Lagrange Equations

Use kinetic and potential energy to solve for motion!
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We use Newton's laws to describe the motions of objects. It works well
if the objects are undergoing constant acceleration but they can
become extremely difficult with varying accelerations.

For such problems, we will find it easier to express the solutions with

the concepts of kinetic energy.




Modeling of Dynamic Systems

Modeling of dynamic systems may be done in several
ways:

» Use the standard equation of motion (Newton’s Law)
for mechanical systems.

» Use circuits theorems (Ohm’s law and Kirchhoff's laws:
KCL and KVL).

» Today’s approach utilizes the notation of energy to
model the dynamic system (Lagrange model).



Joseph Louis Lagrange
1736-1813

Joseph-Louise Lagrange: 1736-1813.

Born in Italy and lived in Berlin and Paris.

Studied to be a lawyer.

Contemporary of Euler, Bernoulli, D’Alembert, Laplace, and Newton.
He was interested in math.

Contribution:

— Calculus of variations.

— Calculus of probabilities.

— Integration of differential equations

— Number theory.



Equations of Motion: Lagrange Equations

« There are different methods to derive the dynamic equations of a
dynamic system. As final result, all of them provide sets of equivalent
equations, but their mathematical description differs with respect to
their eligibility for computation and their ability to give insights into the
underlying mechanical problem.

 Lagrangian method, depends on energy balances. The resulting
equations can be calculated in closed form and allow an appropriate
system analysis for most system applications.

 Why Lagrange:
— Scalar not vector.
— Eliminate solving for constraint forces (what holds the system together)
— Avoid finding acceleration.
— Uses extensively in robotics and many other fields.
— Newton’s Law is good for simple systems but what about real systems?
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Mathematical Modeling and System Dynamics
Newtonian Mechanics: Translational Motion

« The equations of motion of
mechanical systems can be
found using Newton’s second ZF — ma
law of motion. F is the vector
sum of all forces applied to the
body; a is the vector of
acceleration of the body with
respect to an inertial reference equate F = ma, solve for the constraint
frame; and m is the mass of forces and then eliminate
the body.

« To apply Newton’s law, the
free-body diagram (FBD) in the
coordinate system used should
be studied.

Newton approach requires that we find

accelerations in all three directions,

these to reduce the problem

to "characteristic size".



Translational Motion in Electromechanical Systems

Consideration of friction is essential for understanding the operation
of electromechanical systems.

Friction is a very complex nonlinear phenomenon and is very difficult
to model friction.

The classical Coulomb friction is a retarding frictional force (for
translational motion) or torque (for rotational motion) that changes its
sign with the reversal of the direction of motion, and the amplitude of
the frictional force or torque are constant.

Viscous friction is a retarding force or torque that is a linear function
of linear or angular velocity.



Newtonian Mechanics: Translational Motion

* For one-dimensional rotational
systems, Newton’s second law
of motion is expressed as the M
following equation. M is the
sum of all moments about the
center of mass of a body (N-
m); J is the moment of inertial
about its center of mass
(kg/m?); and o is the angular
acceleration of the body
(rad/s?).
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Newton’s Second Law

The movement of a classical material point is described by the second law of Newton:

d*r(t : . . : L
m y g ) = F(r,t) (ris a vector indicating a position of the material point in space)
4
o
r=|y
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Vector F(r, t) represents a force field, which may be calculated by taking
into account interactions with other particles, or interactions with electromagnetic
waves, or gravitational fields.

The second law of Newton is an idealisation, of course, even if one was to neglect
quantum and relativistic effects. There is no justification why only a second time derivative
of r should appear in that equation. Indeed if energy is dissipated in the system usually
first time derivatives will appear in the equation too. If a material point loses energy due to EM

radiation, third time derivatives will come up.



Energy in Mechanical and Electrical Systems

In the Lagrangian approach, energy is the key issue. Accordingly,
we look at various forms of energy for electrical and mechanical
systems.

For objects in motion, we have kinetic energy K, which is always a
scalar quantity and not a vector.

The potential energy of a mass m at a height h in a gravitational
field with constant g is given in the next table. Only differences in
potential energy are meaningful. For mechanical systems with
springs, compressed a distance x, and a spring constant k, the
potential energy is also given in the next table.

