ELG7177: MIMO Comunications

Lecture 5

Dr. Sergey Loyka EECS, University of Ottawa

October 20, 2020

MIMO: Tx & Rx antenna arrays

- multiple Tx antennas
- multiple Rx antenna
- best Tx/Rx strategies?

MIMO Channel Model

$$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \boldsymbol{\xi}(t) \tag{1}$$

$$\mathbf{x}(t) = \mathsf{Tx} \text{ signal (vector)}$$

 $\mathbf{y}(t) = \mathsf{Rx} \text{ signal (vector)}$
 $\mathbf{H} = \text{fixed channel vector; } h_{ij} = \text{channel gain from } j\text{-th Tx} \text{ antenna to } i\text{-th}$
 $\mathsf{Rx} \text{ antenna}$
 $\boldsymbol{\xi}(t) = \mathsf{Rx} \text{ noise (vector)}$

* Compare to the SIMO/MISO models.

MIMO Channel Model

$$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \boldsymbol{\xi}(t)$$

Tx/Rx Beamforming over the MIMO Channel

Tx beamforming:

$$\mathbf{x}(t) = \mathbf{w}_t \cdot \mathbf{x}(t) \tag{2}$$

x(t) = scalar Tx signal (complex amplitude, carriers the Tx data) $\mathbf{w}_t = \text{fixed Tx beamforming vector.}$

Rx beamforming:

$$y_r(t) = \mathbf{w}_r^+ \mathbf{y}(t) = \mathbf{w}_r^+ \mathbf{H} \mathbf{w}_t x(t) + \mathbf{w}_r^+ \boldsymbol{\xi}(t) = y_s(t) + y_n(t)$$
(3)

 $y_s(t) = \text{signal part(no noise)},$ $y_n(t) = \text{noise part (no signal)},$ $\mathbf{w}_r = (\text{fixed}) \text{ Rx beamforming vector.}$

Tx/Rx Beamforming

How to choose \mathbf{w}_t , \mathbf{w}_r ?

The Rx SNR γ_r (after the Rx beamformer) is

$$\gamma_r = \frac{P_s}{P_n} = \frac{\overline{|y_s|^2}}{\overline{|y_n|^2}} = \frac{|\mathbf{w}_r^+ \mathbf{H} \mathbf{w}_t|^2}{|\mathbf{w}_r|^2} \gamma_1 \tag{4}$$

where $\gamma_1 = \sigma_x^2/\sigma_0^2$ is the Rx SNR with single Tx/Rx antenna and h = 1. How to maximize γ_r ?

Tx/Rx Beamforming

Maximizing γ_r :

$$\gamma_r = \frac{|\mathbf{w}_r^+ \mathbf{H} \mathbf{w}_t|^2}{|\mathbf{w}_r|^2} \gamma_1 \stackrel{(a)}{\leq} |\mathbf{H} \mathbf{w}_t|^2 \gamma_1 \stackrel{(b)}{\leq} \sigma_1^2(\mathbf{H}) |\mathbf{w}_t|^2 \gamma_1 \stackrel{(c)}{=} \sigma_1^2(\mathbf{H}) \gamma_1 \quad (5)$$

where $\sigma_1(\mathbf{H})$ is the largest singular value of \mathbf{H} .

- (a): how ? equality ?
- (b): via the SVD properties,

$$|\mathbf{H}\mathbf{x}| \le \sigma_1(\mathbf{H})|\mathbf{x}| \tag{6}$$

with equality iff $\mathbf{x} = \alpha \mathbf{v}_1$, where is the left singular vector of \mathbf{H} corresponding to its largest singular value.

(c): $|\mathbf{w}_t| = 1$, to satisfy power constraint.

Tx/Rx Beamforming

Hence, γ_r is maximized by

$$\mathbf{w}_t = \mathbf{v}_1(\mathbf{H}), \ \mathbf{w}_r = \mathbf{u}_1(\mathbf{H}) \tag{7}$$

where $\mathbf{u}_1(\mathbf{H})$ is the left singular vector of \mathbf{H} corresponding to its largest singular value $\sigma_1(\mathbf{H})$.

