SIMULINK MODELING

of an op-amp system Carnegie Mellon University |

University of Michigan *Mechanical Engineering Department*

1 Objective

The objective of this tutorial is to model a band-pass filter consisting of an op-amp with a series combination of a resistor and capacitor in the feed-forward path and a parallel combination of a resistor and a capacitor in the feed-back path.

2 Quick Analysis

From the State Space Model (a subject in Contril system), the governing **differential** equations for e_{C1} ' and e_{C2} ' were found to be:

$$\begin{split} e_{C1}{}' &= -\frac{1}{C_1 R_1} e_{C1} + \frac{1}{C_1 R_1} e_i \\ e_{C2}{}' &= -\frac{1}{C_2 R_1} e_{C1} - \frac{1}{C_2 R_2} e_{C2} + \frac{1}{C_2 R_1} e_i \end{split}$$

Using this model we will find the step response of this system and perform a frequency sweep.

2 Creating the Model

To begin modeling,

- start Simulink
- open a new model
- save the model as *opamp.mdl*.

This op-amp system is governed by two differential equations. Each differential equation expresses the first derivative of one of the state variables in terms of the states of the system and the system input.

The first step is to create relations between e_{C1} and e_{C2} and their derivatives.

In the Simulink Library Browser

- expand Simulink.
- single-click on Continuous.
- drag two Integrator blocks into the Simulink model window.

In the Simulink Library Browser window,

- expand Simulink,
- click on Sources,
- drag the Step source from the right column into the model

🙀 opamp	
File Edit View Simulation Format	
	$\frac{1}{s} = e^{1}$ Integration from ec1' to ec1
Step	
	integration from ec2' to ec2
Ready	100% ode45 //

- Simulink Library Browser \rightarrow Math Operations category window \rightarrow Gain block
- right-click on the Gain block
- select Format \rightarrow click on Flip block
- double-clicking on the Gain block \rightarrow change the gain from 1 to 1/(C1*R1)
- Enlarge the gain block

Similarly add

- a gain of 1/(C1*R1)
- a gain of 1/(C2*R1)
- a gain of 1/(C2*R2)
- a gain of 1/(C2*R1)

Add a Sum block as follows:

- Simulink Library Browser \rightarrow Math Operations \rightarrow Sum block
- change one of the inputs to a negative input by
 - double-click on the Sum block
 - \circ change the List of signs from |++ to |+-

Similarly add a sum block of list of signs |--+

Connect wires as shown below

Add a Gain block with value -1 to the system.

To add a scope to monitor the output as follows

• Simulink Library Browser \rightarrow click on Sinks \rightarrow drag the Scope sink

Connect the two blocks as shown below:

Save the model by selecting \underline{F} is in the toolbar of the model and selecting Save The model is now complete and ready for running.

Enter the following values into the MATLAB window prompt.

- R1 = 20000; R2 = 500; C1 = 0.1E-6; C2 = 0.1E-6;
- Press enter

To set the parameters of the step input, double click on the Step source and change the Step time to 0.

Block Parameters: Step 🛛 🗙
Step
Output a step.
Parameters
Step time:
0
Initial value:
0
Final value:
1
Sample time:
0
Interpret vector parameters as 1-D
Enable zero crossing detection
OK Cancel Help Apply

The default simulation time is from 0.0 seconds to 10.0 seconds. From previous analyses of this system we know that it reaches steady state within 0.02 seconds. To change the Simulation time,

- click on Simulation on the model toolbar
- select Simulation parameters
- change the Stop time to 0.02

📣 Simulation Parameters: opamp	
Solver Workspace I/D Diagnostics Advanced	
Simulation time Start time: 0.0 Stop time: 0.02	
Solver options Type: Variable-step 💌 ode45 (Dormand-Prince)	
Max step size: auto Relative tolerance: 1	e-3
Min step size: auto Absolute tolerance: a	iuto
Initial step size: auto	
Output options	
Refine output Refine factor: 1	
OK Cancel Help	Apply

Click the button on the tool bar to run the simulation.

FREQUENCY SWEEP

- Delete the step input by
- Simulink Library Browser \rightarrow Sources \rightarrow drag the Ramp source

• Set the slope of the Ramp source to 1

- Simulink Library Browser → Sources → drag a Math Function block
 Set the math function to 10[^]u,
- Simulink Library Browser \rightarrow Math Operations \rightarrow Product block
- Simulink Library Browser → Math Operations → Trigonometric Function
 Set the trigonometric function to sin.

×

Connect the components as shown below:

Set the simulation time to run from 0 to 5 seconds,

