ELG41257:. Robust Control Systems

Feedback control systems are widely used in manufacturing,
mining, automobile and other hardware applications. In
response to increased demands for increased efficiency and
reliability, these control systems are being required to deliver
more accurate and better overall performance in the face of
difficult and changing operating conditions.

In order to design control systems to meet the needs of
improved performance and robustness when controlling
complicated processes, control engineers will require new
design tools and better control theory. A standard technique of
improving the performance of a control system is to add extra
sensors and actuators. This necessarily leads to a multi-input
multi-output (MIMO) control system. Accordingly, it is a
requirement for any modern feedback control system design
methodology that it be able to handle the case of multiple
actuators and sensors.



Why Robust?

When we design a control system, our ultimate goal is to control a
particular system in a real environment.

When we design the control system we make numerous
assumptions about the system and then we describe the system with
some sort of mathematical model.

Using a mathematical model permits us to make predictions about
how the system will behave, and we can use any number of
simulation tools and analytical techniques to make those predictions.

Any model incorporates two important problems that are often
encountered: a disturbance signal is added to the control input to
the plant. That can account for wind gusts in airplanes, changes in
ambient temperature in ovens, etc., and noise that is added to the
sensor output.
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A robust control system exhibits the desired performance despite
the presence of significant plant (process) uncertainty
The goal of robust design is to retain assurance of system performance in spite
of model inaccuracies and changes. A system is robust when it has acceptable
changes in performance due to model changes or inaccuracies.
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Why Feedback Control Systems?

Decrease in the sensitivity of the system to variation in
the parameters of the process G(s).

Ease of control and adjustment of the transient
response of the system.

Improvement in the rejection of the disturbance and
noise signals within the system.

Improvement in the reduction of the steady-state error
of the system



Sensitivity of Control Systems to Parameter Variations

A process, represented by G(s), whatever its nature, is subject to a changing
environment, aging, ignorance of the exact values of the process parameters,
and the natural factors that affect a control process.

The sensitivity of a control system to parameter variations is very important. A
main advantage of a closed-loop feedback system is its ability to reduce the
system’s sensitivity.

The system sensitivity is defined as the ratio of the percentage change in the

system transfer function to the percentage change of the process transfer
function.
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The sensitivity of the feedback system to changes in the
feedback element H(s) is

;
S, =

oTH ( G Y -H  -GH
oH' T \1+GH ) G/(1+GH) 1+GH
Often we need todetermine Sg , where a 1S a parameter

within the transfer function of a block G. Use thechain rule
oT /T

sl =5l 88 = (System Sensitivity)
ala
S, = (Root sensitivity)
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Robust Control Systems and System Sensitivity
A control system is robust when: it has low sensitivities, (2) it is stable
over the range of parameter variations, and (3) the performance
continues to meet the specifications in the presence of a set of changes
In the system parameters.

Systemsensitivity is: S, = ar/T

/ (a is the parameter; T is the tranfer function)
alo

Root Sensitivityis:S) = 5 dr/‘ (zeros of T (s) are independent of the parameter a)
alo
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Let us examine the sensitivity of the following second-order system

K
T(S) =
) s%+5+Kk
We know from Eq. (4.12) that
o1 __ 1 s(s+1)
(=

1+ GH (s) s245+K

+
R(s) O lKis(s+1) 2UO
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Sensitivity of a Controlled System

G (s) isa proportional - derivative (PD) controller

T 1 5°
1+GGc(S) s +b,s+Db,
b,s+b
T(s)=——"—
S°+Db,s+b

Consider the normal condition £ =1and o, = \/E Thenb, =2w, toget £ =1.

Gc(s) G(s)
+
R(s) Controller | Plant Z(S)
b,+b,s 1/s?

Plot 20 log|S |and 20logT |on a Bode diagram



Disturbance Signals in a Feedback Control System

« Another important effect of feedback in a control system is the control
and partial elimination of the effect of disturbance signal.

« A disturbance signal is an unwanted input signal that affects the
system output signal. Electronic amplifiers have inherent noise
generated within the integrated circuits or transistors; radar systems
are subjected to wind gusts; and many systems generate all kinds of
unwanted signals due to nonlinear elements.

 Feedback systems have the beneficial aspects that the effect of

distortion, noise, and unwanted disturbances can be effectively
reduced.