We also have dissipated energy P in the system. For mechanical
system, energy is usually dissipated in sliding friction. In electrical
systems, energy is dissipated in resistors.
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Electrical and Mechanical Counterparts

“Energy”
Energy Mechanical Electrical
Kinetic Mass / Inertia Inductor
Active 2 ;
( ) 0.5 mv?/0.5 ja? LFFERR e
Ke 2 2
Potential Gravity: mgh Capacitor
|74 Spring: 0.5 kx? 0.5 Cv?=q?4/2C

Damper / Friction
0.5 Bv?

Resistor

1 >, 1 _ .5
—Ri"=—R

2 2 1
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Lagrangian
The principle of Lagrange’s equation is based on a quantity called

“Lagrangian” which states the following: For a dynamic system in which

a work of all forces is accounted for in the Lagrangian, an admissible
motion between specific configurations of the system at time t1 and t2

in a natural motion if , and only if, the energy of the system remains

constant.
The Lagrangian is a quantity that describes the balance between no
dissipative energies.

L =K,-V (K, 1s the kinetic energy; V' 1s the potential energy)

1
K =5mv2; V =mgh

e

d(@LJ 8L+6P:Qi

Lagrange's Equation : — —
e 53, ) oq, " o4

dt
P 1s power function (half rate at which energy is dissipated); O, are generalized external inputs
(forces) acting on the system If there are three generalized coordinates, there will be three equations.

Note that the above equation is a second - order differential equation
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Generalized Coordinates

In order to introduce the Lagrange equation, it is important to first
consider the degrees of freedom (DOF = number of coordinates-
number of constraints) of a system. Assume a particle in a space:
number of coordinates = 3 (x, y, z or r, 6, ¢); number of constrants
=0; DOF=3-0=3.

These are the number of independent quantities that must be
specified if the state of the system is to be uniquely defined. These
are generally state variables of the system, but not all of them.

For mechanical systems: masses or inertias will serve as generalized
coordinates.

For electrical systems: electrical charges may also serve as
appropriate coordinates.
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Cont..

Use a coordinate transformation to convert between sets
of generalized coordinates (x = rsin #cos ¢ ;y =rsin 6
sin ¢; z=rcos ).

Let a set of q, Q,,.., q, of independent variables be
identified, from which the position of all elements of the
system can be determined. These variables are called
generalized coordinates, and their time derivatives are
generalized velocities. The system is said to have n
degrees of freedom since it is characterized by the n
generalized coordinates.

Use the word generalized, frees us from abiding to any
coordinate system so we can chose whatever parameter
that is convenient to describe the dynamics of the

system.
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For a large class of problems, Lagrange equations can be written in

oL
04

standard matrix form

_8_L _
0q,

P
g

i
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Example of Linear Spring Mass System and Frictionless
Table: The Steps

k

N\ "

| I 5 1., X
Lagranglan:LzKe—szmx —Ekx

Lagrang's Equation : d 8.L _o =0
dt\ 0q;, ) 0q;

Do the derivatives 6—L = mMX; d G.L = mXx; 8_L = —kx
aq, dt\ 0q, g,

Combine all together : d ( oL ]—8—L =mx+kx=0

dt\ 0q;, ) 0q;



Mechanical Example: Mass-Spring Damper

1 .
Kez—mx2
2

4 =%Kx2 +mg(h+x)

L=K,6 -V =%m§c2 —%sz —mg(h+x)

P:lB)'cz
2

We have the generalized coordinate g = x, and thus with the applied force Q = f, we write
the Lagrange equation :
d(oL) oL oOP
f=2 S-S
dt\ox) ox Ox
d o, ,1 ., 1

:Z(ﬁ_x(zmx _Esz —mg(h+Xx)))
1

o 1 ) 2 o 1 -2
——(— ——Kx" — h+ +—(—2B
ax(zmx 5 mg(h+x)) a).6(2 x%)

= (i)~ (K= mg) + (B)

= mx + Kx+mg + Bx 17



Electrical Example: RLC Circuit

wl(t)

We have the generalized coordinate g (charge), and with the applied force O = u, we have
d(oL| oL oOP
u= — | ——+—
dt\0qg ) 0Oq 0Oq
1 1

d o 1. 01 o 8 1,
- Cr e — ) - L (E L - — )+ 2 (=R
dt(aq'(2 I ?) aq(z v aq(z a)
0

d .. 0O : . : di :
=—(Lg)+—=+Rg=Lg+—=+Rq=L—+v,.+Ri
a’t( 2 c AT AT T T g e

i =q and g = Cv, for a capacitor. This is just KVL equation
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Electromechanical System: Capacitor Microphone

