ELG 4151
Linear Systems

TA: Fouad Khalil, P.Eng., Ph.D. Student
fkhal022@uottawa.ca



My agenda for this tutorial session

| will introduce the Laplace Transforms as a
useful tool for you to tackle linear systems
analysis.

| will give examples on how to derive the
transfer function of different models.

| will talk about solving the system equation to
obtain the system response and | will give
examples regarding that.

| will talk about performing system analysis
using the state transition matrix and | will give
examples on that.



Laplace Transforms

We transform the system (model), which is identified
by a differential equation (transfer function), from time
domain to frequency domain.

d

—=D=5 S=0+ jw

dt

We normally assume zero initial conditions at t=0. If
any of the initial conditions are non-zero, then they
must be added.



What is Laplace Transform
f(s)=[ f(ne *'dt
0
where,
f(t) = the function in terms of time t
f(s) = the function in terms of the Laplace s
Example
For f(t) =5,
0 o0 e —s0
f(s) = I f(t)e *'dt = j 5 dt = ée_St - |: §esw:|—[si
0 0 s o S S




How can we carry out system (model) analysis
using Laplace Transforms ?

We convert the system transfer function (differential
equation) to the s-domain using Laplace Transform
by replacing ‘d/df’ or 'D’ with 's’.

We convert the input function to the s-domain using
the transform tables.

We combine algebraically the input and the transfer
function to find out an output function.

We Use partial fractions to reduce the output function
to simpler components.

We convert the output equation from the s-domain
back to the time-domain to obtain the response using
Inverse Laplace Transforms according to the tables.
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Q: What is the Laplace Transform for the
convolution function.

LIF(s)*G(s)] = F'(5).G(s)

F()*G(s)= | f(t-7)g(r)dz



Laplace

Transforms

Table

TIME DOMAIN

FREQUENCY DOMAIN

5(1)

t" n>0

b

—at
sin(wt)
cos(mt)

—at
te

2 -—at
€

unit impulse
step

ramp

exponential decay




TIME DOMAIN FREQUENCY DOMAIN
e *'sin (ot) %
(stay to
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Example

For this mechanical system obtain the transfer function
In s-domain

F = MD'x+K Dx+K x

F©) _
X0 = MD’ +K 4D +K,

F(t)] _ F(s) _
L[X(t) © Ms” +K s+ K
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Example
For this electrical circuit obtain the transfer function in s-domain

I BN .
1 R +
— Vo
Vi | C ]
A a
1o
V][ J
1 R
DC+ L v(—]
i\TTDCR
Vo = R = R = Vi( 9 9 R j
D?R2LC +DLR +R
DL+[ 'I] DLR+(I+DCR)
+ =
DC + &

Vo(t)] Vo(s)_ R
L Vi(t)] Vi(s) (SZRELC+SLR+R)
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Device Time domain s-domain Impedance

Resistor V(t) = RI(1) V(is) = RI(s) Z = R
: . 1 o ) (17 Ili) 1
apacitor [__J; )¢ 5) |-\ = e .
Inductor V(i) = L;F—Iﬂr"} V(s) = Lsl(s) Z = Ls

Impedances of electrical components

Have more examples on how to obtain the
transfer function in the s-domain for the
given systems.



Now back to our simple mechanical system to obtain its output
response to a step input of magnitude 1000 N.

Given, X(s) _ 1
F9 Me Ky 1 K.
F(s = =
Therefore, | A
S
X(s) = (F( ))F(s)= (le ]_
(s) ST+ Ks+KJ°®
Assume,
Ky = 30001\LS
K, = 2000N
m
M = 1000kg
A = 1000N
SX(8) = !

