ELG 4151 Linear Systems

TA: Fouad Khalil, P.Eng., Ph.D. Student fkhal022@uottawa.ca

My agenda for this tutorial session

- I will introduce the Laplace Transforms as a useful tool for you to tackle linear systems analysis.
- I will give examples on how to derive the transfer function of different models.
- I will talk about solving the system equation to obtain the system response and I will give examples regarding that.
- I will talk about performing system analysis using the state transition matrix and I will give examples on that.

Laplace Transforms

We transform the system (model), which is identified by a differential equation (transfer function), from time domain to frequency domain.

$$\frac{d}{dt} = D = s \qquad s = \sigma + j\omega$$

 We normally assume zero initial conditions at t=0. If any of the initial conditions are non-zero, then they must be added.

What is Laplace Transform

$$f(s) = \int_0^\infty f(t) e^{-st} dt$$

where,

f(t) = the function in terms of time t

f(s) = the function in terms of the Laplace s

Example

For
$$f(t) = 5$$
,

$$f(s) = \int_{0}^{\infty} f(t)e^{-st}dt = \int_{0}^{\infty} 5e^{-st}dt = \frac{5}{s}e^{-st}\Big|_{0}^{\infty} = \left[\frac{5}{s}e^{-s\infty}\right] - \left[\frac{5e^{-s0}}{s}\right] = \frac{5}{s}$$

How can we carry out system (model) analysis using Laplace Transforms?

- 1. We convert the system transfer function (differential equation) to the s-domain using Laplace Transform by replacing 'd/dt' or 'D' with 's'.
- 2. We convert the input function to the s-domain using the transform tables.
- 3. We combine algebraically the input and the transfer function to find out an output function.
- 4. We Use partial fractions to reduce the output function to simpler components.
- 5. We convert the output equation from the s-domain back to the time-domain to obtain the response using Inverse Laplace Transforms according to the tables.

Laplace
Transforms
Properties

TIME DOMAIN	FREQUENCY DOMAIN
f(t)	f(s)
Kf(t)	KL[f(t)]
$f_1(t) + f_2(t) - f_3(t) + \dots$	$f_1(s) + f_2(s) - f_3(s) + \dots$
$\frac{\mathrm{d}f(t)}{\mathrm{d}t}$	sL[f(t)] - f(0)
$\frac{d^2 f(t)}{dt^2}$	$s^{2}L[f(t)] - sf(0^{-}) - \frac{df(0^{-})}{dt}$
$\frac{d^n f(t)}{dt^n}$	$s^{n}L[f(t)] - s^{n-1}f(0^{-}) - s^{n-2}\frac{df(0^{-})}{dt} - \dots - \frac{d^{n-1}f(0^{-})}{dt^{n}}$
$\int_0^t f(t)dt$	$\frac{L[f(t)]}{s}$
f(t-a)u(t-a), a > 0	$e^{-as}L[f(t)]$
$e^{-at}f(t)$	f(s-a)
f(at), $a > 0$	$\frac{1}{a}f\left(\frac{s}{a}\right)$
tf(t)	$\frac{-df(s)}{ds}$
$t^{n} f(t)$	$(-1)^n \frac{d^n f(s)}{ds^n}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} f(u) du$

Q: What is the Laplace Transform for the convolution function.

$$L[F(s) * G(s)] = F(s).G(s)$$

$$F(s) * G(s) = \int_{-\infty}^{+\infty} f(t - \tau)g(\tau)d\tau$$

Laplace
Transforms
Table

TIME DOMAIN		FREQUENCY DOMAIN	
$\delta(t)$	unit impulse	1	
A	step	$\frac{A}{s}$	
t	ramp	$\frac{1}{2}$	
t^2		$ \frac{A}{s} $ $ \frac{1}{s^2} $ $ \frac{2}{s^3} $	
t^n , $n > 0$		$\frac{n!}{s^{n+1}}$	
e^{-at}	exponential decay	$\frac{1}{s+a}$	
$\sin(\omega t)$		ω	
cos(ωt)		$\frac{s^2 + \omega^2}{s}$ $\frac{s}{s^2 + \omega^2}$	
te ^{-at}		$\frac{1}{(s+a)^2}$	
t^2e^{-at}		$\frac{2!}{\left(s+a\right)^3}$	

TIME DOMAIN

FREQUENCY DOMAIN

$$e^{-at}\sin(\omega t)$$

$$e^{-at}\cos(\omega t)$$

$$e^{-at}\sin(\omega t)$$

$$e^{-at} \left[B \cos \omega t + \left(\frac{C - aB}{\omega} \right) \sin \omega t \right]$$

$$2|A|e^{-\alpha t}\cos(\beta t + \theta)$$

$$2t |A| e^{-\alpha t} \cos(\beta t + \theta)$$

$$\frac{(c-a)e^{-at}-(c-b)e^{-bt}}{b-a}$$

$$\frac{e^{-at} - e^{-bt}}{b - a}$$

$$\frac{\omega}{(s+a)^2+\omega^2}$$

$$\frac{s+a}{(s+a)^2+\omega^2}$$

$$\frac{\omega}{\left(s+a\right)^2+\omega^2}$$

$$\frac{Bs + C}{(s + a)^2 + \omega^2}$$

$$\frac{A}{s+\alpha-\beta j} + \frac{A^{complex\; conjugate}}{s+\alpha+\beta\, j}$$

$$\frac{A}{\left(s+\alpha-\beta j\right)^{2}}+\frac{A^{complex\ conjugate}}{\left(s+\alpha+\beta j\right)^{2}}$$

$$\frac{s+c}{(s+a)(s+b)}$$

$$\frac{1}{(s+a)(s+b)}$$

Example

For this mechanical system obtain the transfer function in s-domain

$$F = MD^2x + K_dDx + K_sX$$

$$\frac{F(t)}{x(t)} = MD^2 + K_dD + K_s$$

$$L\left[\frac{F(t)}{x(t)}\right] = \frac{F(s)}{x(s)} = Ms^{2} + K_{d}s + K_{s}$$