The maximum Rx SNR is

$$\gamma_{r,\max} = \max_{\mathbf{w}_t, \mathbf{w}_r} \gamma_r = \sigma_1^2(\mathbf{H})\gamma_1 \tag{8}$$

Singular Value Decomposition (SVD)¹²

Definition of singular value σ_i and its left/right singular vector $\mathbf{v}_i/\mathbf{u}_i$ of **H**:

$$\mathbf{H}\mathbf{v}_i = \sigma_i \mathbf{u}_i, \ \mathbf{u}_i^+ \mathbf{H} = \sigma_i \mathbf{v}_i^+ \tag{9}$$

Applies to any matrix (not only square),

$$\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{+} = \sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{+}$$
(10)

- $\mathbf{U} =$ unitary matrix of left singular vectors of \mathbf{H} ,
- $\mathbf{V} =$ likewise for its right singular vectors,
- $\boldsymbol{\Sigma} = \mathsf{diagonal} \ \mathsf{matrix} \ \mathsf{of} \ \mathsf{its} \ \mathsf{singular} \ \mathsf{values},$

 $\mathbf{u}_i, \mathbf{v}_i = i$ -th column of \mathbf{U}, \mathbf{V} ,

 $\sigma_i \ge 0 = i$ -th diagonal entry of $\Sigma = i$ -th singular value of **H**, ordering: $\sigma_1 \ge \sigma_2 \ge \dots$

¹R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 2013 ²https://en.wikipedia.org/wiki/Singular_value_decomposition

Lecture 5, ELG7177: MIMO Comunications

Eigenvalue Decomposition (EVD)³⁴

EVD: applies to any square matrix. Definition of eigenvalue λ_i and its eigenvector \mathbf{u}_i of \mathbf{W} :

$$\mathbf{W}\mathbf{u}_i = \lambda_i \mathbf{u}_i \tag{11}$$

For Hermitian **W**,

$$\mathbf{W} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^+ = \sum_i \lambda_i \mathbf{u}_i \mathbf{u}_i^+ \tag{12}$$

³R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985 ⁴https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

Lecture 5, ELG7177: MIMO Comunications

Relationship of SVD and EVD

Set $W = HH^+$. Then,

$$\lambda_i(\mathbf{W}) = \sigma_i^2(\mathbf{H}), \ \mathbf{u}_i(\mathbf{W}) = \mathbf{u}_i(\mathbf{H})$$
(13)

and

$$\mathbf{W} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^+, \ \mathbf{H} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^+, \ \mathbf{\Lambda} = \mathbf{\Sigma}\mathbf{\Sigma}^+ \tag{14}$$

i.e. the EVD can be obtained from the SVD and vice versa:

- eigenvectors of HH⁺ are the right singular vectors of H
- eigenvectors of **H**⁺**H** are the left singular vectors of **H**
- eigenvalues of **HH**⁺ are the squared singular values of **H**

The Capacity of Tx/Rx beamforming

Extended channel: the channel + Tx/Rx beamforming. System capacity: the extended channel capacity,

$$C = \log(1 + \gamma_{r,max}) = \log(1 + \sigma_1^2(\mathbf{H})\gamma_1)$$
(15)

This is the largest rate (SE) the Tx/Rx beamforming can deliver.

Can we do better than that???

Special cases:

- SIMO channel: $\mathbf{H} = \mathbf{h}, \sigma_1(\mathbf{H}) = ? \mathbf{v}_1 = ?$
- MISO channel: $\mathbf{H} = \mathbf{h}^+$, $\sigma_1(\mathbf{H}) = ?$ $\mathbf{u}_1 = ?$
- Free space: $h_{ij} = 1$ for all i, j.

Can we do better than Tx/Rx beamforming ???

The capacity of MIMO channel is

$$C = \max_{p(x)} I(X; Y) \text{ s.t. tr } \mathbf{R}_{\mathbf{x}} \le P$$
(16)

X = the random Tx vector, Y = the random Rx vector.

How to find the max???

How to find the max???

Key:

$$H(Y|X) = H(\Xi) = \log |\mathbf{R}_{\xi}| + n \log(\pi e)$$
(17)
$$H(Y) \le \log |\mathbf{R}_{\mathbf{y}}| + n \log(\pi e)$$
(18)

so that

$$I(X;Y) = H(Y) - H(\Xi) \le \log \frac{|\mathbf{R}_{\mathbf{y}}|}{|\mathbf{R}_{\boldsymbol{\xi}}|}$$
(19)

 $\mathbf{R}_{\mathbf{y}} = \overline{\mathbf{y}\mathbf{y}^+}, \ \mathbf{R}_{\boldsymbol{\xi}} = \overline{\boldsymbol{\xi}\boldsymbol{\xi}^+}$ are covariance matrices of $\mathbf{y}, \ \boldsymbol{\xi}$. The UB is achieved by $X \sim CN(0, \mathbf{R}_x)$.