About them see: httn://Iwww.soundonsound.com/sos/feb98/articles/capacitor.html

This system has two degrees of freedom

(electrical and mechanical : charge g and

displacement x from equilibrium)

K, =1Lq'2 +—mx*; V=—g® +—Kx°
2 2 2C 2

1 1 1

Co eA (5 1s the dielectric constant of the air (F/m), ]

x, —x \ A1s the area of the plate, x, - x 1s the plate separation

1 1 1 1

= (xo—x)q2+—Kx2; P=—R§* +—Bx’
2¢4 2 2 2
1 ., 1 ., 1 » 1 5
L=—Lg"+—mx" ———(x, —x)g~ ——Kx
2T 25/1( — 2

%
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5q 5q &A

Then we obtain the two Lagrange equations

mx + Bx + Kx =f
28/1

S |
Lg+Rq EA(XO—X)CFV .




m

Robotic Example

0
q= { } Generalized coordinates (6 angular position; » radial length; both vary)
r

.
0= L{} Applicable forces to each component; 7 is the torque; f is the force

J=mr’; K :%J92+%m?2; V:mgrsin(é’)

e

o 1, 1 .
The power dissipation : P = EBlé’2 + EBZI”Z

L=K, -V :%Jéz +%m?2 — mgrsin(6)

[ OL | [ OL | [ OP |
oL | o0 _{Jﬂ_ m20] oL |pe | [-mercos(0) 1 or |5g| [B6
og |OL | |mr| |mr | 0g |OL| |mré*—mgsin(@)| o¢ |OP| |B,r
L or | | or | | Or |
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The Lagrange equation becomes

0 - oL | oL 6P
dt 8q 8q oq
0= om0 + 2mrif | Tmser 005(9) ) N _Blé_
i mr | _mré’z —mgsin(0) | | B,r
r: 0 | 6] N _Bl 2mrd [ 6 N {mgr COS(@):| ~ {
0 m || |—mr B, | 7] [mesin(d)

M (q)q +V(g,9)+G(q) =0
M (q) 1s the inertia matrix; V' (g, g) 1s the Coriolis/centripetal vector

G(q) 1s the gravity vector; O 1s the input vector

|
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Example: Two Mesh Electric Circuit

L, L,

Assume ¢, and ¢, as the independent generalized coordinates, where g, 1s the electric
charge in the first loop and ¢, 1s the electric charge in the second loop.

The generalized force applied to the system is denoted as Q,

We should know that :i; = ¢q,; i, =¢,; q; = l—l; q, = li; O, =U_,(1).

S S

The total magnetic energy (kinetic energy)is :

| | . .o 1 .9
K =—1L +—L — +—L
e 5 191 > 12(% %) 7 29> N



oK oK, .
== (Ll +L, )q —L»q,

5% ’ oq,

8Ke oK, .
) (L2+L12)q —Lyrq,

oq, 0q,

Use the equation for the total electric energy (potential energy)

1l e O a0
The total heat energy dissipated : P = — R, ¢} +1R2q'§ ; 5—{):R1q'1 and 6—.P:R2q°2
2 2 oq, 0q,
d oK, @K 8P oV d oK, 0K, oP oV
—t——=0; ()t —+—=0
dt 0q,  Oq, 591 0q, dt 0q, 0qy 0qy, 0q;

. . . q q
(L +Ljy)q, —Lipq, + Riq, +Fl =U,; -Ljpq, +(Ly +L15)g, + Ryg, + C2 =0
| 2

— —R.g, + L +U_ |.1qg, = L ——= _—R
(Ll +L12)( C, 191 129> aj q> (L2 +L12)( 12491 C, 29>
24
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Another Example

iolt) 0

C

Use ¢, and g, as the independent generalized coordinates :
I, =451 =q5u,() =0
1 ., 0K oK oK
S —4=0, —<=0; d[ ej:o

Ke — _LQ2 >

2 oq,  o6q,  dt\ g,
oK, oK, . d(oK,) ..
— Oa . — LQZ > ( . ] — LQZ
0q 04, dt\ 0q, 25



