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MIMO: Tx & Rx antenna arrays

e multiple Tx antennas

e multiple Rx antenna
e best Tx/Rx strategies?
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MIMO Channel Model

y(t) = Hx(t) + £(1) (1)

x(t) = Tx signal (vector)

y(t) = Rx signal (vector)

H = fixed channel vector; hj; = channel gain from j-th Tx antenna to i-th
Rx antenna

&(t) = Rx noise (vector)

* Compare to the SIMO/MISO models.
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MIMO Channel Model

y(t) = Hx(t) + £(1)
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Tx/Rx Beamforming over the MIMO Channel

Tx beamforming:

x(t) = wy - x(t) (2)

x(t) = scalar Tx signal (complex amplitude, carriers the Tx data)
w; = fixed Tx beamforming vector.

Rx beamforming:
yr(t) = wiy(t) = w Hwex(t) + wE(t) = ys(t) + ya(t)  (3)
ys(t) = signal part(no noise),

yn(t) = noise part (no signal),
w, = (fixed) Rx beamforming vector.
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Tx/Rx Beamforming

How to choose w;, w, ?
The Rx SNR ~, (after the Rx beamformer) is

P |YS|2 |W;i_HWt|2

Y= p T s = m (4)
P P WP

where 71 = 02 /03 is the Rx SNR with single Tx/Rx antenna and h = 1.

How to maximize ~,?
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Tx/Rx Beamforming

Maximizing ~,:

|wF Hw,|? (6) (c)
= P 2 s 2 AP @ s (9
r

where o1(H) is the largest singular value of H.
(a): how ? equality ?
(b): via the SVD properties,

[Hx| < o1 (H)|x| (6)

with equality iff x = avi, where is the left singular vector of H
corresponding to its largest singular value.

(c): |w¢| =1, to satisfy power constraint.

S. Loyka Lecture 5, ELG7177: MIMO Comunications 7/27



February 13, 2019

Tx/Rx Beamforming

Hence, v, is maximized by
w; =vi(H), w, = ui(H) (7)

where uy(H) is the left singular vector of H corresponding to its largest
singular value o1(H).

The maximum Rx SNR is

Yr,max = ‘Lna“3< Tr= O']2_(H)’)/1 (8)

t,Wr
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Singular Value Decomposition (SVD)!?

Definition of singular value o; and its left/right singular vector v;/u; of H:

HV,' = o;uj, ufH == 0','V+ (9)

i
Applies to any matrix (not only square),

H=UZV' => ouyv; (10)

U = unitary matrix of left singular vectors of H,

V = likewise for its right singular vectors,

Y = diagonal matrix of its singular values,

u;,v; = i-th column of U, V,

o; > 0 = i-th diagonal entry of ¥ = j-th singular value of H,
ordering: o1 > 02 > ...

'R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 2013

2https://en.wikipedia.org/wiki/Singular_value_decomposition
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Eigenvalue Decomposition (EVD)3*

EVD: applies to any square matrix.
Definition of eigenvalue \; and its eigenvector u; of W:

Wu,- = )\,‘U,’ (11)

For Hermitian W,

W = UAU* =) " Nuu) (12)

U = unitary matrix of eigenvectors of W,

N = diagonal matrix of its eigenvalues,

u; = i-th column of U = j-th eigenvector of W,

Aj = i-th diagonal entry of A = j-th eigenvalue of W,

3R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985
*https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
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Relationship of SVD and EVD

Set W = HH™. Then,
Ai(W) = 07 (H), ui(W) = u;(H) (13)
and
W =UAU", H=UZV" A=X3" (14)

i.e. the EVD can be obtained from the SVD and vice versa:
e eigenvectors of HH™ are the right singular vectors of H
e eigenvectors of HTH are the left singular vectors of H

e eigenvalues of HH™ are the squared singular values of H
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The Capacity of Tx/Rx beamforming

Extended channel: the channel + Tx/Rx beamforming.

System capacity: the extended channel capacity,
C = log(1 + 7. max) = log(1 + o7 (H)n1) (15)
This is the largest rate (SE) the Tx/Rx beamforming can deliver.

Can we do better than that???

Special cases:
e SIMO channel: H=h, o1 (H)=7 v; =7
e MISO channel: H=h", o;(H)=7 u; =7

e Free space: hjj =1 forall i,j.
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The Capacity of MIMO Channel

Can we do better than Tx/Rx beamforming 7?77

The capacity of MIMO channel is

C= m(a>)<l(X; Y)st. trRy <P (16)
p(x

X = the random Tx vector,
Y = the random Rx vector.

How to find the max???
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The Capacity of MIMO Channel

How to find the max???

Key:
H(Y|X) = H(Z) = log |R¢| + nlog(me)
H(Y) < log|Ry| + nlog(me)
so that
I(X; Y) = H(Y) — HE) < log %

Ry =yy", Re = €€ are covariance matrices of y, &.
The UB is achieved by X ~ CN(0,Ry).