Observe that

$$\mathbf{R}_{\mathbf{y}} = \mathbf{H}\mathbf{R}_{\mathbf{x}}\mathbf{H}^{+} + \sigma_{0}^{2}\mathbf{I}$$
(20)

so that

$$I(X;Y) \le \log |\mathbf{I} + \sigma_0^{-2} \mathbf{W} \mathbf{R}_x|$$
(21)

where $\mathbf{W} = \mathbf{H}^+ \mathbf{H}$, and hence

$$C = \max_{p(x)} I(X; Y) \text{ s.t. } \text{tr } \mathbf{R}_{\mathbf{x}} \le P$$

$$\leq \max_{\text{tr } \mathbf{R}_{\mathbf{x}} \le P} \log |\mathbf{I} + \sigma_0^{-2} \mathbf{W} \mathbf{R}_{\mathbf{x}}|$$
(22)
(23)

Since the UB is achieved by $X \sim CN(0, \mathbf{R}_x)$, it is the capacity.

S. Loyka

Thus, the capacity is

$$C = \max_{\operatorname{tr} \mathbf{R}_x \le P} \log |\mathbf{I} + \sigma_0^{-2} \mathbf{W} \mathbf{R}_x|$$
(24)

and an optimal input is $X \sim CN(0, \mathbf{R}_x)$.

1

We will further normalize the noise power, $\sigma_0^2 = 1$.

Thus, the capacity is

$$C = \max_{\operatorname{tr} \mathbf{R}_x \le P} \log |\mathbf{I} + \sigma_0^{-2} \mathbf{W} \mathbf{R}_x|$$
(24)

and an optimal input is $X \sim CN(0, \mathbf{R}_x)$.

1

We will further normalize the noise power, $\sigma_0^2 = 1$.

But: How to find the max???

How to find the max???

How to find the max???

Key: Hadamard inequality.

Jacques Hadamard: 8 Dec. 1865 (Versailles, France) - 17 Oct. 1963 (Paris, France).

Audaman 17 / 28

The capacity is

$$C = \max_{\operatorname{tr} \mathbf{R}_{x} \leq P} \log |\mathbf{I} + \mathbf{W}\mathbf{R}_{x}|$$

$$= \max_{\operatorname{tr} \mathbf{R}_{x} \leq P} \log |\mathbf{I} + \mathbf{\Lambda}_{W}\mathbf{U}_{W}^{+}\mathbf{R}_{x}\mathbf{U}_{W}| \qquad (25)$$

$$= \max_{\operatorname{tr} \widetilde{\mathbf{R}}_{x} \leq P} \log |\mathbf{I} + \mathbf{\Lambda}_{W}\widetilde{\mathbf{R}}_{x}| \qquad (26)$$

$$\leq \max_{\operatorname{tr} \widetilde{\mathbf{D}}_{x} \leq P} \log |\mathbf{I} + \mathbf{\Lambda}_{W}\widetilde{\mathbf{D}}_{x}| \qquad (27)$$

$$= \max_{d_{i}} \sum_{i} \log(1 + \lambda_{wi}d_{i}) \text{ s.t. } d_{i} \geq 0, \sum_{i} d_{i} \leq P \qquad (28)$$

 $\widetilde{\mathbf{R}}_x = \mathbf{U}_W^+ \mathbf{R}_x \mathbf{U}_W$, $d_i = i$ -th diagonal entry of $\widetilde{\mathbf{D}}_x$

The UB is achieved by $\mathbf{U}_w = \mathbf{U}_{R_x}$, so that $d_i = \lambda_i(\widetilde{\mathbf{R}}_x) = \lambda_i(\mathbf{R}_x)$

S. Loyka

Thus, the capacity is

$$C = \max_{\lambda_i} \sum_i \log(1 + \lambda_{wi}\lambda_i) ext{ s.t. } \lambda_i \geq 0, \ \sum_i \lambda_i \leq P$$

and the signaling on the eigenvectors of $\mathbf{W} = \mathbf{H}^+\mathbf{H}$ (or right singular vectors of \mathbf{H}) is optimal,

$$\mathbf{R}^* = \mathbf{U}_W \mathbf{\Lambda}^* \mathbf{U}_W^+ = \sum_i \lambda_i^* \mathbf{u}_{wi} \mathbf{u}_{wi}^+$$
(29)

where $\mathbf{\Lambda}^* = \text{diag}\{\lambda_i^*\}$, i.e. an optimal power allocation to the channel eigenmodes.

