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1. INTRODUCTION  

     Next generation networks such as Software Defined Networks (SDN) must support the 

integration of new paradigms of service offerings such as virtualized cloud computing, big data 

applications, data centers services, and rich multimedia content. Operators of such networks are 

responsible to configure policies and employ traffic monitoring tools and measurement 

mechanisms to detect and react to a wide range of network events and applications. However, the 

huge scale and diversity of the generated traffic from these services make it difficult for network 

operators to measure, in short timescales, the status and dynamics of the network in effective and 

efficient ways [1]. In turn, this puts network operators in an unprecedented stress to satisfy users’ 

expectation for delivering applications with guaranteed Quality of Service (QoS), because the 

fundamental prerequisite of offering guaranteed QoS is the presence of ubiquitous accurate traffic 

monitoring and measurement mechanisms. This is a very challenging prospect because many of 

today’s applications (e.g. interactive media applications) require QoS to be maintained along the 

whole end-to-end network path, and therefore require capturing their momentous dependence on 

various factors of performance degradation. For example, to perform congestion detection for 

interactive real-time video conferencing applications [2], we need to accurately detect and measure 

bandwidth changes, resulting from cross traffic, in milliseconds to lessen quality degradation of the 

video. Furthermore, the ability to measure different types of network traffic at different time-scales 

is very critical for tasks such as traffic engineering and congestion detection to guarantee 

application performance. Today’s network devices (e.g. switches, routers etc.) are inflexible to deal 

with different types of network traffic due to the underlying hardwired implementation of routing 

rules [3], and obstacles that SDNs promise to overcome. In this article, we take a look at traffic 

measurement methods is SDNs, cover their strengths and weaknesses, and point to open issues and 

remaining future challenges. 

     With the introduction of SDN [4] and OpenFlow [5] as novel approaches for better network 

management and virtualization, it is now easier to perform QoS measurement anywhere, anytime, 



and anyplace through the use of self-directed, self-tuning mechanisms that continuously monitor 

and measure network performance and react swiftly to problems. The “globalization” of traffic 

measurement in SDN provides a seamless network management of complementary systems and 

complex applications consisting of context and QoS aware components. Using programmable 

interfaces to OpenFlow controllers, software-defined measurement solutions provide consistent 

traffic measurement of flow parameters, such as bandwidth, packet loss, and latency to support the 

diversity requirements of next generation network applications and services. The flexibility of 

software-defined measurement gives the network operator the capability to offer dynamic QoS that 

guarantees service quality between endpoints, regardless of what path that service is carried on. 

Furthermore, traffic measurement in SDN allows for an indirect, non-intrusive, and statistical way 

to infer several characteristics that in some cases cannot to be measured in traditional large 

networks. Before discussing these software-defined measurements, a brief overview of SDN and 

the OpenFlow protocol is needed, this is presented next.  

  

2. OVERVIEW OF SOFTWARE DEFINED NETWORKS 

     The Open Networking Foundation (ONF), an organization dedicated to the promotion of SDN, 

defines SDN as the physical separation of the control plane from the forwarding plane (data plane) 

in traditional networks [4]. The data plane of the network typically consists of all the network 

elements (NEs) such as switches and the routers that allow packets to go from point A to point B. 

The control plane however, is the intelligence behind those NEs and decides how the packets 

should move from one NE to the other. Traditionally, when we look at any given network topology, 

there exists some very specialized hardware infrastructure that runs a dedicated (proprietary) 

operating system which has some specific applications or features. Users pay a lot of money for 

these closed boxes and they have to manage their networks by using those boxes. SDN is about 

breaking the above-mentioned closed environment by offering an open interface layer between the 

packet forwarding hardware and the network operating system that runs on the hardware, see 

Figure 1. By so doing, network management has been radically simplified. Decoupling the control 

plane from the forwarding plane enables the network control to become directly programmable and 

the underlying infrastructure to be abstracted for applications and network services [4]. In turn, this 

allows software developers to be oblivious of the underlying devices, and develop their networking 

logic the same way they do on any computing resources. Additionally, SDN architecture allows 

network administrators to dynamically adjust network-wide traffic flow to meet the changing needs 

of today’s data centers, carrier environments and campuses.  