10



The Steady-State Error of a Unity Feedback Control System (5.7)

 One of the advantages of the feedback system is the reduction of the steady-
state error of the system.

« The steady-state error of the closed loop system is usually several orders of
magnitude smaller than the error of the open-loop system.

« The system actuating signal, which is a measure of the system error, is denoted
as E_(s).

R(S) :/\ Ea(S)

A 4

G (S) > Y(S)

H(s)

G(s) 1
1+GH(s) 1+G(s)

E(s)=R(s)-Y(s) =R(s)— R(s) WhenH(s) =1
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Compensator

A feedback control system that provides an optimum performance
without any necessary adjustments is rare. Usually it is important to
compromise among the many conflicting and demanding
specifications and to adjust the system parameters to provide
suitable and acceptable performance when it is not possible to
obtain all the desired specifications.

The alteration or adjustments of a control system in order to provide
a suitable performance is called compensation.

A compensator is an additional component or circuit that is inserted
Into control system to compensate for a deficient performance.

The transfer function of a compensator is designated as G.(s) and
the compensator may be placed in a suitable location within the
structure of the system.
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Root Locus Method

The root locus is a powerful tool for designing and analyzing
feedback control systems.

It is possible to use root locus methods for design when two or three
parameters vary. This provides us with the opportunity to design
feedback systems with two or three adjustable parameters. For
example the PID controller has three adjustable parameters.

The root locus is the path of the roots of the characteristic equation
traced out in the s-plane as a system parameter is changed.

Read Table 7.2 to understand steps of the root locus procedure.

The design by the root locus method is based on reshaping the root
locus of the system by adding poles and zeros to the system open
loop transfer function and forcing the root loci to pass through
desired closed-loop poles in the s-plane.
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The root Locus Procedure

K(ls +1J
2
s(ls +1) =0
4
Step 2: The transfer function GH (s) is written in terms of poles and zeros :1+2(—4)
s(s+
The multiplicative gain parameter is 2K. Todetermine the locus of roots for the gain 0 < K < oo (Step3)

we locate the poles and zeros on the real axis.
Step 4 : Theangle criterion is satisfied on thereal axis between the points 0 and - 2, because theangle p1

Step1:Thecharacteri sticequation 1+ GH (s) =1+

K(S+2):O

at the origin is180°, and theangle from the zero and pole p, at s =-4 s zero degrees.

Thelocus begins at the poles and ends at the zeros.

Step 5: Find the number of separate loci (equal to the number of poles).

Step 6 : Theroot loci must be symmetrical with respect to the horizontal real axis.

Step 7 : Theloci proceed to the zeros at infinity along asymptotes centered at o, and withangle ¢, .
Step 8 : Determine the point at which the locus crosses theimaginary axis.

Step 9 : Determine the breakway point on the real axis.

Step 10 : Determine theangle of departure of thelocus from a poleand theangle of arrival at a zero.
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Example

Y(S)

y

1
z,=-34]1 ()= (s+2)s+3)
R(S):/\ || Controller Plant
+T Gc(s) G(s)
G(s)Gc(s)  K3(s+z)s+2)

Te)= 1+G(5)Gc(s) (s+h)s+rNs+F)

N
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Analysis of Robustness

Systemgoals: Small tracking error [e(t) = r(t) — y(t)] for an input r(t)
and keep the output y(t) small for a disturbance d (t).

Sensor noise n(t) must be small tor(t) so ‘r Mn |

S(s)=[1+G¢ (s)G(s)]_l. The closed - loop transfer function
T (S) _ GC (S)G(S) )

When Gp (S) =1, then S(s) + T (s) =1; Better S(s) small.

1+G¢ (5)G(s)
+
Prefilter Controller] Plant
) > Y(s
69 )T Gl +<5 G(s) ot
v+
Sensor |, O\ N(s)
1 Noise
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The Design of Robust Control Systems

The design of robust control systems is based on two tasks:
determining the structure of the controller and adjusting the
controller’'s parameters to give an optimal system performance. This
design process is done with complete knowledge of the plant. The
structure of the controller is chosen such that the system’s response
can meet certain performance criteria.

One possible objective in the design of a control system is that the
controlled system’s output should exactly reproduce its input. That is
the system’s transfer function should be unity. It means the system
should be presentable on a Bode gain versus frequency diagram
with a 0-dB gain of infinite bandwidth and zero phase shift.
Practically, this is not possible!

