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CHAPTER 1 
MAGNETIC CIRCUITS 

 
1.1 Basic Magnetic Circuit Analysis  
 
1.1.1 Magnetic Circuit Definitions 
 
The simplest method of analyzing magnetic systems such as inductors, 
transformers, solenoids etc., is to derive a magnetic circuit model and then apply 
basic magnetic circuit analysis on the model.  Basic magnetic circuit analysis is 
analogous to basic electric circuit analysis once some simple definitions are 
established.  Figure 1.1 shows a simple magnetic system consisting of a 
magnetic structure with a winding, around it.  A current, I, flows through the coil.  
There are N turns in the winding. 
The magnetic circuit model is shown in Figure 1.2a whereas the analogous 
electrical circuit model is shown in Figure 1.2b. 
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Figure 1.1 A Simple Magnetic System 
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Figure 1.2 Magnetic and Electrical Equivalent Circuit Models for the 
Magnetic System of Figure 1.1 

 
In the analysis of the electrical circuit model the governing equation is: 
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 V = IR 
 
Where: 
 
 V is the electric force, in volts 
 I is the electric current, in amperes 
 R is the electrical resistance, in ohms  
 
In the analysis of the magnetic circuit model the governing equation is: 
 
 F = Φ ℜ  
 
Where: 
 
 F is the magnetomotive force, mmf, in ampere-turns 
 Φ is the magnetic flux, in webers 
 ℜ  is the magnetic reluctance, in amper-turns/weber 
 
Also, in most cases, the magnetomotive force is produced by the electric current 
in the coil, as given by the equation: 
 
 F = NI 
 
Where: 
 
 N is the number of turns in a winding 
 I is the current in the winding 
 
In electrical circuits the resistance, R, is usually known and V or I are to be 
determined.  However in magnetic circuits the reluctance, ℜ , has to be 
determined from fundamental physical properties of the materials involved. 
 
The analysis of magnetic circuits is further complicated by the fact that the most 
relevant physical properties of magnetic materials are not functions of the bulk 
external variables, F  or Φ, per se but of related internal variables, H and B, 
where H is the magnetic field intensity, (or magneto-motive force  per unit 
length), and B is the magnetic flux density per unit of cross sectional area.  The 
physical properties of the material will determine how much flux density will be 
produced by a given level of field intensity.  In other words; 
 
 B = µH 
 
Where µ is the permeability of the material and is usually expressed as: 
 
 µ = µoµr 
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And: 
 µo is the permeability of free space, 4π x 10-7  
 µr is the relative permeability of the specific material involved. 
 µr = 1 for air 
 1 << µr < 10,000 for magnetically useful materials 
 
The fundamental relationships between B, H and Φ, F  are as follows. 
  
 Φ = Bz∂A  

Where B is the flux density in Webers/m2 , (or Tesla), and A is the cross 
sectional area of the material.  This equation can be reduced in simple cases 
where B does not vary with area: 
 
 Φ = Bz∂A  = BA      if B is constant with A 
 
Also: 
 
 F = Hz∂λ 

 
Where Η is the magnetic field intensity in ampere-turns/meter and λ is the length 
of the magnetic path.  This equation can be also reduced in simple cases where 
F does not vary with length: 
 
 F  = Hz∂λ  = Hλ      if H is constant with λ 

 
Expressions for the reluctance, ℜ , can now be determined from: 
 

 ℜ  = F
Φ

 

 
In geometrically simple cases, we can substitute for: 
 
 F = Hλ  and   Φ = BA  to obtain: 
 

 ℜ  = H
BA

λ  

 
Another substitution can be made for  
 
 B = µH = µoµrH 
 
To obtain: 
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 ℜ  = λ
µ0µrA

  

 
This equation is valid only for uniform materials with geometrically simple 
(usually rectangular) shapes. 
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Example 1.1 
 
Determine the magnetic flux in a toroid of inner radius r1  and outer radius r2 .  
The toroid has a rectangular cross section of width W.  A winding of N turns is 
uniformly distributed over the entire toroid and carries a current of I amps. 
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Figure 1.3 A Magnetic System Consisting of a Toroid  

 
Solution to example 1.1 
 
The toroid is shown in Figure 1.3.  The magnetic flux can be determined from: 
 