 

Figure 1: The concept of a software-defined network, adapted from [3] 

     The network intelligence in SDN is logically centralized in a piece of software called the 

“controller” or the “network operating system” as shown in Figure 1. This controller maintains a 

global view of the network and this view is accessible through some well-defined open APIs 

(typically called northbound APIs) to be used by different applications. These APIs do not depend 

on proprietary software or hardware, so network administrators can write those themselves and 

dynamically and automatically enforce some QoS policies to manage and control a large number of 

network devices and traffic paths. For example, the software developer can write APIs to interact 

with the network and acquire information from the switches about their status and program flow 

tables. In fact the spectrum of support that such APIs can provide is very wide and can be custom 

tailored to meet the business requirements of network operators.  

     One of the standardized protocols for the communication between the network operating system 

(the controller) and the packet forwarding hardware is the OpenFlow protocol [5]. Major vendors 

have already implemented this protocol in their commercially available OpenFlow-enabled 

network switches. An example of an OpenFlow-based switch is shown in Figure 2. This protocol 

defines messages such as packet-received, send-packet-out, modify-forwarding-table, and get-stats.  



 

Figure 2: OpenFlow-based Switch, adapted from [5] 

     The data path of an OpenFlow switch presents a clean flow table abstraction; each row in this 

flow table consists of two parts: 1) match, and 2) action. A set of packet fields such as source or 

destination MAC addresses, Ethernet type, etc. will be used to match a specific flow, and an action 

(such as send-out-port, modify-field, or drop) will be set for each entry in this flow table. Once an 

OpenFlow switch receives a packet for which it does not have a matching entry (i.e. it has never 

seen that flow before), it sends this packet to the controller. It is now the controller’s decision to 

handle this packet (to either drop, or forward to a specific port, and/or to modify the contents, etc.) 

and also to instruct the OpenFlow switches (by adding a flow entry) on what to do with similar 

packets coming in the future. OpenFlow is the only standardized SDN protocol that allows direct 

manipulation of the forwarding plane of network devices [4]. OpenFlow is currently being 

exploited and implemented by the research community and the industry in several applications 

related to network management, traffic measurement, network and data center virtualization and 

wireless applications [27]. For traffic analysis applications, OpenFlow allows for flexible 

automated fine-grained flow measurement, which makes it possible to develop innovative tools to 

improve traffic measurement capabilities of a switch using real time machine learning algorithms, 

databases, and any other software mechanism. These innovative software mechanisms will reduce 

operational cost, improve network stability, and support emerging IT services [4] . 

  

3. CURRENT TRAFFIC MEASUREMENT APPROACHES IN SDN SYSTEMS 

   As discussed, next generation networks are characterized by their huge scale and diversity of the 

generated traffic. In such networks, it is not an easy task to predict the needed traffic measurement 

characteristics without enough measurement data about individual components in each part of the 

network. Traditionally, this is tackled by two types of measurement approaches, namely, active and 

passive methods [6]. In active measurement, network flows are continuously monitored for 
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performance, by sending special probe packets over the network paths. The aim of this process is, 

for example, to measure one-way delay, round-trip-time (RTT) or to adjust forwarding policies in 

response to load changes. Although active measurement can offer a different level of granularity of 

the end-to-end QoS measurement, it imposes significant measurement overhead that may disturb 

critical traffic flows. On the other hand, in passive measurement the network is tapped at 

predefined points where real traffic is captured and analyzed. Passive measurement does not cause 

any overhead in the network since it does not send any probe packets. It allows for processing of 

local traffic states as well as global behavior of traffic flows passing through specific network 

locations.   

