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MODULE 11 INTRODUCTION OF FILTER1 
NETWORKS

1.  Ref.: Dorf and Svobada, 5th Edition, chapter 16.

In the previous modules, we have studied analysis methods to solve
electrical circuits with different configurations. Here, we shall briefly examine
the behaviour of a particular type of circuit: filters.

We know that an electrical signal, in general, consists of the superposition of
several simple periodic signals but with different frequencies called
harmonics. The filters enable us to eliminate, or more precisely attenuate
some of the components which are oscillating at specific frequencies while
others, oscillating at other frequencies, are amplified. This enables us to
extract one part of a complex signal. For example, the equalizer in a sound
system, a radio receiver or a television all have filters that extract information
in the range of frequencies desired.

The analysis of filter circuits includes a study of their behaviour in terms of
the frequency of signals. That is why filters are also called frequency
selective circuits.

When studying a filter, we are interested in its frequency response, that is,
similar to a transfer function, the range of frequencies that the filter amplifies
and the range of frequencies that it attenuates. There are four main
categories of filters as shown below.
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FIGURE  11.1 Four main types of filters.

11.1 Bode diagram

The Bode diagram is a very useful tool to study filters. It enables to visualise
graphically the impact of the filter on each of the frequency components of
the signal. Thus, the frequencies with a high magnitude in the Bode diagram
are amplified by the filter while the others are attenuated. The graphic
representation of the phase enables to visualise the difference in phase for
each of the frequency components of the signal crossing the filter.

For a given circuit or system, the Bode diagram always comprises two
graphic parts:

1)The magnitude graph, .

2)The phase graph, .

The Bode diagram mainly uses the notion of transfer function studied
previously.  is equivalent to the Laplace transform expressing the
relationship between the input and the output of the system where .
Thus, a given transfer function is associated with a system: .

For example, for a circuit with input  and output , its transfer
function is defined by:
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(11.1)

The function  is a function of complex numbers. That is why the Bode
diagram has two parts: magnitude and phase.

The Bode diagram can be drawn on semi-logarithmic paper. That is, the
horizontal axis corresponds to the angular frequency, , which is
logarithmic, while the vertical axis corresponds to the magnitude or the
phase, and is linear. This allows to cover a larger range of frequencies. The
figure below shows the scales of the Bode diagram.

FIGURE  11.2 Semi-logarithmic scales of the Bode diagram.
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The graph of the magnitude can be traced either in the absolute value of
 or in decibels (AdB), the second approach is more common.

(11.2)

It is advantageous to use decibels because the product of the elements of
the transfer function,  then becomes simple additions
and substractions. This simplifies greatly the drawing, the manipulation and
the interpretation of the diagrams.

To draw the Bode diagram in magnitude and phase, we just have to vary the
frequency “ω” in the transfer function and assess the magnitude  and
the phase  for each value of “ω”. We then place the pair of points
obtained for each “ω” on the graphs of magnitude and of phase.

Typically, the Bode diagram of a first order circuit and of a second order
circuit look as shown below.

FIGURE  11.3 Bode diagram of a low-pass filter of the first order.
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FIGURE  11.4 Bode diagram of a low-pass filter of the second order.

11.2 Low-pass filters

The ideal low-pass filter allows to isolate a range of frequencie with a cut-off
at a specific frequency (abrupt cut-off at ωc). Moreover, the phase should be
perfectly linear as a function of the angular frequency, ω.

FIGURE  11.5 Ideal low-pass filter.

In reality, it is impossible to build a filter with such perfect characteristics. We
can however build circuits whose characteristics approximate those desired.
Here are a few examples:
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FIGURE  11.6 RL circuit (1st order) with low-pass filter characteristics.

The equation of this circuit, in the Laplace domain, is obtained by the voltage
division approach.

(11.3)

The transfer function of the filter is thus:

(11.4)

The magnitude of F(s) in decibels is:

(11.5)

And the phase:

(11.6)

If we draw  and  as a function of ω, we get the Bode diagram of
this circuit.
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FIGURE  11.7 Bode diagram of the low-pass RL circuit.

An alternative approach that allows to obtain the same frequency behaviour
consists in replacing the inductor by a capacitor.

FIGURE  11.8 RC circuit (1st order) with low-pass characteristics.

The equation of this circuit, in the Laplace domain, is obtained by current
division.

(11.7)

The transfer function of this filter is thus:

(11.8)
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The magnitude of F(s) in decibels is:

(11.9)

And the phase:

(11.10)

If we draw  and  as a function of ω, we get the Bode diagram
for this circuit.

FIGURE  11.9 Bode diagram for a low-pass RC circuit.

In order to get a sharper cut-off at frequency, ωc, we must increase the order
of the filter, and therefore its complexity. Let us examine the case of a low-
pass filter of the 2nd order.

FIGURE  11.10 Circuit of the 2nd order with low-pass filter characteristics.
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The equation of this circuit, in the Laplace domain, is obtained by voltage
division, keeping in mind the equivalent impedance, Zeq, of the capacitor in
parallel with the resistor R2.