 Φ = Bz∂A= BW
r

r

1

2

∂z r  = W B
r

r

1

2

∂zr  

 
Substitute for B = µoµrH to obtain: 
 

 Φ = W H  o r
r

r

1

2

µ µ ∂z r = µ µo r
r

r

W H  
1

2

∂zr  

 
Now we can derive H from: 
 
 F = NI = H∂zλ 
 
Where λ is the path length, or in this case, the circumference for a given radius r.  
Since the windings are uniformly distributed over the entire toroid, then H will not 
vary over any given path length, even though the path length does vary with 
radius.  Thus H will vary with radius, r, but for any given r, H will be constant over 



  1-6    

09/17/01 

the entire circumference, λ . 
Thus: 
 
 F = NI = H∂zλ= Hλ      because H is constant with λ 

 
Substitute for: 
 
 λ = 2πr  
 
To obtain: 
 
 F = NI = H2πr 
 
Rearrange to obtain: 
 

 H = NI
2 rπ

 

 
Substitute for H into the last equation for Φ to obtain: 
 
 

 Φ = µ µo r
r

r

W H  
1

2

∂zr = µ µ
πo r

r

r

W NI
2 r

 
1

2

∂z r  = µ µ
π

o r

r

rWNI
2 r

 
1

2 ∂zr   

 
Solve the integral to obtain: 
 

 Φ = µ µ
π

o r 2

1

WNI
2

r
r

ln
L
NM
O
QP 

 
In examples such as this there is often no need to determine ℜ , nevertheless: 
 

 ℜ  = F
Φ

 = NI
Φ

 = 2

WN r
ro r
2

1

π

µ µ ln
L
NM
O
QP
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1.1.2 Series/Parallel Circuits 
 
Most practical magnetic circuits do not consist of simple, uniform magnetic paths.  
However, most of them can be broken down into a number of simple paths each 
of which can be approximately uniform.  For example the magnetic circuit shown 
in Figure 1.4 can be represented by the equivalent circuit shown in Figure 1.5 
which consists of a number of magnetic elements, ℜ a , ℜ b , ℜ c , ℜ d , ℜ x , ℜ y , 
ℜ g1 , ℜ g1 .   
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Figure 1.4 Magnetic System Consisting of Several Elements 
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Figure 1.5 Magnetic Equivalent Circuit for the System of 

Figure 1.4 
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Each of these elements has a simple, rectangular geometry and will have an 
approximately uniform magnetic flux density and field intensity.  Where ℜ a, ℜ b, 
ℜ c, ℜ d, ℜ x, ℜ y represent the reluctance of the various iron members, and ℜ g1, 
ℜ g2 represent the reluctance of the air gaps. 
Therefore if; 
 
 µr  >> 5,000 
Then, 
 
 ℜ a, ℜ b, ℜ c, ℜ d, ℜ x, ℜ y<< ℜ g1, ℜ g2 
 
Thus the equivalent circuit can be adequately represented by the circuit shown in 
Figure 1.6a in which only the air gap reluctances, ℜ g1, ℜ g2, are included.  This 
equivalent circuit can be further simplified, by combining reluctances to produce 
the circuit shown in Figure 1.6c, which consists of a single reluctance, ℜ , where: 
 

 ℜ  = 
ℜ ℜ

ℜ ℜ
g1 g2

g1 g2 +  
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Figure 1.6  Simplifying the Magnetic Circuit of Figure 1.5 
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1.2 Electrical Characteristics of Magnetic Circuits  
 
1.2.1 Inductance 
 
In most electrical circuits an important parameter of magnetic elements is their 
inductance, L, which is defined as: 
 

 L = 
λ
I   

Where λ is the flux linkage, or magnetic charge, in the magnetic system and is 
analogous to the electrical charge, Q in a capacitor. 
 