       Active measurement in SDN requires careful planning to cope with the requirements of a 

centralized control architecture. The deployment of active measurement devices increases the data 

acquisition by multiple orders of magnitude, leading to SDN’s centralized control mechanism to 

become quickly saturated [7]. Consequently, the streams of data acquired by the distributed devices 

in the network cannot provide the SDN controller with the necessary information in the timeframes 

necessary to minimize the impact of traffic disturbance [7]. Even in the presence of fast analytical 

models (e.g. machine learning techniques, Monte Carlo statistical methods, automation tools, etc.) 

aimed at converting the data into decisions, the controller faces communication bottlenecks, 

intractable control and optimization problems, increasing complexities, and vulnerability of the 

centralized infrastructures. Passive measurement methods, although non-intrusive and without 

generating additional traffic in the SDN, often depend on packet-sampling and employ statistical 

methods to infer the state of the traffic. The main issue with these techniques is that small flows 

may be missed or multiple monitoring nodes along an SDN flow path may sample exactly the same 

packet leading to measurement inaccuracies [8]. Furthermore, passive measurement requires 

sophisticated analytical mechanisms to process network traffic at high speed as in the case of 

today’s datacenter networks. 

    Currently, several emerging approaches are trying to overcome the aforementioned challenges 

by efficiently utilizing the flexibility of SDN to offer programmable interfaces to attain fine-

grained measurement of network flows. Existing studies, which are either proposing passive 

measurement methods or active measurement methods, can roughly be categorized into three main 

streams, see Figure 3: The first stream focuses on finding a balance between traffic measurement 

accuracy and overhead implications, by using techniques such as traffic sampling, aggregation, 

intelligent queries, etc. The second stream pays more attention to resources usage as a tradeoff with 

measurement accuracy. Finally, the third stream is mainly concerned with providing accurate 

traffic measurement in real time for reactive/proactive decision making.      



 

Figure 3: Traffic measurement in SDN  

     SDN Traffic Measurement Accuracy and overhead implications: Continuously monitoring 

the network often introduces overhead, which needs to be taken into consideration as a tradeoff 

with traffic measurement accuracy. In an effort to find a happy zone between accuracy and 

overhead implications, Jose et al. in [9] studied the prospect of measuring large scale traffic 

aggregation in commodity switches, by proposing a measurement framework where switches 

match packets against a small collection of wildcard rules available in Ternary Content 

Addressable Memory (TCAM). This approach reduces the overhead of the controller significantly, 

because the switch processing the packet identifies the matching rules locally and determines if it 

needs to drop the packet or forward it. The framework is evaluated using Hierarchical Heavy Hitter 

(HHH) program to understand the tradeoff between accuracy and overhead. However, updating 

matching rules is a major issue in this approach. Although the architecture proposes a separate 

controller to add new rules, lack of prior indication of HHH occurrence requires the installation of 

additional mechanisms to monitor and discover those HHHs. Similar to [9], OpenNetMon [10] and 

iSTAMP [11] leverage the means of OpenFlow to measure traffic parameters. OpenNetMon 

determines whether end-to-end QoS parameters are actually met for each flow. It is a pull-based 

active measurement approach where network flows are continuously monitored between predefined 

endpoints for throughput, packet loss and delay. OpenNetMon uses an adaptive fetching 

mechanism to pull data from switches where the rate of the queries increases when flow rates differ 

between samples and decreases when flows stabilize. iSTAMP uses (de)aggregation measurement 

mechanism, which dynamically partitions the TCAM entries to allow fine-grained or course 

measurement tasks of incoming flows. For example, one partition of TCAM is used for aggregated 
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flow measurement and another partition is for de-aggregation when direct per-flow measurement is 

required. Flows are “stamped” for direct measurement if they are deemed to be important. iSTAMP 

uses an intelligent Multi-Armed Bandit (MAB) based algorithm to process these two sets of 

measurements, which are then jointly processed to estimate the size of all network flows using 

different optimization techniques.  

     The tradeoff between measurement accuracy and overhead is also studied in [12] and [13]. The 

work in [12] proposes a framework that can instruct hash-based switches for collecting traffic 

information, along with the HHH algorithm for defining important traffic, to support different 

measurement tasks. However, monitoring rules need to be carefully delegated across the network. 

