Switched Mode Power Supply (SMPS)

Control, Modeling, and Simulation

Why Use a Switching Regulator?

- Various types of voltage regulators, used in Linear Power Supplies (LPS), are dissipative regulator, as they have a voltage control element usually transistor or zener diode which dissipates power equal to the voltage difference between an unregulated input voltage and a fixed supply voltage multiplied by the current flowing through it.
- The switching regulator acts as a continuously variable power converter and hence its efficiency is negligibly. Hence the switching regulator is 'non-dissipative regulator'.
- In a SMPS, the active device that provides regulation is always operated in cut-off or in saturation mode.

Buck Switching Regulator

Control Design Using Pole Placement

Voltage Mode Control of Buck Converter

Current Mode Control of Buck Converter

Boost SMPS

Feedback Control of Boost Converter

Buck Modes of Operation

 $d_1T_S = ON$ Period time $d_2T_S = OFF$ Period time $T_S = Total$ time period for one cycle $i_{pk} = peak$ value of inductor current after ON period $\overline{\iota_L} = Average$ value of current $V_{in} = input$ voltage

State Space Modeling

- If the system is linear, then the derivatives of the state variables are expressed as linear combinations of the system independent inputs and state variables themselves.
- The physical state variables of a system are usually associated with the storage of energy.
- For a typical converter circuit, the physical state variables are the inductor currents and capacitor voltages.

During Discontinuous Conduction Mode From KVL $\frac{di_L}{dt} = 0$ From KCL $\frac{v_c}{R} + C \frac{dv_c}{dt} = 0$ Write $\begin{bmatrix} \frac{\mathrm{d}\mathbf{i}_{\mathrm{L}}}{\mathrm{d}\mathbf{v}_{\mathrm{C}}} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{\mathrm{L}} \\ v_{\mathrm{C}} \end{bmatrix} \begin{bmatrix} i_{\mathrm{L}} \\ v_{\mathrm{C}} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} v_{in} ; \mathbf{v}_{\mathrm{O}} = \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{i}_{\mathrm{L}} \\ \mathbf{v}_{\mathrm{C}} \end{bmatrix}$

Buck Modelling Analysis

- Averaging
- Inductor current analysis
- Duty-ratio constraint.

State space averaging techniques are employed to get a set of equations that describe the system over one switching period.

$$\dot{\bar{X}} = [A_1d_1 + A_2d_2 + A_3(1 - d_1 - d_2)]\bar{x} + [B_1d_1 + B_2d_2 + B_3(1 - d_1 - d_2)]u$$

$$\overline{\iota_L} = \frac{i_{pk}}{2} . (d_1 + d_2)$$

The Final Model

The state space averaged model for the above equation is