The magnetic charge, λ, is defined as: 
 
 λ = NΦ 
 
 
Substitute for λ to obtain: 
 

 L = N
I
Φ  

 
Substitute for Φ, to obtain: 
 

 L = N2

ℜ
 

    = N A2
o rµ µ
λ

 for uniform and geometrically simple structures 

 
It is often convenient to derive expressions for voltage, current, power, and 
energy as functions of inductance.   
For example,  
 

 V = ∂λ
∂t

 = ∂
∂
(LI

t
)  = L ∂

∂
I
t

 + I ∂
∂
L
t

  

    = L I∂
∂t

    for L constant 

 
Conversely, 
 

  I = 1
L

V∂zt  

 
Also: 
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 W = P∂zt = (VI)∂z t = (L )∂
∂

∂z I
t

t  = LI∂z I  

 W = 12 LI2      for L constant 
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1.2.2 Electrical Performance of Ideal Inductors 
 
Given an ideal inductor, of inductance L, with a current i(t) and a voltage v(t) as 
shown in the circuit of Figure 1.7a.   
 

i(t)

v(t) L

a) Ideal Inductor

v(t)

i(t)

t

t

b) Voltage & Current
for v(t) constant

v(t)

i(t)

t

t

c) Voltage & Current
for v(t) “one shot” pulse

t= T

 
Figure 1.7 Voltage and Current in an Ideal Inductor 

 
From the preceding analysis we can derive expressions for the voltage and 
current: 
 

 v(t) = L i( )∂
∂

t
t

 

 

  i(t) = 1
L

v( )t t∂z  

 
a) Assume the applied voltage is a constant DC level, Vdc.  Therefore: 
 
 v(t) = Vdc 
 
and thus, 
 

  i(t) = 1
L

v( )t t∂z  = 1
L

v( )t t∂z  = V
L
dct  

 
This expression indicates that the inductor current, i(t), will increase linearly with 
time as shown in Figure 1.7b.  The current will continue to increase without 
bound.  In real life the current will increase until something breaks, i.e. a fuse 
blows, or some external element limits the current. 
  
b) Assume the applied voltage is a "single shot" pulse, as shown in Figure 1.7c.  
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In this case the expression for v(t) is: 
 
 v(t) = Vp               for 0 < t <  Τ 
and         
 
 v(t) = 0                for Τ< t  < ∞ 
 
From the preceding analysis we can determine that: 
 

  i(t) = 
V
L
pt      for 0 < t <  Τ  when v(t) = Vp 

 
Also at t = Τ: 
 

  i(Τ) = 
V T
L
p  

And at t = Τ+: 
 

 v(t) = 0 = L i( )∂
∂

t
t

 

   
Thus: 
 

 ∂
∂
i( )t
t

= 0 

 
Which means that the inductor current will not change from its preceding value 
even though the applied voltage has gone to zero.  In other words: 
 

 i(t) = 
V T
L
p         for Τ< t  < ∞          even though v(t) = 0 

 
 
This indicates that the current through an ideal inductor will not change if the 
applied voltage is zero.  
  
A noteworthy application of this principle is in super conducting magnets, in 
which the coils are cooled below the critical temperature such that the wire 
resistance disappears and the inductor becomes "ideal".  Once a current is 
established in such an inductor it will continue without diminishing, and maintain 
a high magnetic field, even with no additional voltage or energy input, (provided 
the windings are maintained below their critical temperature). 
 
An equally noteworthy, though adverse, effect of this principle is that when an 
inductor is switched in a switching circuit, eg. a power supply, the inductor 
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current may not be zero even if its applied voltage has been removed. 
 
c) Assume the applied voltage is a sinewave: 
 
 v(t) = Vsin(ωt) 
 
Therefore, 
 

  i(t) = 1
L

v( )t t∂z  = 1
L

Vsin( )ωt t∂z  =  -V
Lω

ωcos( )t t
t t
=

=
0  

  i(t) = V
L

 -  cos( t)
ω

ω1  

 
Thus the current through an ideal inductor can have a DC component even 
though the applied voltage is a pure sinewave.  In an ideal inductor this DC 
current will continue indefinitely, but in a real inductor there will always be a 
winding resistance, R, that will cause the DC component of the current to decay 
with a time constant of R/L. 
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1.2.3  Electrical Interaction Between Two Ideal Inductors 
 
Assume that two inductors are connected as shown in the circuit of Figure 1.8 
and the initial conditions, at t = 0-  are: 
 
 i1(0-)  = 0 
 i2(0-)  = I 
 Switch S is closed 
 
 