The work in [13] uses a prediction based algorithm for flow counting to detect anomalies because 

the granularity of measurement along both the spatial and the temporal dimensions changes 

dynamically. In this way, anomaly detectors can instruct the flow collection module to provide 

fine-grained measurement data in case of expecting an attack or it can collect coarser-grained flow 

data otherwise. The work in [14] proposes an OpenFlow-based approach, called OpenTM, for 

traffic matrix estimation using simple logic for querying flow table counters. The logic is based on 

keeping statistics for each active flow in the network. The information about active flows are pulled 

from the switches periodically and then compared for accuracy. Even though it follows the same 

concept as in FlowSense [16] to compute link utilization, OpenTM is an active network-wide 

measurement approach that at the end will introduce overhead in the process of periodically pulling 

statistical information from switches across the network. Furthermore, OpenTM uses a 

combination of selection methods to select switches for pulling information; this may lead to some 

measurement inaccuracy as investigated in [8]. In [15], an active monitoring framework for SDN, 

called Payless, is proposed. Payless focuses on the tradeoff between accuracy and network 

overhead. It provides a flexible RESTful API for flow statistics collection at different aggregation 

levels. The key advantage of Payless is that it uses an adaptive statistics collection algorithm to 

attain accurate information in real-time without incurring significant network overhead. It also uses 

Floodlight controller’s API to implement the proposed mechanism. It has been shown through 

evaluation that Payless can indeed provide low overhead and can achieve higher accuracy of 

statistics collection than FlowSence. But, the accuracy seems to increase only at the expense of the 

overhead. 

     FlowSense in [16] uses passive measurement by which the network sends performance changes 

about the flows instead of querying the switches on demand. The approach utilizes the PacketIn 

and FlowRemoved messages, which are sent by switches to the controller when a new flow comes 

in or upon the expiration of a flow entry. These capabilities are provided by OpenFlow to query 



switches for the number of packets or bytes in flows matching against a specific rule or traversing a 

network link. Evaluation results show that FlowSense has a promising performance compared to 

other approaches and can accomplish 90% of link utilization under 3 seconds. 

     SDN Traffic Measurement Accuracy and resources usage: The above measurement 

techniques were not concerned by resource usage and its effect on measurement accuracy. 

DREAM [17] is a dynamic resource allocation software-defined measurement framework that 

balances between user-specified level of accuracy and resource usage for measurement activities. 

In DREAM, resources are not allocated before the execution of the measurement task, but are 

dynamically deployed to achieve the desired level of accuracy based on traffic characteristics. 

DREAM framework is tested  using HHHs programs show that DREAM can support more 

concurrent tasks with higher accuracy than several other alternatives. Aligning measurement tasks 

between the host and the network is also a major activity that in the end may reduce the overhead 

of an active measurement approach. The work in [18] argues that current controller applications in 

SDN systems are designed to be proactive, which may require the switches to accommodate a 

number of flow table entries that exceed the capabilities of their TCAMs. While equipping SDN 

switches with more powerful TCAMs is a feasible option, this may come at the expense of 

increasing operation and power consumption cost. The study proposes that controllers should 

consume resources efficiently using a reactive logic control approach. As in DREAM, the study 

suggests that resources must be allocated and freed depending on the network load, the effective 

behavior of the flows, their granularity and their inter-packet arrival time. The evaluation of the 

system shows that such approach is promising to enhance the traffic measurement flexibilities 

without extending the flow tables. Another algorithm called Baatdaat is studied in [19] and uses 

OpenFlow running on NetFPGA programmable switches, which permits real-time dynamic flow 

scheduling in datacenters. The proposed algorithm can adapt to instantaneous traffic bursts as well 

as to average link load by using spare DC network capacity to mitigate the performance 

degradation of heavily utilized links. Experiments show that Baatdaat can reduce network-wide 

maximum link utilization by up to 18% equal cost multipath (ECMP). 

     Finally, the proposed HONE platform in [20] presents a uniform stack for a diverse collection of 

measurements in SDN-based systems. HONE uses software agents residing on hosts, and a module 

interacting with network devices. Since continuously collecting statistical data about network flows 

is expensive, HONE offers two techniques to process flow statistics: The first technique, known as 

lazy materialization of the measurement data, uses database-like tables for uniform abstract 

representation of statistical data collected from hosts and network devices. The aim of this 

technique is to minimize measurement overhead by allowing the controller and the host agents to 



analyze queries of necessary statistics for multiple management tasks at appropriate frequencies. 