(11.11)

(11.12)

The transfer function of the filter is:

(11.13)

(11.14)

Replacing “s” by “jω”:

(11.15)

The magnitude of F(s) in decibels is:

(11.16)
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(11.17)

If we draw  and  as a function of ω, we get the Bode diagram
for this circuit.

FIGURE  11.11 Bode diagram of a low-pass second order circuit.

We note that the decreasing slope of the magnitude graph is sharper than
that of 1st order filters studied previously, which produces a sharper cut-off
of the unwanted high frequencies. However, the difference of phase
produced by this filter is far larger and increases with the angular frequency.

11.3 High-pass filters

The ideal high-pass filter enables to isolate a range of frequencie with a cut-
off at a specific frequency (abrupt cut-off at ωc). Moreover, the phase must
be perfectly linear as a function of the angular frequency, ω.
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FIGURE  11.12 Ideal high-pass filter.

In reality, it is impossible to build a filter with such perfect characteristics. We
can however build circuits whose characteristics approximate those desired.
Here are a few examples.

FIGURE  11.13 RL circuit (1st order) with high-pass filter characteristics.

The equation of this circuit, in the Laplace domain, is obtained by voltage
division.

(11.18)

The transfer function of the filter is:

(11.19)

The magnitude of F(s) in decibels is:

(11.20)

(11.21)
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(11.22)

If we draw  and  as a function of ω, we get the Bode diagram of
this circuit.

FIGURE  11.14 Bode diagram of the high-pass RL circuit.

As for low-pass filters, another way to get the same frequency behaviour is
to replace the inductor by a capacitor.

FIGURE  11.15 RC circuit (1st order) with high-pass filter characteristics.

The equation of this circuit, in the Laplace domain, is obtained by voltage
division.
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(11.23)

The transfer function of this filter is:

(11.24)

The magnitude of F(s) in decibels is:

(11.25)

(11.26)

And the phase:

(11.27)

If we draw  and  as a function of ω, we get the Bode diagram of
this circuit.

FIGURE  11.16 Bode diagram of the RC high-pass filter circuit.

To obtain a sharper cut-off at the frequency, ωc, we can increase the order
of the high-pass filter. Let us examine the case of a high-pass filter of the
2nd order.
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FIGURE  11.17 Circuit of the 2nd order with high-pass filter characteristics.

The equation of this circuit, in the Laplace domain, is obtained by voltage
division while keeping in mind the equivalent impedance, Zeq, of the inductor
in parallel with the resistor R2.

(11.28)
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The transfer function of the filter is:
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Replacing “s” by “jω”:
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The magnitude of F(s) in decibels is:

(11.33)
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And the phase:

(11.34)

If we draw  and  as a function of ω, we get the Bode diagram of
this circuit.

FIGURE  11.18 Bode diagram of a high-pass RLC circuit.

We note that the rising slope of the magnitude graph is sharper than that of
1st order filters studied previously, which makes a sharper cut-off of the
unwanted low frequencies. However, the difference of phase caused by this
filter is larger and increases as the angular frequency diminishes.

11.4 Band-pass filters

The ideal band-pass filter enables to isolate a range of frequencies between
two specific cut-off points (between ωc1 and ωc2). Moreover, the phase
should be perfectly linear as a function of the angular frequency, ω.
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FIGURE  11.19 Ideal band-pass filter.

In reality, band-pass filters are an approximation of the ideal characteristics.
Moreover, we need a circuit of at least the 2nd order to build a band-pass
filter since we need 2 cut-off frequencies.

FIGURE  11.20 RLC circuit (2nd order) with band-pass filter characteristics.

The equation of this circuit, in the Laplace domain, is obtained by voltage
division.

(11.35)

The transfer function of the filter is:

(11.36)

The magnitude of F(s) in decibels is:
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(11.39)

If we draw  and  as a function of ω, we get the Bode diagram of
this circuit.

FIGURE  11.21 Bode diagram of a band-pass RLC circuit.

11.5 Band-stop filters (notch)

The ideal band-stop filter enables to cut a range of frequencies found
between two specific cut-off points (between ωc1 and ωc2). Moreover, the
phase must be perfectly linear as a function of the angular frequency, ω,
except for the rejected bandwidth portion.

FIGURE  11.22 Ideal band-stop filter.
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In reality, band-stop filters are an approximation of the ideal characteristics.
Moreover, we need a circuit of at least the 2nd order to build a band-stop
filter since we need 2 cut-off frequencies.

FIGURE  11.23 RLC circuit (2nd order) with band-stop filter characteristics.

The equation of this circuit, in the Laplace domain, is obtained by voltage
division.

(11.40)

The transfer function of the filter is:

(11.41)

The magnitude of F(s) in decibels is:

(11.42)

And the phase:

(11.43)

If we draw  and  as a function of ω, we get the Bode diagram of
this circuit.
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FIGURE  11.24 Bode diagram for a band-stop RLC circuit.
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