S. Loyka Lecture 5, ELG7177: MIMO Comunications

February 13, 2019

14 /27



The Capacity of MIMO Channel

Observe that
Ry = HR,HT + o3l
so that
I(X;Y) < log |l + 05 WR,|
where W = HTH, and hence
C=max/(X;Y)st. trR <P

p(x)

< max log|l +o72WR
wReop g‘ 0 x|

Since the UB is achieved by X ~ CN(0, Ry), it is the capacity.
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The Capacity of MIMO Channel

Thus, the capacity is

C= max log|l + o5 *WR,| (24)

tr Ry

and an optimal input is X ~ CN(0,Ry).

We will further normalize the noise power, 08 =1
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The Capacity of MIMO Channel

Thus, the capacity is

C= max log|l + o5 *WR,| (24)

tr Ry

and an optimal input is X ~ CN(0,Ry).

We will further normalize the noise power, 08 =1

But: How to find the max???
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The Capacity of MIMO Channel

How to find the max???
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The Capacity of MIMO Channel

How to find the max???

Key: Hadamard inequality.

Jacques Hadamard: 8 Dec. 1865
(Versailles, France) - 17 Oct. 1963
(Paris, France).
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The Capacity of MIMO Channel
The capacity is

C = max log|l + WR]
tr R, <P

_ +

= trrlgxagplog 1+ AwUj, R Uy | (25)

= max log|l+AwR,| (26)
tr R, <P

< max log|l + AwDy| (27)
tr D <P

= log(1+ Aid;) st. d;>0 d <P 28
md?Xzi: Og( + Awi ,)S i Z Yy z]: = ( )

ﬁx = U'VFVRXUW, d; = i-th diagonal entry of [~)X

The UB is achieved by U,, = Ug,, so that d; = )\;(ﬁx) = Xi(Ry)
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The Capacity of MIMO Channel
Thus, the capacity is

C= I 14+ Apidj) st A >0, N <P
m)\;?xzi: og(l+ ) s 0 Z,:

and the signaling on the eigenvectors of W = H™H (or right singular
vectors of H) is optimal,

R* = UwA"Uj, = > Nuyu, (29)

where A* = diag{\’}, i.e. an optimal power allocation to the channel
eigenmodes.

But: How to find the max??? How to implement (29)77?
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The Water-Filling (WF) Algorithm

The maxy, is given by

% - -1

Al =(w t- Awi )+ (30)
where (x)+ = max(x,0) is positive part; 4 is the Lagrange multiplier
responsible for the total power constraint > . \; < P.
p is the (unique) solution to

St AN =P (31)

i
Numerically: via e.g. bisection method. Analytically: possible in some
special cases.

This is the optimal power allocation among the eigenmodes and is known
as "water-filling” (WF).
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The MIMO Capacity via the WF

The MIMO capacity is
C = Z log(1 4+ Awif) = Z log (11~ " Awi) (32)
i PAWi >
so that active eigenmodes satisfy A,; > p.

Proof of WF: via the KKT conditions for constrained optimization
(Lagrange multipliers).

Q.: prove that (31) (i) always has a solution, and (ii) the solution is

unique. Hint: show that the I.h.s of (31) is monotonically decreasing in p.
When p =07 p = o00?
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WEF Examples

1. ldentical eigenvalues of W: \,; = A, V i,

P P P
)\7:_7 R*:_L C:mlog <1+_)‘W>
m m m
where P =~ = SNR (with m =1).

2. Rank-1 W: A1 = A, Auz = . = Aym =0,

AN =P, Ms=..=X,=0, R* = Pujuf
C=log(1+A,P)

3. Optimal Tx structure?
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WEF Examples

1. ldentical eigenvalues of W: A\,; = A\, V i,
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WEF Properties

Q1: prove that only the strongest eigenmode is active at low SNR, while all
eigenmodes are active at high SNR. Derive conditions for low/high SNR.

Q2: prove that the number of active eigenmodes increases with the SNR.

Q3: prove that stronger eigenmodes get more power, i.e. "rich get richer”
or, equivalently, "capitalism is better than communism”.
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The Capacity of MIMO Channel

Q4: compare the MIMO channel capacity in (32) to that of the Tx-Rx

beamforming in (15). Which is better (consider the most general case)?
When are they equal?

Q5: consider now the MIMO channel with correlated noise,
y(t) = Hx(t) + &(t) (35)

where £ ~ CN(0, R¢), R¢ = noise covariance matrix. Find its capacity.
Correlated ("colored"”) noise can model interference.

Q6: In Q5, what happens if R¢ is singular?
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Summary

MIMO channel: Tx & Rx antenna arrays

Tx/Rx beamforming, its capacity
The MIMO channel capacity
Water-filling algorithm

Examples and special cases

S. Loyka Lecture 5, ELG7177: MIMO Comunications

February 13, 2019

26 /27



February 13, 2019

Reading

e D. Tse, P. Viswanath, Fundamentals of Wireless Communications -
Ch. 7.1-2, 8.1-8.3, Appendix A, B.

e J.R. Barry, E.A. Lee, D.G. Messerschmitt, Digital Communications
(3rd Ed.), Kluwer, Boston, 2004. - Ch. 10.3.
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