The second technique offers data parallel streaming operators for programming the data-analysis 

logic. The operators can also be used in a hierarchically fashion for aggregate analysis among 

multiple hosts. Scalability is a main problem in deploying HONE as software agents need to be 

installed in every host and then synchronized to populate the statistical tables in a timely fashion to 

process meaningful queries. 

     SDN Traffic Measurement Accuracy in real time: Traffic measurement in SDN extensively 

relies on collecting statistical data about network flows in real time. The large amount of detailed 

statistics provided by the hosts may raise a scalability issue for real-time analysis, specifically 

when the measured data is for time sensitive applications. The study in [21] proposes PLANCK, a 

software-defined measurement architecture, which utilizes the capability of port mirroring that 

exists in most commodity switches. The extracted measurement statistics of the network flow is 

achieved in 280 microseconds to 7 milliseconds on a 1 Gbps commodity switch and 275 

microseconds to 4 milliseconds on a 10 Gbps commodity switch. This is faster than in traditional 

networks by orders of magnitude. Port mirroring is a common approach to monitor traffic passing 

through the mirror using a variety of network analyzers and security applications. But while it is a 

useful technique, traffic volume may exceed the capacity of the ports, causing the switch to start 

dropping packets. To solve this issue the authors suggest buffering the traffic statistics for further 

analysis. However, the process will only be useful to study disturbing events after the fact and not 

to take actions to remedy situations in real time. Using sampling-based SDN measurement 

methods, IBM research lab proposes OpenSample [22], which leverages sFlow [23] packets to 

provide near–real-time measurements of both network load and individual flows by capturing 

packets from the network. OpenSample is a low-latency platform that uses TCP sequence numbers 

from the captured headers to measure accurate flow statistics. Using sampling for network 

monitoring allows OpenSample to have a 100 millisecond control loop rather than the 1–5 second 

control loop of traditional polling-based approaches. It is implemented with Floodlight OpenFlow 

controller and evaluated on a testbed comprised of commodity switches. One of the main 

advantages of OpenSample is that it considers any TCP flow , hence it can detect elephant flows 

(very large and continuous flows), and requires no modification to switches, making it highly 

marketable.  

        As an alternative to OpenFlow, OpenSketch [24] is proposed as a software-defined 

measurement architecture. OpenSketch uses a measurement library in the control plane to 

automatically configure and manage resources for measurement activities. The library makes it 

easier to customize and apply theoretical algorithms to measure flows in commodity switch 



components. OpenSketch can be used for several measurement activities including HHH 

measurement, traffic distribution and link utilization. The main barrier for OpenSketch as a 

marketable SDN traffic measurement solution is the need for upgrading network nodes, which is a 

very expensive undertaking. Furthermore, it is very rigorous and time consuming to standardize a 

new protocol. OpenFlow has already taken off and is widely accepted as an industry standard in 

datacenter environments and is increasingly being implemented in commodity switches. With 

OpenFlow gaining momentum, it will be faster adopted by ISPs and research communities.  

     Table 1, summarizes the discussed approaches of traffic measurement in SDN. It must be 

mentioned that several works such as network monitoring, flow management, fault tolerance, and 

topology update, although beyond the scope of this article because they are not specifically related 

to traffic measurement, are equally important for the wider sense of traffic engineering in SDNs, 

and can be studied in [25] and [26].   

Table 1: Comparison of current traffic measurement methods in SDNs 

Method Measurement 

Type 

Mechanism   Analysis Summary 

Jose et al. [9]  Active  Measure large scale 

traffic aggregation using 

switch matching rules  

Reduces the overhead, but 

requires continuous update 

to the matching rules  

OpenNetMon [

10]  

Active  Adaptive fetching of 

data from switches. 

Accuracy increases at the 

expense of overhead 

iSTAMP [11]  Active  TCAM partitioning for 

aggregate and de-

aggregate traffic. 

Accuracy increases, 

however it needs additional 

mechanism to “stamp” 

important flows. 