Setting the design of robust system requires us to find a proper
compensator, G(s) such that the closed-loop sensitivity is less than
some tolerance value.
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PID Controllers

PID stands for Proportional, Integral, Derivative. One form of controller
widely used in industrial process is called a three term, or PID controller.
This controller has a transfer function:

A proportional controller (K;) will have the effect of reducing the rise time
and will reduce, but never eliminate, the steady state error. An integral
control (K,) will have the effect of eliminating the steady-state error, but it
may make the transient response worse. A derivative control (Ky) will
have the effect of increasing the stability of the system, reducing the
overshoot, and improving the transient response.

S

Thecontroller provides a proportional term, an integration term, and a derivative term
de(t)

u(t) = Koe(t) +K, [e®)dt+Kp
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Proportional-Integral-Derivative (PID) Controller

e(t)

"k,
.
. o ks u(t)
T
» kS

u(t) = K e(t) + K, (St)+KDse(t)

e(t) =r(t)— y(t) is theerror between the reference signal
and thesystem output; Ky, K, ,and K are the proportional,
Integral, and derivative feedback gains, respectively.

U(s) = (K +KS +KpS)E(S)

U(s) Kps? +Kps+K,
E(s) S

Gpp () =
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Time- and s-domain block diagram of closed loop system

O
R(s)" | J E(s)
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PID and Operational Amplifiers
A large number of transfer functions may be implemented using
operational amplifiers and passive elements in the input and feedback
paths. Operational amplifiers are widely used in control systems to
implement PID-type control algorithms needed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Negative
power supply

Simplified circuit symbol

—o!

Op-amp model

input in +

Integrated-circuit operational
amplifier (IC op-amp)

fi

IC op-amp diagram 2 1




Vo () _
Vs (1)

Inverting amplifier

Vout

O |
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Op-amp Integrator

cGraw-Hill Companies, Inc. Permission required for reproduction or display.

([
I\

Z,(S) P

Ve(S)  Zy(S)  ReCps

G(S) _ Vout(s) _ ZZ(S) 1

vs(?)

23



Op-amp Differentiator

The operational differentiator performs the differentiation of the input signal. The
current through the input capacitor 1s CS d s(2)/dt. That 1s the output voltage 1s
proportional to the derivative of the input voltage with respect to time, and

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Z,(S) RF
—VVW\—
Z4(s) i
Vo(8) | Zy(s) 1 s
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Inear PID Controller
.
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Tips for Designing a PID Controller

When you are designing a PID controller for a given system, follow the

following steps in order to obtain a desired response.

Obtain an open-loop response and determine what needs to be
Improved

Add a proportional control to improve the rise time
Add a derivative control to improve the overshoot
Add an integral control to eliminate the steady-state error

Adjust each of Kp, K, and Ky until you obtain a desired overall
response.

It IS not necessary to implement all three controllers (proportional,
derivative, and integral) into a single system, if not needed. For
example, if a Pl controller gives a good enough response, then you
do not need to implement derivative controller to the system.
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The popularity of PID controllers may be attributed partly to their robust
performance in a wide range of operation conditions and partly to their
functional simplicity, which allows engineers to operate them in a simple
manner.

2
K Kas® +Kis+ K
GC(t)=K1+—2+K3s: 3 L 2
S S
B K3(32 +aS+b)_ K3(S+Zl)(3+22)

S S
Where a = K; / K3;and b = K, / K5. Accordingly thePID introduces

a transfer function with one pole at the origin and two zeros that can be
located anywhere in theleft - hand s - plane
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Root Locus

Root locus begins at the poles and ends at the zeros.
1
(s+2)s+5)
Assume we use a PID controller with complex zeros, we can plot theroot locus. As K3 of
the controller increases, the complex roots approaches the zero. Theclosed loop transfer function is
T(s)= GO ()Ge(s) _ _Kslstzfst2) o v KiGe(S)

G(s) =

14G(5)Ge () (5+h)(s+r)s+nr) (s+1)
Because the zeros and the complex roots are approximately equal. Setting G (s) =1, we have
T(s) = Ks ~ Ks ; If K5 islarge, thesystem willhave a fast response and zero steady state error.
s+r, S+Kj
K. . j4
5 INcreasing
r :
z, * j2
P
A K
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Design of Robust PID-Controlled Systems

The selection of the three coefficients of PID controllers is basically a search
problem in a three-dimensional space. Points in the search space correspond to
different selections of a PID controller’s three parameters. By choosing different

points of the parameter space, we can produce different step responses for a

step input.

