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Chapter 3
State Variable Models

The State Variables of a Dynamic System
The State Differential Equation

Signal-Flow Graph State Variables
The Transfer Function from the State Equation
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Introduction
• In the previous chapter, we used Laplace transform to obtain the 

transfer function models representing linear, time-invariant, physical 
systems utilizing block diagrams to interconnect systems.

• In Chapter 3, we turn to an alternative method of system modeling 
using time-domain methods.

• In Chapter 3, we will consider physical systems described by an 
nth-order ordinary differential equations.

• Utilizing a set of variables known as state variables, we can obtain 
a set of first-order differential equations.

• The time-domain state variable model lends itself easily to computer 
solution and analysis.
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Time-Varying Control System
• With the ready availability of digital computers, it is convenient to 

consider the time-domain formulation of the equations representing 
control systems.

• The time-domain is the mathematical domain that incorporates the 
response and description of a system in terms of time t.

• The time-domain techniques can be utilized for nonlinear, time-
varying, and multivariable systems (a system with several input and 
output signals).

• A time-varying control system is a system for which one or more of 
the parameters of the system may vary as a function of time.

• For example, the mass of a missile varies as a function of time as 
the fuel is expended during flight
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Terms
• State: The state of a dynamic system is the smallest set of variables 

(called state variables) so that the knowledge of these variables at t
= t0, together with the knowledge of the input for t ≥ t0, determines 
the behavior of the system for any time  t ≥ t0.

• State Variables: The state variables of a dynamic system are the 
variables making up the smallest set of variables that determine the 
state of the dynamic system.

• State Vector: If n state variables are needed to describe the 
behavior of a given system, then the n state variables can be 
considered the n components of a vector x. Such vector is called a 
state vector.

• State Space: The n-dimensional  space whose coordinates axes 
consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn are state 
variables, is called a state space.

• State-Space Equations: In state-space analysis, we are concerned 
with three types of variables that are involved in the modeling of 
dynamic system: input variables, output variables, and state 
variables.
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The State Variables of a Dynamic System
• The state of a system is a set of variables such that the knowledge 

of these variables and the input functions will, with the equations 
describing the dynamics, provide the future state and output of the 
system.

• For a dynamic system, the state of a system is described in terms of 
a set of state variables.

System

u1(t)

u2(t)

y1(t)

y2(t)

Input Signals Output Signals



6

State Variables of a Dynamic System

Dynamic System
State x(t)

u(t) Input y(t) Output

x(0) initial condition

dynamics  thedescribing equations  theand
 inputs, excitation  thestate,present  given the

 system, a of response future  thedescribe  variablesstate The



7

The State Differential Equation
The state of a system is described by the set of first-order differential 

equations written in terms of the state variables (x1, x2, .., xn)

equation) aldifferenti (StateBu Axx
.

+=

signals)output -equation(Output Du Cxy +=matrix nsmission direct tra :D matrix;Output  :C
matrixinput  :B matrix; State :A
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Block Diagram of the Linear, Continuous Time Control System
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Mass Grounded, M (kg)
Mechanical system described by the first-order differential equation

Fa(t)
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Mechanical Example: Mass-Spring Damper
A set of state variables sufficient to describe this system includes the 
position and the velocity of the mass, therefore, we will define a set of 

state variables as (x1, x2)

u
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Example 1: Consider the 
previous mechanical 
system. Assume that the 
system is linear. The 
external force u(t) is the 
input to the system, and 
the displacement y(t) of 
the mass is the output. 
The displacement y(t) is 
measured from the 
equilibrium position in the 
absence of the external 
force. This system is a 
single-input-single-output 
system.
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Electrical and Mechanical Counterparts

Resistor
Ri2

Damper / Friction
0.5 Bv2

Dissipative

Capacitor
0.5 Cv2

Gravity: mgh
Spring: 0.5 kx2

Potential

Inductor
0.5 Li2

Mass / Inertia
0.5 mv2 / 0.5 jω2

Kinetic 

ElectricalMechanicalEnergy
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Resistance, R (ohm)

v(t) R

i(t)
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Inductance, L (H)

v(t) L

i(t)
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Capacitance, C (F)
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Electrical Example: An RLC Circuit
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Example 2: Use Equations from the RLC circuit
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Signal-Flow Graph Model
A signal-flow graph is a diagram consisting of nodes that are 
connected by several directed branches and is a graphical 

representation of a set of linear relations. Signal-flow graphs are 
important for feedback systems because feedback theory is concerned 

with the flow and processing of signals in system.

Vf(s) θ (s)
G(s)

R1(s)

R2(s)

Y1(s)

Y2(s)

G11(s)

G22(s)

G12(s)

G21(s)

2.11-2.8 :Examples Read
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Mason’s Gain Formula for Signal Flow Graphs
In many applications, we wish to determine the relationship between an 
input and output variable of the signal flow diagram. The transmittance 

between an input node and output node is the overall gain between 
these two nodes.
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Signal-Flow Graph State Models
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Phase Variable Format: Let us initially consider the fourth-order 
transfer function. Four state variables (x1, x2, x3, x4); Number of 

integrators equal the order of the system.
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Alternative Signal-Flow Graph State Models
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The State Variable Differential Equations
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The State Variable Differential Equations
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The Transfer Function from the State Equation
Given the transfer function G(s), we may obtain the state variable equations 

using the signal-flow graph model. Recall the two basic equations

( )
[ ]

B )(  C
)(
)()( 

)( B )(  C)( 
)( B )( )( X

)( A-I Since

)(B)(X AI
)(CX)(

)(  B)( XA )( X
Cx

BAxx

1

.

s
sU
sYsG

sUssY
sUss

ss

sUss
ssY

sUsss
y

u

Φ==

Φ=
Φ=

Φ=

=−
=

+=
=

+=

−

 input. single  theis 
 andoutput  single  theis 

u
y

 transformLaplace  theTake



28

Exercises: E3.2 (DGD)
A robot-arm drive system for one joint can be represented by the differential equation, 

where v(t) = velocity, y(t) = position, and i(t) is the control-motor current. Put the equations 
in state variable form and set up the matrix form for k1=k2=1
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E3.3: A system can be represented by the state vector differential 
equation of equation (3.16) of the textbook. Find the characteristic 
roots of the system (DGD).
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E3.7: Consider the spring and mass shown in Figure 3.3 where M = 1 
kg, k = 100 N/m, and b = 20 N/m/sec. (a) Find the state vector 
differential equation. (b) Find the roots of the characteristic equation for 
this system (DGD).
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E3.8: The manual, low-altitude hovering task above a moving land deck 
of a small ship is very demanding, in particular, in adverse weather and 
sea conditions. The hovering condition is represented by the A matrix 
(DGD)
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E3.9: See the textbook (DGD)
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P3.1 (DGD-ELG4152):
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