Moshref et 

al.  [12]  

Active  Instructs hash-based 

switches for collecting 

traffic information. 

Increases accuracy, but 

monitoring rules need to be 

carefully delegated across 

the network. 

Zhang [13]  Active  Prediction based 

algorithm for flow 

counting to detect 

anomalies. 

Accurate for identified 

traffic only. 

OpenTM [14]  Active  Constantly polling the 

switch for collecting 

flow statistics. 

High accuracy and high 

overhead. 

Payless [15] Active  Adaptive algorithm for 

polling flow statistics 

with low and high 

interval frequency. 

Varying accuracy and 

overhead based on the 

length of the polling 

interval. 

FlowSense [16

] 

Passive   Utilizes PacketIn and 

FlowRemoved. 

High accuracy and low overhead. 

 

DREAM [17] Active  Resources are 

dynamically deployed to 

achieve the desired level 

of accuracy. 

Higher accuracy for 

concurrent tasks compared 

with other alternatives. 

Dusi et al. [18]  Active  Argues for equipping 

SDN switches with 

more powerful TCAMs.  

Increases accuracy at the 

expense of adding 

resources. 

Baadaat [19]  Active  Scheduling algorithm Adapts to instantaneous 



for real-time dynamic 

flow scheduling in 

datacenters.  

traffic bursts as well as to 

average link load. 

HONE [20] Active  Uses software agents 

residing on hosts, and a 

module interacting with 

network devices for 

periodically collecting 

statistical data about 

network flows. 

Scalability is a main 

problem in deploying 

HONE as software agents 

need to be installed in 

every host and then 

synchronized to populate 

the statistical tables in a 

timely fashion. 

PLANCK [21] Active  Uses port mirroring that 

exists in most 

commodity switches.  

Very fast statistical results, 

but traffic could exceed the 

capacity of the ports. 

OpenSample [

22] 

Passive  Using sFlow and TCP sequence 

numbers for achieving low 

latency. 

 

High accuracy with low latency. 

OpenSketch [2

4] 

Active Uses a measurement library in the 

control plane to automatically 

configure and manage resources 

for measurement activities.  

High accuracy with low latency. 

 
4. CHALLENGES AND OPEN RESEARCH ISSUES   

   There is no doubt that SDN is a breakthrough in the networking industry as we know it today. 

Traffic measurement is a key enabler to achieve the potential benefits of the SDN paradigm; 

however, there are still challenges and several critical research issues. In Figure 4, we provide an 

overview of four major challenges of SDN traffic measurement and the road map for further 

research.  

 

Figure 4: Challenges and open issues of traffic measurement in SDN 
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Flexible flow measurement and efficient utilization of network resources: The main goal of 

traffic measurement in SDN is to provide a flexible flow measurement with different granularities 

to satisfy a variety of applications. This task; however, is not trivial because it requires estimation 

of fine-grained volume of network flows with flexible settings in interconnected heterogeneous 

large scale networks. In addition, it requires traffic prediction, forecasting, and estimation of 

network resources. There are some scenarios where over time, network resources are not used 

properly i.e. link utilization/bandwidth utilization becomes non-optimal over time in the network 

due to scattered network services. For example, when new services with small bandwidth are being 

provisioned without consideration of future services that might possibly require more bandwidth, 

then the most optimum routes will get assigned to services with small bandwidth (first-come first-

serve). Later, when we want to provision high-bandwidth services, inevitably less optimum paths 

will be used for them. In such scenarios, mechanisms are needed to provide flexible and dynamic 

measurement schemes that would inform network operators and help them maximize their resource 

utilization, rearranging the network by allocating small services to another path dynamically, and 

better utilize link capacities for the new high-bandwidth services. To do such rearrangement with 

minimum impact/overhead, it requires research in powerful sampling techniques to learn about 

flows and estimating their size, efficient storage, algorithmic approaches for flow accounting, and 

dedicated APIs that run on controllers to measure and manage bandwidth.  