But: How to find the max??? How to implement (29)???

S. Loyka

The Water-Filling (WF) Algorithm

The max_{λ_i} is given by

$$\lambda_i^* = (\mu^{-1} - \lambda_{wi}^{-1})_+ \tag{30}$$

where $(x)_{+} = \max(x, 0)$ is positive part; μ is the Lagrange multiplier responsible for the total power constraint $\sum_{i} \lambda_{i} \leq P$.

 μ is the (unique) solution to

$$\sum_{i} (\mu^{-1} - \lambda_{wi}^{-1})_{+} = P \tag{31}$$

Numerically: via e.g. bisection method. Analytically: possible in some special cases.

This is the optimal power allocation among the eigenmodes and is known as "water-filling" (WF).

The MIMO Capacity via the WF

The MIMO capacity is

$$C = \sum_{i} \log(1 + \lambda_{wi}\lambda_i^*) = \sum_{i:\lambda_{wi} > \mu} \log(\mu^{-1}\lambda_{wi})$$
(32)

so that active eigenmodes satisfy $\lambda_{wi} > \mu$.

Proof of WF: via the KKT conditions for constrained optimization (Lagrange multipliers).

Q.: prove that (31) (i) always has a solution, and (ii) the solution is unique. Hint: show that the l.h.s of (31) is monotonically decreasing in μ . When $\mu = 0$? $\mu = \infty$?

WF Examples

1. Identical eigenvalues of **W**: $\lambda_{wi} = \lambda_w \forall i$,

$$\lambda_i^* = \frac{P}{m}, \ \mathbf{R}^* = \frac{P}{m}\mathbf{I}, \ C = m\log\left(1 + \frac{P}{m}\lambda_w\right)$$
(33)

where $P = \gamma = \text{SNR}$ (with m = 1).

2. Rank-1 **W**:
$$\lambda_{w1} = \lambda_w, \lambda_{w2} = ... = \lambda_{wm} = 0$$
,

$$\lambda_1^* = P, \ \lambda_2^* = \dots = \lambda_m^* = 0, \ \mathbf{R}^* = P \mathbf{u}_1 \mathbf{u}_1^+$$
$$C = \log (1 + \lambda_w P)$$
(34)

3. Optimal Tx structure?

WF Examples

1. Identical eigenvalues of **W**: $\lambda_{wi} = \lambda_w \forall i$,

WF Properties

Q1: prove that only the strongest eigenmode is active at low SNR, while all eigenmodes are active at high SNR. Derive conditions for low/high SNR.

Q2: prove that the number of active eigenmodes increases with the SNR.

Q3: prove that stronger eigenmodes get more power, i.e. "rich get richer" or, equivalently, "capitalism is better than communism".

Q4: compare the MIMO channel capacity in (32) to that of the Tx-Rx beamforming in (15). Which is better (consider the most general case)? When are they equal?

Q5: consider now the MIMO channel with correlated noise,

$$\mathbf{y}(t) = \mathbf{H}\mathbf{x}(t) + \boldsymbol{\xi}(t) \tag{35}$$

where $\boldsymbol{\xi} \sim CN(0, \mathbf{R}_{\xi})$, \mathbf{R}_{ξ} = noise covariance matrix. Find its capacity. Correlated ("colored") noise can model interference.

Q6: In Q5, what happens if \mathbf{R}_{ξ} is singular?

Optimal Covariance R*: Implications

- How to use **R**^{*} for Tx/Rx design?
- How to generate optimal input **x** with covariance **R***?
- Insight into MIMO benefits?

Summary

- MIMO channel: Tx & Rx antenna arrays
- Tx/Rx beamforming, its capacity
- The MIMO channel capacity
- Water-filling algorithm
- Examples and special cases

Reading

- D. Tse, P. Viswanath, Fundamentals of Wireless Communications -Ch. 7.1-2, 8.1-8.3, Appendix A, B.
- J.R. Barry, E.A. Lee, D.G. Messerschmitt, Digital Communications (3rd Ed.), Kluwer, Boston, 2004. - Ch. 10.3.