(sz+3s +2)s
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Types of inputs (driving force)

Vde sirei

Videsired t ort-=

Input type

Time function

- t(sec)

Laplace function

STEP

I

Fflr)y = Au(r)

RANMP

Jlt) = Adru(r)

Sty = Asin(mf)u(r)

L A
(5) = —
] 5
P A
Ss) = =
5
ﬁ's} _ fl(!J"i
52 T 0)'\

14



Performing partial fraction simplification

X(S) = 1 1 ~ A, B €

(sz+3s+2)s N (st 1)(s+2)s s s+1 s+2

A= i S mer)] - 2
5= Sli)m_l :(S+ 1)((erl)(ls +2)s)] -

€= slimz:(ﬁz)((w l)zs+2)s)] B %

«(5) = 1 _ 05 -1 05

(s°+3s+2)s s s+l s+2
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= Now we proceed with the Inverse Laplace
Transforms to obtain the system time response

_|_
s s+1 s+2

R —1 17 0.5
x(t) = L [S]+L [s+1]+L [s+2]
X(t) — [05] + [(_l)e_t] 1 [(0-5)6_2t]
x(t) = 0.5—¢ '+0.5¢ "

x(t) = L7 [x(s)] = L [05 -1 0.5 ]
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Try to think about the case where the driving force is
an impulse input. So what will be the impulse
response ?

F(s)=L[5(t)] =1

o
_|_
[—
Lo
_|_
-2
Lo
_|_
[—
o
_|_
-2
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Unit impulse P(1)

Area = El| =1

m =

Dirac delta function

o(r) = liﬂlﬂP{T] This function is theoretically
£ —

o

Area = [ o(t)dr = 1

-

for an instant. but it does
have an area of 1.

— D

undefined, 1t goes to infinity
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= What's about the partial fractions simplification
for the repeated roots.

Example
Sz(S+ 1) 82 s s+1

C - Slir)nl[(erl)(Sz(SlJrl))] .
A sli—r>n 0[82(52(314r 1)>] B slzno[ler_J -

. 2
B = hm Iim s+ 1 = —]
s —>0 dS (S+ ))]] s—>0 dS s—)O[{ ) |
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Have another example

5
F(s) = ——
s (s+1)
5 :%+]_3+ C N D N E
S

(s+1y (s+1)? tD
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5 _AB, C ., D  E
2s+1)y 8 S (s+1)7 (s+1 GTD
A = lim (;3)82] lim 2 ] =5
s—>0L SZ(S+1) s—>0 (S+1)
B:=hm-§(——i—3%1——hm[§( > :ﬂ:=hm[503h]=—45
s—>0L S Sz(S+1) s—0 (S+1) s =0 (S‘l‘l)
c=1m(;i_9@ﬂfr=m1%=5
s—>—1 Sz(S+ 1) s—>—1 S
Dzlmk%g@_i_jquf]z1m{%§%]=hm[;£§q—1o
s—>-—1 S (S‘|‘ 1) s—>-1L*%: SS s—>-1Lt g
[1d2 s 3 1 d25 . 7130
E= lim|[—— (——) s+1 = |lim [—— —] lim [——] =15
s——1|2!ds ( +1) ( )i| s—>-1[2!ds 2 s —>-—1 2!54
5 ::%+—w+_ s .10 15

3
sz(s+1)

s S (s+1)’ (s+1y (D



Initial and Final Value Theorems
1

-
(8" +3s+2)s

X(s) =

X(t—00) = sﬁ_r?o [sX($)] Final value theorem

>qt—>ag-1nn[ Is } _ Hnl[ 1 } _ ! _

1
s —0 (S +3s+2)s s—0 s2+3s+2 (0)2+3(O)+2 2

x(t—0) = lim [sx(s)] Initial value theorem

S —>

“X(t=0) = fim [— }: 1 _

1
S— (sz—|—3s+2)s ((00)2+3(oo)+2) 00

=0
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= Why Laplace Transform is that powerful tool ?
= Solving the Convolution Integral Problem

F(t) x(7)

—— [e()F(t)di

Response of the system to a single pulse
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F(1)

|

sum of responses

r
= [g(r—1)F(t)dr »