The first design method uses the (integral of time multiplied by absolute error
(ITAE) performance index in Section 5.9 and the optimum coefficients of Table
5.6 for a step input or Table 5.7 for a ramp input. Hence we select the three PID

coefficients to minimize the ITAE performance index, which produces an
excellent transient response to a step (see Figure 5.30c). The design
procedure consists of the following three steps.

]
ITAE = j tle(t) |dt
0
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The Three Design Steps of Robust PID-Controlled System

Step 1: Select the @, of the closed-loop system by specifying the settling
time.

Step 2: Determine the three coefficients using the appropriate optimum
equation (Table 5.6) and the @, of step 1 to obtain G(s).

Step 3: Determine a prefilter Gp(s) so that the closed-loop system transfer
function, T(s), does not have any zero, as required by Eq. (5.47)

Y (s b
T(S): ( ) - n n—1O
R(s) s"+b, ;8" +...+bs+h,
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Input Signals; Overshoot; Rise Time; Settling Time
Step: r()=A R(s) =Als
Ramp: r(t) = At R(s) = Als?
The performance of a system is measured usually in terms of step response.
The swiftness of the response is measured by the rise time, T,, and the peak
time, T,
The settling time, T, is defined as the time required for the system to settle
within a certain percentage of the input amplitude.

For a second-order system with a closed-loop damping constant, we seek to
determine the time, T, for which the response remains within 2% of the final
value. This occurs approximately when

e <“n’s(0.02; lo T, =4, T, =4r = 4 (w,, :undamped natural frequency; & :damping ratio)

n

T, =— 2 (Peak Time);M , =1+e V1" (Peak Response)

i N \/1—52

Percentage Overshoot (PO) = 100e %"/ Vi-¢?
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Effects of Poles and Zeros

The response of a dominantly second order system is
sped up by an additional zero and is slowed down by an
additional pole.

In the dominantly second-order system the added closed
loop zero also has the important effect of increasing the
amount of oscillation in the system while an added
closed loop pole has the effect of decreasing the amount
of oscillation.

Added forward path zeros and added forward path poles
have an opposite effect on the overshoot.

A forward path pole which is too close to the origin may
turn the closed loop system unstable.
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Example: Robust Control of Temperature Using PID Controller employing ITAE
performance for a step input and a settling time of less than 0.5 seconds.

D(s)
RO ) 2N
S + E(s U(s) +
| Gp(9) 2. Guts) [ )=\/ | G(s) - Y(S)
1 1 1 A : 1 2
G(s) = = = Bee = Kp=Ilim G(8)=16cc ===50%;=—=1
©) (s+1° s2+2s+1 s2+2fmps+wp 0 1+Kp P s—fo) vo2 72

If G¢ (s) =1, thesteady -stateerror is 50%, and the settling time (2% criterion) is 3.2 seconds for a stepinput.
We desire to obtain an optimim IT AE performance for a step input for a settling time of less than 0.5 seconds.

2
Using a PID controller : G¢ (s) = Kas” T KiS+Ke ; The closed - loop transfer function with Gp (s) =1is
S

Y(s)  GgG(s) K3s? + Kqs+ Ko
R(s) 1+GcG(s) s°+(2+Kg)s? +(1+Kq)s+Ky

Ty(s) =

The optimum coefficients of the characteristic equation for ITAE(Table5.6): (33 +1.7a)n82 + 215a)r2]S + wﬁ)
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We need toselect @y, in order to meet thesettling time requirement. Ty = 4/ oy, .

& 1s unknown but near 0.8, we set w, =10. Equate the denominator of theequation
to the desired equation, we obtain the three coefficientsas K, = 214,

K3 =15.5,and K, =1000.

15.55° +2145+1000 _15.5(s+6.9+ j4.1)(s +6.9- j4.1)

T(s)=

53 +17.55% + 2155 +1000 53 +17.55% + 2155 +1000
We select a prefilter Gp (s) so that toachieve the desired IT AEresponse
G (S)GGp (s) 1000
T(s) = =— 5
1+GGe(s)  s°+17.55° +2155+1000
64.5

52 +13.85+64.5
zerosin the previous equation and bring the overall numerator to1000.