2

1i (t)

v(t)

L 1

L

S

2

i (t)

 
Figure 1.8  Two Ideal Inductors Connected by a Switch 

 
At t=0 switch S is opened, which has the effect of forcing the current through 
each inductor to be the same, i.e.: 
 
 i1(0+)  = i2(0+)  = i(0+ ) 
 
The new value of inductor current is determined by the conservation of flux 
linkage, (analogous to the conservation of charge in capacitors): 
 
 ∑λ(0-) = ∑λ(0+)   
 
or: 
 
 i1(0-) L1  + i2(0-) L2  = i1(0+) L1  + i2(0+) L2   
              0      +      IL2    = i(0+ )L1  + i(0+ )L2    
 
Solve for : 
 

 i(0+ ) = IL
L  +  L

2

1 2

 

 



  1-15    

09/17/01 

Thus i1 goes from 0 to IL2 /(L1 +L2 ) instantaneously and i2 goes from I to IL2 /(L1 
+L2 ) instantaneously, which seems contrary to the previous conclusion that the 
current through an ideal inductor cannot change instantaneously.  However, in 
this case the overriding law is that the total flux linkages in the inductor pair 
cannot change, just as the total charge in a capacitor pair cannot change.  
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1.2.4 Magnetic vs Capacitive Analogies 
 

 Magnetic Capacitive 

Physical Parameter L C 

Voltage v = L i∂
∂t

 v = 1
C

i∂zt  

Current  i = 1
L

v∂zt  i = C v∂
∂t

 

Energy W = 12 LI2  W = 12 CV2  

Charge λ = LI Q = CV 

Charge Derivative v = ∂λ
∂t

 i = ∂
∂
Q
t

 

Conservation Equation ∑λ(0-) = ∑λ(0+)   ∑Q(0-) = ∑Q(0+)   
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1.3 Non-Ideal Magnetic Systems 
 
1.3.1 Electrical Performance of Real Inductors 
 
As a first approximation, the main difference between a real inductor and an 
ideal inductor can be represented by incorporating a resistance, R, in series with 
an ideal inductance, L, as shown in Figure 1.9.  The value of R is usually the 
resistance of the wires in the inductor. 
 

R

L

i(t)

v(t)

S

v
L

 
Figure 1.9 Circuit Model of a "Real" Inductor 

(First Approximation) 
 
The governing equation now becomes: 
 

 v(t) = Ri(t) + L i∂
∂t

 

 
Assume that: 
  
  v(t) = Vdc    constant DC level 
 
the switch S has been closed for a sufficiently long time such that steady state 
conditions have been reached and thus: 
 
 i(t) = V/R     
 
 
Assume now that the switch is opened at t=0, forcing the inductor current to go 
to zero in a short time interval of ∆t.  Thus: 
 

 vL(0+)  = L i∂
∂t

 ≈ L I
t

∆
∆

 

 
Thus if the time interval, ∆t, is sufficiently small, then the voltage across the 
inductor, vL , could be very large.  This voltage is usually sufficient to break down 
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the air gap across a mechanical switch and cause arcing.  It is also sufficient to 
break down the semiconductor in solid state switches and destroy them unless 
precautions are taken.   
Effectively, the energy stored in the inductor has to be dissipated in the switch or 
in radiated energy, or both.  In real applications this results in excessive stresses 
on the switching components, usually transistors, and/or excessive radiated 
noise. 
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1.3.2 Non-Linear Magnetics 
 
Most practical magnetic applications use ferrous or ferrite materials that have 
non-linear magnetic characteristics.  The non-linearity mainly applies to the B vs 
H curve as shown in Figure 1.10 which demonstrates saturation and Figure 
1.11 which demonstrates hysteresis as well as saturation.  
 
 

B

H

Linear Material

Non-Linear Material

µ0

µ0 rµ

µ0

  
Figure 1.10 B vs H Curve Demonstrating Saturation 
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Figure1.11 B vs H Curves Demonstrating Saturation  

and Hysteresis 
In general, a non-linear magnetic characteristic means that the relative 
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permeability of the material, µr , is not constant but varies with H.  Saturation 
means that the effective value of µr  decreases abruptly to unity, i.e. the 
magnetic material becomes no more effective than free air.  Hysteresis means 
that the magnetic flux density, B, can assume more than one value for a given 
value of field intensity, H.  The actual value of B will be dependent on whether H 
is increasing or decreasing and on the preceding magnetic history of the 
material, i.e. hysteresis implies a magnetic memory effect. 
 
