ELG 4157

Modern Control Engineering

TA: Omar Alburaiki, Ph.D. Student oalbu060@uottawa.ca

Modeling in the Frequency Domain

Find the Laplace transform of time functions.
Find the inverse Laplace transform.
Find the transfer function from a differential equation.
Block diagram transformations.

- Laplace transform transforms the system (model) which is identified by a differential equation from time domain to frequency domain.
- The Laplace transform is defined as

$$\mathscr{L}[f(t)] = F(s) = \int_{0-}^{\infty} f(t)e^{-st} dt$$

where , $s = \sigma + j\omega$ is a complex variable.

- We normally assume zero initial conditions at t = 0. If any of the initial conditions are non-zero, then they must be added.
- The Laplace transform (LT) allows to represent the input, output, and the system itself, as separate entities.

• Example 1

Find the Laplace transform for, f(t) = 5,

TIME DOMAIN		FREQUENCY DOMAIN	
$\delta(t)$	unit impulse	1	
А	step	$\frac{A}{s}$	
t	ramp	$\frac{1}{2}$	
t ²		$\frac{2}{a^3}$	
$t^n, n > 0$		$\frac{n!}{n+1}$	
e ^{-at}	exponential decay	$\frac{1}{s+a}$	
$sin(\omega t)$		$\frac{\omega}{\sigma^2 + \omega^2}$	
cos(wt)		$\frac{s}{s^2 + \omega^2}$	
te ^{-at}		$\frac{1}{\left(s+s\right)^2}$	
$t^2 e^{-at}$		$\frac{2!}{(s+a)^3}$	

TIME DOMAIN	FREQUENCY DOMAIN	
$e^{-at}\sin(\omega t)$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$	
$e^{-at}\cos(\omega t)$	$\frac{s+a}{\left(s+a\right)^2+\omega^2}$	
$e^{-at}sin(\omega t)$	$\frac{\omega}{\left(s+a\right)^2+\omega^2}$	
$e^{-at}\left[B\cos\omega t + \left(\frac{C-aB}{\omega}\right)\sin\omega t\right]$	$\frac{Bs+C}{\left(s+a\right)^{2}+\omega^{2}}$	
$2 \mathbf{A} e^{-\alpha t}\cos\left(\beta t+\theta\right)$	$\frac{A}{s+\alpha-\beta j} + \frac{A^{complex\ conjugate}}{s+\alpha+\beta j}$	
$2t A e^{-\alpha t}\cos(\beta t+\theta)$	$\frac{A}{\left(s+\alpha-\beta j\right)^{2}}+\frac{A^{complex\ conjugate}}{\left(s+\alpha+\beta j\right)^{2}}$	
$\frac{(c-a)e^{-at}-(c-b)e^{-bt}}{b-a}$	$\frac{s+c}{(s+a)(s+b)}$	
$\frac{e^{-at}-e^{-bt}}{b-a}$	$\frac{1}{(s+a)(s+b)}$	

Inverse Laplace transform

The inverse Laplace transform, which allows us to find f(t) given F(s), is

$$\mathscr{L}^{-1}[F(s)] = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds = f(t)u(t)$$

where

$$u(t) = 1 \qquad t > 0$$
$$= 0 \qquad t < 0$$

is the unit step function. Multiplication of f(t) by u(t) yields a time function that is zero for t < 0.

Properties of LT

Item no.		Theorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$f(t) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathscr{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathscr{L}[f_1(t) + f_2(t)] = f_2(t) + f_2($	$[t] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathscr{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathscr{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathscr{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$=s^{2}F(s)-sf(0-)-f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[\frac{d^n f}{dt^n}\right]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{k-1}(0-)$	Differentiation theorem
10.	$\mathscr{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$	$] = \frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$=\lim_{s\to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty}^{s\to0} sF(s)$	Initial value theorem ²

TABLE 2.2 Laplace transform theorems

Inverse Laplace transform

• Example 2

Find the inverse Laplace transform for, $F(s) = \frac{1}{(s+3)^2}$

- To compute the LT of a complicated function, it is better converted to a sum of simpler terms whose respective LTs are known (or easier to compute). The result is called a partial-fraction expansion.
- *Exercise:* N. S. Nise (pp. 37-44 (review partial-fraction expansion)).

How can we carry out system (model) analysis using Laplace Transforms?

- 1. We convert the system differential equation to the s-domain using Laplace Transform by replacing $\frac{d}{dt}$ with $\frac{s}{s}$.
- 2. We convert the input function to the s-domain using the transform tables.
- 3. We combine algebraically the input and the transfer function to find out an output function.
- 4. We use partial fractions to reduce the output function to simpler components.
- 5. We convert the output equation from the s-domain back to the time-domain to obtain the response using Inverse Laplace Transforms according to the tables.

Transfer Function

• Example3: Find the transfer function represented by:

$$\frac{dc(t)}{dt} + 2c(t) = r(t)$$

Transfer Function

• Example4:

Find the system response for the transfer function

$$G(s) = \frac{1}{s+2}$$
 to the input $r(t) = u(t)$

- Example5:
- Find the ramp response for the system whose transfer function is

$$G(s) = \frac{s}{(s+4)(s+8)}$$

Block Diagrams

Transformation	Original Diagram	Equivalent Diagram
1. Combining blocks in cascade	X_1 $G_1(s)$ X_2 $G_2(s)$ X_3	X_1 G_1G_2 X_3 or X_1 G_1G_2 X_3 X_3
2. Moving a summing point	$X_1 + C X_3$	$\xrightarrow{X_1} G \xrightarrow{+} X_3$
benind a block		
 Moving a pickoff point ahead of a block 	x_1 G x_2 x_2	x_1 G x_2 x_2 G
 Moving a pickoff point behind a block 	X_1 G X_2	$\begin{array}{c} x_1 \\ & & \\$
 Moving a summing point ahead of a block 	$\xrightarrow{X_1} G \xrightarrow{+} X_3 \xrightarrow{+} X_2$	$\xrightarrow{X_1} \xrightarrow{+} G \xrightarrow{X_1} G 1$
6. Eliminating a feedback loop	$x_1 + G + Z_2$ $\pm H + H$	$\xrightarrow{X_1} \xrightarrow{G} \xrightarrow{X_2}$

Table 2.6 Block Diagram Transformations

Example5:

Multiple-loop feedback control system

Block Diagrams

MATLAB and SIMULINK