Therefore we require Gp (S) = ( )in order toeliminate the
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Results for Example

Controller Gc(s)=1 PID & Gp(s)=1 | PID with Gg(s)
Prefilter
Percent 0) 31.7% 1.9%
overshoot
Settling time (S) 3.2 0.20 0.45
Steady-state 50.1% 0.0% 0.0%
error

y()/d () aximum 52% 0.4% 0.4%
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Example: Using the ITAE performance method for step input, determine the required
Gc(t). Assume @, = 20 for Table 5.6. Determine the step response with and without a
prefilter Gp(s)

D(s)

R(s)

—>

+

+
GP(S) 4,0@, GC(S) U(s)+ G(s) > Y(S)

T(s)=

G(s) =i1; Use a Pl controller given by G¢ = K1+&
S+ S

GcG(S)
1+ GG (s)

=Find it = 5% + (K; +1)s + K>

The ITAEcharacteristicequation is : % +1.40,S+ a)ﬁ

When o, = 20 then we have K; =27 and K, =400

Y(s)  27s+400

R(S) 52 +28s+400

Y(s) Gc(s)GGp(s) 400

R(s) 1+GcG(s)  s2+28s+400

Without a prefilter, the closed - loop sy stemis

With a prefilter, the closed - loop gain is

14.8
s+14.8

Where Gp (s) = ; Draw thestep responsewithout and with theprefilter 36



A closed-loop unity feedback system has

G(s) = ; p=3; Find SE and plot T(jw) and S( jw) on a Bode plot

s(s+p)
9

52+ps+9

The closed - loop transfer functionis T (s) =

s% + ps

32+ps+9

Thesensitivity of T tochanges in p is determined by

Sg:d_TBZ_ pS
dp T s?+ps+9

Then plot therelationship

Thesensitivity functionis S(s) =
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15,900

S LI (|
100 200

feedback with PD compensator G¢ (s) = Kq + K»s. Design G¢ (s) so that

the overshoot toa stepis less than 20% and the settling time is less than 60 ms.

A systemhasa plant G(s) = and a negative unity

15900K2£s +K1j2><104
K2
s(s+100)(s +200)

Theopen-loop transfer function is GG, =

K(S-I—Klj
K2

where K =3.18x10° K,.Select K; /Ko =100

~ 5(s+100)(s+ 200)
K

GG.(5) =————

c(%) s(s+200)
The closed - loop transfer function is T (s) = 5 K

S°+200s +k
Let &=0.5for P.0.(20%. 2&w,, = 200; @, =200and K = »? = 40000
Thesettling time is Tg = 4 _ % _ 40ms; Thecontroller G (s) = 0.00012(s +100)
oy 100
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Example

(Thespace robot transfer function)

()= s(s+10)

GGce(s) K
1+GGc(s) 52 +10s+ K
For PO (4.5%; &£ =0.702; K =50.73; Gc(s)=50.73
(b) ConsiderPD controller : G.(s) = K{ + K5s

(a) ConsiderG;(s)=K; T(s)=

T(s)=— Rq + Ko , Use ITAEmethod : Ky =100; K, =4
s +(10+Kjy)s+K;
100 w, = 10
G.(S) =4s+100;G,(S) = n
o) P8 = 451100
K2 _ K13+K2

(c) ConsiderthePl controller : G.(s) = K +

S S
Kls T K2 : UselTAE: W = 57, Kl = 702, K2 =186.6

T(s)= 3 5
s°4+10s” + Kis+ Ky

186.6
70.25+186.6

Gc(s)=70.2+186.6/s; Gp(s) =
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Kys2 + Kos+ Ky
S

(d) ConsiderPID controller : G;(s) =
@, = 10

2
T(S) _ K]_S + K25 + K3

3 5 > ; Use ITAEwith o, =10
S”4+10s” + K1S” + Kos + Ky

7.55% + 2155 +1000

Ky =7.5; K, = 215; K3 =1000; G, (s) =
S

1000

7.55% + 2155 +1000
Find a summary of the performance for the four cases : K, PD, Pl,and PID

Performance means overshoot,settling time, and peak time

Gp(s) =

T

a)m/l—cfz

2
PO =100e™ V17" (Eq5.15); t, = (Eq.5.14)
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Physical Realization of PID Compensators

Pl Controller

PD Controller -RZC (S T R_C)

PID Controller (RZ | Cl) | R2C1$ | Rlcl
S
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