. . 1(q,-q,)
The total potential energyis:V = 5 (ql qu)

o _$=9 4V _—a+q,
0q, C oq C

o . 1 . 1 :
The total dissipated energyis: P = Equz + ER I q%

——=Rq and ——=R;q,
oq, 9>
d(aKe] 0K, oP oV d[&KeJ oK, oP oV
e | e DL gy S D | e Oy
dt\ 0q, ) Oq, 0Oq, 0Oq, dt\ 0q, ) 0q, 0q, 0Oq,
R + 282~y s 1, + Ry g, + =192 0
q’ :i _QI+Q2 +u | q :l ~R q +Ql_q2
1= 5 C ap 9277 L92 C

By using Kirchhoff's law, we get

du 1 u, . u,@)) diy 1 :
£ = c + L= =—\u, —R;i
(e +2aON L -y

R

d C
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Directly-Driven Servo-System

W, Te

T, : electromagnetic torque

T, :Load torque

ql :ls; q2 :lr; Q3 :a)r;

O =ug; O, =u,; Oy =-1;
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The Lagrange equations are expressed in terms of each independent
coordinate

d o0K oK, OP 8V

(—)———+— =0
dt  0q, oq,  0q, 591

d OK oK, oOP oV

(—)———+—+ =0,
dt 0q, oq, 04, 0Oq,

d 0K, 0K, oP oV
(—)— T+ =0
dt  0qs, 0q; 0gy 0Oq3
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The total kinetic energy is the sum of the total electrical (magnetic) and
mechanical (moment of inertia) energies

1 1 1

K, = ELSc;f +L,.4,4 +5qu§ (Electrical); K, = 5‘]432 (Mechanical)
1 ) .. 1 ) 1 .. 2
Ke = Kee +Kem :_qul +LsrqIQ2 +_qu2 +_JQ3
2 2 2
. NN N,N
Mutual inductance : L, (0,) = ———; Ly = Ly =——
R,,06,) R,,(907)
L, (0.)=L,, cos0. =L, cosq; (L;, 1s magnetizing reluctance)
| R . 1., 1 .
Ke ==Ly +Lydid 0053 += LG5 +—Jd3
oK, oK,
—==0,—==Lq) + Lyq, €03 g5
oq, oq,
oK, oK, oK, oK,
=0;—==Lyq cosq; +L,.qy;——=—Ly 4,9, 5SInq3;—— = Jq;
0q, 0q, 0q; 0q;
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We have only a mechanical potential energy: Spring with a constant &,

The potential energy of the spring with constant & : V' = %ksqg

V6 0

0q, 0q, 0q;
The total heat energy dissipated 1s expressed as : P = P, + Py,

1 o1 .9 1 .9
P.=—R +—R ; Py =—B,
E > sq1 5 yd2s Ly > q;

1 . ., 1 o1 .9
P=—Rqg  +—R,.g5 +—B
5 s4q1 5 r4q2 5 m43
oP . OP OP

. :RSQI; . :qu.2; and . :qu.3
oq, a4 0q;
Substituting the original values, we have three differential equations for servo - system
di di
>+ L,, cosf. ———L,,i sind
d M @ M

di di :
L i+LM cosé’ri—LMiSsm@r

g dt dt

r

L

N

+Rszs = U,

r

+R,i. =u,

t
d*0,

J

. do
=+ Ly i, sin6, + B, ——+k0,
dt dt 30
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The last equation should be written in terms of rotor angular velocity ( = w).

Also, using stator current and rotor current, angular velocity, and position as state variables

di 1 1 : :
b o > > (— R.L.i, ——L?Mz'sa)r sin26,. +R,L;,i, cos@. . +L.Ly,w,.smnb, +L.u,—L, cos Qrurj
dt  L.L —L cos” 0, 2
di, 1 1 , : 1o :
= > 5 —RLyi,——L.Lyiw.smb,. —R.Li ——Lyi o .sin20-L, cos@.u,+Lu,
dt  L,L.—Lj cos” 0, 2 2
do, 1
~=—(-Lyiid, sinl. -B, o —k6 —T
dt J( M*str r m=’r sYr L)
do,
= a)l"
dt

o : . d 1 :
Considering the third equation : ;)r = 7(—L yid.sinf,. —B, o, —k06,. —T;)
4

We can obtain the expression for the electromagnetic torque 7, developed:

T,=~-L,ii, sin@,
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More Application
Application of Lagrange equations of motion in the modeling of two-
phase induction motor and generator.

Application of Lagrange equations of motion in the modeling of
permanent-magnet synchronous machines.

Transducers
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