Some key points on the B vs. H curve of Figure 1.11 are: 
  
 Bmax  is called the saturation flux density and is defined as the  
 flux density when µr  goes to 1. 
 Hmax  is called the maximum field intensity and is defined as the magnetic 
field intensity when µr  goes to 1. 
 Br  is called the residual flux density and is defined as the flux  
 density when the magnetic field intensity, H, is zero. 
 Hc  is called the coercive force and is defined as the magnetic  
 field intensity required to bring the flux density, B, to zero.  
 
 As will be shown in section 1.4.1 that the energy dissipated in a magnetic 
material is given by the expression: 
 

 WΦ  = m H B3

B

B

1

2

∂z  

 
and, if there is hysteresis, then : 

 WΦ  = m H B3

B

B

1

2

∂z  > 0       even if B1  = B2  

 
Thus a certain amount of energy is dissipated in a magnetic material each time it 
is "cycled through" the B H curve.  In AC systems this occurs once during each 
cycle.  This energy is referred to as hysteresis losses and becomes very 
significant at high frequencies. 
 
It is important to note that all magnetic materials demonstrate saturation and 
hysteresis to varying degrees.  The more ideal applications operate in the region 
where B is much less than Bmax  and the more ideal materials demonstrate less 
hysteresis, eg, Br  and Hc  are close to zero.  In choosing the right magnetic 
material for a given application various tradeoffs are required in selecting the 
magnetic characteristics of the material to suit the application.  Some desirable 
characteristics for specific applications are: 
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   Application Desirable characteristic 
permanent magnets high Br   
measuring instruments very low Br   
motors/generators high Bmax , low Hmax    
magnetic memories high Br , repeatable Hc   

high frequency operation low H B
B

B

1

2

∂z  

 
DC operation high Hmax   
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Example 1.1 
 
Given the magnetic system shown in Figure 1.12, assume the soft iron element 
has the B vs H characteristic shown in Figure 1.11 and that the cross-sectional 
area of the iron is Af , and the effective cross-sectional area of the air gap is Ag  , 

the mean length in the soft iron is λ and the air gap width is g.    
Note that µr  is comparable to µ0  and λ is comparable to g. 
 

N
I

Φ

Soft iron

air
gap

g

 
Figure 1.12 A Magnetic System with an Air Gap and Soft Iron having the B 

H Characteristics shown in Figure 1.11 
 
Solution: 
The equivalent magnetic circuit for this system is shown in Figure 1.13 where ℜ f 

represents the reluctance of the iron element and ℜ g represents the reluctance 
of the air gap.   

F

Φ

ℜℜℜℜ g

ℜℜℜℜ f

F
F

f

g

 
 

Figure 1.13 Equivalent Magnetic Circuit of System Shown in Figure 1.12 
The actual value of ℜ f  cannot be analytically determined because it is 
dependent on the µr  of the iron which is a non-linear function of the field 
intensity applied to the iron.  This non-linearity is represented by the non-linear B 
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vs. H curve for the iron.  Nevertheless, since the B vs. H curve for the iron is 
available it is possible to determine magnetic parameters for this system 
graphically.  The actual values of B and H for the iron will have to satisfy two 
curves: one curve being the B vs. H curve for the iron as shown in Figure 1.11a, 
the second curve being the B vs. H relationship for the magnetic system as a 
whole. 
 