0

™

o \ :

impulse responses

The convolution integral
[

(1) = jg(r —1)F(1)dr

0

A set of pulses for a system gives summed responses to give the output
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Example

Lly(Y)=g(t)"u(®]=y(s)=9(s).u(s)

a(t)
A

5

t
»-seconds

0 1 3 4
V(1) = Stu(t)+5(t—Du(t—1)+5t=3)u(t—3)—5(t —4)u(t —4)

5 575 575 5
WY = S+ +—-
S2 82 82 82
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W Solving the System Equation (Response)

Example

X+05X = 26(1)
The homogeneous solution can be found.

X+05X =0 X, =" X, =4
A+05 =10
X, = ce
The particular solution is found.
X+05X = 28(1) X, = 4 X, =0

0+0.54 = 2(0)

X, =4=0

p
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The 1nitial condition caused by the impulse function found. assuming a zero initial con-

dition.
1 \ I'; 1 Y
— X, +0.5(0) = 2| —
(dﬁ . (0) ‘xdrsj
X, =2
The 1nitial condition caused by the impulse function found. assuming a zero initial con-
dition.
X() = ¢
X(0)=2=ce
X(t) = 2¢7"
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Solving for system response using Laplace
Transforms

(s+0.5)X(s)=2
2
s+0.5
X =L"[X(s)]=2e""

X(s)=
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= System Analysis Based on State Transition Matrix

State equations as functions of tume
x = Ax+Bu
y=Cx+Du
In the s-domain
sX-X, = AX+BU
X(sI-4) = BU+ X,
X = (sI-AV'BU+(sI-4)' X,

¥ = CX+DU
¥ = C((s]-AV'BU+ (sT- AV ' Xp) + DU
¥ = (C(sI—A) B+ D)\U+CisI—4) X0
Assiming the system starts at rest,
¥ = (CisI-4)'B+D)U

L (C(s7-4y'B+D) (the transfer function)

e

State Transition Matrix
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The transfer function can be said to be equivalant to the determinants of the matnx form.

isl—4) -8
C D| (sI-4)D-(-B)C _ f
|sT—A| - T4 = (s$I-A)D+BC(s]-A4)
(s]-A) -B
_ C D \
o= Cisl-4) 13+g= ={mle=:5
|57 — A zeros
4

|s]— 4| = characteristic equation = homogeneous
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= Solving the Model Equations in Time Domain

x = Ax+ Bu

- r - .
x(r) = ¢"'x(0) + | A YBu(tdr
"0

y = Cx+Du

y(1) = Ce*x(0)+ [ €'~ "Bu(t)dt+ Du(r)

| |7 |

initial impulse
response response
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Solving in s-domain (Open form)

The homogeneous equation can be written i1 the s-domain, and then converted to time.

= |5‘;|"_-.‘E|"Ii:"cl
(1) =L Xl
2 3
x, (1) = L_1|:|jf+‘il—‘{——"h‘l—— :|TE':|
a 5 5 20 3 o
5508
¢ 2 At At - i
X0t =&y, ¢ = transition matrix

aside: This expansion 15 a McLaurin (Taylor) series.

—I+Ar+|,,l| a | IA’;f'—
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Solving for the Closed Form of the State Transition
Matrix

e =L '[(sI—A)"]
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F =M
i=v . . !
- BRI b
J=p v 00 |v Y, 00
This can be used to find the inverse matrix, ) i
. : =1 i l ll
oo (Tl fo1ll I e () R P R PR
(s]—-4d) =3 - | = === = = |" s
L0l 0 0f/ 0 s 55=0 0 s gl
2 2 E

* The forced'particular solution

The fimction of time can be found assuming an initial position of 10 and velocity of 3.

PRl (078 ) e I L
01

oL
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= Another Example
Back to our motor model!
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Your Questions

fkhal022(@uottawa.ca
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