Traffic matrix estimation and modelling:  Traffic matrices reflect the amount of traffic that flows 

between pairs of sources and destination in a network. The OpenFlow protocol in SDN provides 

flow table counters that allow other mechanisms to estimate traffic matrices, by querying the flow 

tables as shown in [13]. The information provided by traffic matrices (e.g. size of flows) are of 

special importance for diagnosing traffic related problems, discovering traffic anomalies, routing, 

and load balancing. Next generation networks are complex, heterogeneous, and with large-scale 

interconnected domains. Therefore, it is very challenging to accurately determine the traffic matrix 

when services are provisioning dynamically in the network. The logic for forwarding the packets is 

determined by the SDN controller and is implemented in the flow table at the SDN forwarding 

elements. Providing traffic matrices in a ubiquitous fashion to be used for optimal traffic 

engineering in SDN is still in its infancy stage. There is a pressing need to find mechanisms to 

estimate and model traffic matrices through mathematical and statistical methods as well as 

scalable algorithms to process high number of traffic matrix data.     

Traffic monitoring and measurement integration in real time: Real time applications are delay 

sensitive and demand stringent QoS requirements and provisioning to adapt to network changes 

and dynamic resource allocation. For example, wireless mobile applications require real time traffic 



monitoring and measurement to adapt to network channel changes due to users’ mobility. Other 

examples such as online multi-player games, interactive online learning applications etc. connect 

very large number of users who interact with the application and response to each other in real 

time. These applications fundamentally require QoS to be maintained along the whole end-to-end 

network path based on a global network-wide policy. Although SDN allows the real-time 

centralized control of a network and user defined policies, the planner must deal with scalability 

issues to integrate significant number of fine-grained measurement statistics to a centralized 

controller for quick decision to adapt to QoS policies. Decision making at the logically centralized 

controller needs mechanisms to synchronize the integration of real-time traffic monitoring and flow 

analysis from different controllers. They also need mechanisms for inference and statistical 

prediction methods in real time to compensate for size limitation of the controller back-end 

database. Special focus would be on constructing APIs that run on the controller to do automated 

inference of measured traffic data, context dependent traffic analysis, real time QoS and Service 

Level Agreement monitoring (e.g. end-to-end delay ) for delay-sensitive applications. 

Traffic measurement for SDN security: As SDNs become widely deployed in cloud computing 

infrastructure, data centers, carrier networks and other highly sensitive computing paradigm, 

potential security vulnerabilities in the form of external and internal attacks are expected to rise. As 

such, integrated traffic measurement and application monitoring architectures for network security 

are most needed to detect and combat attacks on valuable assets. Currently, there has been limited 

traffic measurement approaches for SDNs considering security issues. As a matter of fact, SDNs 

are more vulnerable to attacks than traditional networks. This is mainly due to the centralized 

architecture of SDN, which makes the controller an appealing target for attacks to control the 

operation and carry out malicious activities inside the entire SDN. Other forms of attacks such as 

Denial of Service allows the adversary to reach individual network nodes, hosts, or users, and 

undermine the desired network performance. Traffic measurement mechanisms are therefore 

required to diagnose specific sources of events, security violations and attacks in the SDN. Traffic 

measurement data can be harvested from nodes and then analyzed and matched against security 

policies to reduce the possibilities of misconfiguration that opens doors for attackers. Mechanisms 

for analyzing traffic measurement data are also needed to accurately identify and diagnose 

anomalies as well as isolate and trace back anomalous signals within that data. However, when the 

controller itself is under attack (or the source of the attack), then the open question becomes: where 

to correlate detected events of an attack and how to analyze and coordinate a fight back? The 

answer to this question may be in developing real time anomalies detection, classification and 

analysis at the flow level in SDN switches. Also, this may require developing applications for 



collecting traffic data and analyzing packets that are not protocol conformant for quickly 

identifying unusual behaviour. 

5. CONCLUSION  

In this article, we presented the current trends in traffic measurement in SDNs. Specifically, we 

covered important proposed mechanisms and highlighted their strengths and weaknesses. In 

general, traffic measurement in SDN is still in its infancy stage and several challenges require 

further research. We have identified those challenges and pointed out some important unsolved 

research issues, which require further in-depth investigations. 
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