This second curve can be determined from the equations derived from the 
magnetic equivalent circuit shown in Figure 1.13 as follows: 
 
The basic equations for the air gap are: 
 
 Fg  = Φ ℜ g    

 ℜ g  = g
Ag gµ

 

 Φ = Bg Ag  
 
And for the iron: 
 
 Ff  = Hf λ  

 Φ = Bf Af  
 
Furthermore, the same flux, Φ, is in both the iron and the air gap, or: 
 
 Φ = Bg Ag  = Bf Af  
 
The basic equation for the system is: 
 
 F = N I = Ff  + Fg  
 
Substitute for Ff ,Fg , and Φ. into the above equation to obtain: 
 
 NI = Hf λ  + Bf Af  ℜ g    
 
Solve for: 
 

 Bf  = 
NI -  H
Af g

λb g
ℜ

 

 
This is the second B vs. H curve for the iron.  It's actually a straight line 
representing the relationships imposed by the air gap.  The characteristics of this 
line are: 
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Vertical intersect:  B = H
Af g

λ
ℜ

 

Horizontal intersect: H = NI
λ

 

 
Slope is given by:  

 ∂
∂

B
H

= 
∂

ℜ
L
NMM

O
QPP

∂

NI -  H
A

H

f

f

λ

g = - 
Af g

λ
ℜ

 = -µ0  

 
Figure 1.14 shows the superposition of the two B vs. H curves. 
 

B

H
fH

Bf
µ0

Operating point

Magnetic Circuit Equation

soft iron curve

NI

λ

B=(NI  - H λ)
Af ℜ g

NI
AfRg

 
Figure 1.14 B vs H curves for the soft iron and  

the magnetic system shown in Figure 1.12  
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1.4 Energy and Force in Magnetic Systems 
 
1.4.1 Energy Stored in a Magnetic Field 
 
To determine the electrical energy stored in a magnetic element we have to 
determine the voltage applied to the element.  We can utilize Lenz's Law which 
states that: 
 

 VΦ  = ∂λ
∂t

 = ∂
∂
NΦ

t
 = N ∂Φ

∂t
 

 
The energy, WΦ , that was required to generate the magnetic flux is given by the 
equation: 
 
 WΦ = V IΦ ∂z t  
 
Substitute for VΦ to obtain: 
 

 WΦ = N I∂Φ
∂

∂z t
t  = NI∂Φz  

 
Substitute for NI to obtain: 
 
 WΦ = ℜΦ∂Φz  

 
For linear systems in which ℜ  is independent of Φ the integral simplifies to: 
 

 WΦ = ℜΦ 2

2
 

 
For nonlinear systems the integral can still be simplified by first substituting F for 
ℜΦ  to obtain: 
  
 WΦ = ℜΦ∂Φz  = F∂Φz  

 
Furthermore, for geometrically simple cases, we can substitute for: 
  
 F = Hλ  and   Φ = BA   
 
to obtain: 
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 WΦ  = Hλ∂z BAb g= H Aλ ∂z Bbg = λAH∂z B  
 
Note, however, that the expression, λA, is the product of the length and cross-
sectional area of the magnetic path.  This is the volume of the magnetic path, eg. 
 
 WΦ = volume  H× ∂z B  = m H3 ∂zB  
or: 

 W
m3

Φ  = H∂zB  

 
Similarly, to change the magnetic flux density in a material from B1 to B2 will 
require an energy input of: 
 

 W
m3

Φ  = H
B

B

1

2

∂zB  

 
It was shown in section 1.3.2 that in most magnetic materials, due to hysteresis: 
 

 W
m3

Φ  = H
B

B

1

2

∂zB   > 0       even if B1 = B2  
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1.3.2 Energy Stored in an Air Gapped System 
 
A simple magnetic system with two air gaps is shown in Figure 1.5.  It consist of 
two iron elements: a horseshoe and a bar.  The bar is separated from the 
horseshoe by a gap of length g.  The effective cross-sectional area of the air gap 
is A.  There is a coil of N turns carrying a current of I amps. 
 

I

g

soft iron

 
 

Figure 1.15 Simple Horeshoe Magnet 
 

The inductance, Lg , of each air gap is: 
 
 

 Lg  = N A
g

2µ µ0 r  

 
The energy stored in each air gap can be determined from: 
  
 W  = 12 LI2  
 
Thus: 

 Wg = 12 LgI2  = N I A
2g

2 2µ µ0 r  

 
The preceding expression for energy in each air gap can be used to determine 
the force, Fg , acting on the bar to try to close the air gap.  The expression for 
force as a function of energy is given by: 
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 F = ∂
∂
W
g

 

 
Substitute for Wg to obtain: 
 

 Fg = 
∂
∂
Wg

g
 = - N I A

2g

2 2

2

µ µ0 r  in each gap 

 
Thus the total force acting on the bar is: 
 
 

 Fg  = - N I A
g

2 2

2

µ µ0 r   (sum of both air gaps) 

 
The above expression is negative indicating that the force is acting to make g 
smaller. 
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1.4.3 Energy Dissipation Between Two Ideal Inductors. 
 
