reading

• D. Tse, P. Viswanath, Fundamentals of Wireless Communications -
Ch. 7.1-2, 8.1-8.3, Appendix A, B.

• J.R. Barry, E.A. Lee, D.G. Messerschmitt, Digital Communications
(3rd Ed.), Kluwer, Boston, 2004. - Ch. 10.3.
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