In the example shown in Figure 1.8 and discussed in section 1.2.3 it was shown 
that the law of conservation of flux linkage, λ, determines the resultant current 
when two inductors are connected together.  That is to say that the total flux 
linkage in the system does not change, however, the total energy, W, stored in 
the inductors does change: 
 
 W(0- ) = 12 L1 i21(0-)  + 12 L2 i22(0-)  

   = 12 L2 I2  
 
However, 
 W(0+ ) = 12 L1 i21(0+)  + 12 L2 i22(0+)  

   = 12 L1





IL2

L1+L2

2

 + 12L2





IL2

L1+L2

2

  

   = 12 L2 I2







L2

L1+L2
   

       = W(0- )






L2

L1+L2
    

 
Thus: 
 
 W(0+ )  <  W(0- ) 
 
The energy lost in the system was dissipated in the contact resistance of the 
switch and as radiated energy if there is a high ∂i/∂t. 
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1.5 Transforming Magnetic Circuits to Electrical Circuits 
 
Magnetic equivalent circuits can be transformed into electrical equivalent circuits 
by a form of topological transformation in which magnetic circuit loops are 
"mapped" into electrical circuit loops. 
 
Assume we have a generalized magnetic system as shown in Figure 1.16, 
consisting of several magnetic paths and two coils. 
 

N2N1

 
 

Figure 1.16 Generalized Magnetic System to be mapped into an Electrical 
Circuit. 

 
The steps are as follows: 
 
Step1: Draw the equivalent magnetic circuit.  This is done in Figure 1.17. 

F

ℜ

ℜ

ℜ

3

1

ℜ 5

ℜ
4

1 2

2

F

 
Figure 1.17  Magnetic Equivalent Circuit for the system shown in Figure 

1.16 
 

Step 2: Assign a number to each circuit loop in the magnetic equivalent circuit, 
as shown in Figure 1.18a, with the outside loop assigned the number 0. 
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Step 3: Assign the corresponding numbers to each node in the electrical 
equivalent circuit, as shown in Figure 1.18b. 
 
Step 4: Identify each magnetic circuit element between any two magnetic loops 
as shown in Figure 1.18c. 
 
Step 5: Insert a corresponding electrical circuit element between the 
corresponding electrical nodes, as shown in Figure 1.18d, but changing all 
reluctances into "internal" inductors, L' , and all coils into ideal transformers.  The 
value of each internal inductor is determined by: 
 

 L'  = 1
ℜ
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a) Magnetic Equivalent Circuit
    with Loops Numbered

F
ℜ

3

ℜ 1

ℜ
5 ℜ

4

1

ℜ
2

2
F1 2

0

1 2

0

b) Electrical Circuit with
Corresponding Nodes Numbered

F
ℜ 3

ℜ 1

ℜ 5 ℜ
4

1

ℜ 2

2
F1 2

0

c) Reluctances and Coils between Loops
    Identified

d) Corresponding Inductors
and Tranformers between Nodes

N2N1

1 2

0

L'

L' L' L'L'1 23 4

5

1::1

T T
1 2

 
Figure 1.18 Transforming a Magnetic Circuit into an Electrical Circuit 

 
The "internal" inductors of Figure 1.18c can be "externalized" by "pulling" them 
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through one or the other transformers and changing the value by: 
 

 L = N L2 '  = N2

ℜ
 

 
The resultant electrical equivalent circuit is shown in Figure 1.19. 
 

N2N1

L'

L' L' L'L'1 23 4

5

1::1

T T
1 2

Internal Components

N2N1

L

L L LL1 23 4

5

:

T2

a) Electrical Circuit with "Internal" Magnetic Elements

 
 

b) "Internal" Magnetic elements brought out through transformer T1   
Figure 1.19 Electrical Equivalent Circuit for the Magnetic System of Figure 

1.16 