Example

For this electrical circuit obtain the transfer function in s-domain

Device	Time domain	s-domain	Impedance
Resistor	V(t) = RI(t)	V(s) = RI(s)	Z = R
Capacitor	$V(t) = \frac{1}{C} \int I(t) dt$	$V(s) = \left(\frac{1}{C}\right) \frac{I(s)}{s}$	$Z = \frac{1}{sC}$
Inductor	$V(t) = L\frac{d}{dt}I(t)$	V(s) = LsI(s)	Z = Ls

Impedances of electrical components

 Have more examples on how to obtain the transfer function in the s-domain for the given systems. Now back to our simple mechanical system to obtain its output response to a step input of magnitude 1000 N.

Given,
$$\frac{x(s)}{F(s)} = \frac{1}{Ms^2 + K_d s + K_s}$$

$$F(s) = \frac{A}{s}$$
Therefore,
$$x(s) = \left(\frac{x(s)}{F(s)}\right)F(s) = \left(\frac{1}{Ms^2 + K_d s + K_s}\right)\frac{A}{s}$$
Assume,
$$K_d = 3000\frac{Ns}{m}$$

$$K_s = 2000\frac{N}{m}$$

$$M = 1000kg$$

$$A = 1000N$$

$$\therefore x(s) = \frac{1}{(s^2 + 3s + 2)s}$$

Types of inputs (driving force)

Input type	Time function	Laplace function
STEP	f(t) = Au(t)	$f(s) = \frac{A}{s}$
 RAMP	f(t) = Atu(t)	$f(s) = \frac{A}{s^2}$
 sinusoid	$f(t) = A\sin(\omega t)u(t)$	$f(s) = \frac{A\omega^2}{s^2 + \omega^2}$

Performing partial fraction simplification

$$x(s) = \frac{1}{(s^2 + 3s + 2)s} = \frac{1}{(s+1)(s+2)s} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+2}$$

$$A = \lim_{s \to 0} \left[s \left(\frac{1}{(s+1)(s+2)s} \right) \right] = \frac{1}{2}$$

B =
$$\lim_{s \to -1} \left[(s+1) \left(\frac{1}{(s+1)(s+2)s} \right) \right] = -1$$

$$C = \lim_{s \to -2} \left[(s+2) \left(\frac{1}{(s+1)(s+2)s} \right) \right] = \frac{1}{2}$$

$$x(s) = \frac{1}{(s^2 + 3s + 2)s} = \frac{0.5}{s} + \frac{-1}{s+1} + \frac{0.5}{s+2}$$

Now we proceed with the Inverse Laplace Transforms to obtain the system time response

$$x(t) = L^{-1}[x(s)] = L^{-1}\left[\frac{0.5}{s} + \frac{-1}{s+1} + \frac{0.5}{s+2}\right]$$

$$x(t) = L^{-1}\left[\frac{0.5}{s}\right] + L^{-1}\left[\frac{-1}{s+1}\right] + L^{-1}\left[\frac{0.5}{s+2}\right]$$

$$x(t) = [0.5] + [(-1)e^{-t}] + [(0.5)e^{-2t}]$$

$$x(t) = 0.5 - e^{-t} + 0.5e^{-2t}$$

Try to think about the case where the driving force is an impulse input. So what will be the impulse response?

$$F(s) = L[\delta(t)] = 1$$

$$x(s) = \frac{1}{(s^2 + 3s + 2)} = \frac{1}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2}$$

Dirac delta function

What's about the partial fractions simplification for the repeated roots.

Example

$$x(s) = \frac{1}{s^2(s+1)} = \frac{A}{s^2} + \frac{B}{s} + \frac{C}{s+1}$$

$$C = \lim_{s \to -1} \left[(s+1) \left(\frac{1}{s^2(s+1)} \right) \right] = 1$$

$$A = \lim_{s \to 0} \left[s^{2} \left(\frac{1}{s^{2}(s+1)} \right) \right] = \lim_{s \to 0} \left[\frac{1}{s+1} \right] = 1$$

$$B = \lim_{s \to 0} \left[\frac{d}{ds} \left[s^2 \left(\frac{1}{s^2(s+1)} \right) \right] = \lim_{s \to 0} \left[\frac{d}{ds} \left(\frac{1}{s+1} \right) \right] = \lim_{s \to 0} \left[-(s+1)^{-2} \right] = -1$$

Have another example

$$F(s) = \frac{5}{s^2(s+1)^3}$$

$$\frac{5}{s^2(s+1)^3} = \frac{A}{s^2} + \frac{B}{s} + \frac{C}{(s+1)^3} + \frac{D}{(s+1)^2} + \frac{E}{(s+1)}$$

$$\frac{5}{s^2(s+1)^3} = \frac{A}{s^2} + \frac{B}{s} + \frac{C}{(s+1)^3} + \frac{D}{(s+1)^2} + \frac{E}{(s+1)}$$

$$A = \lim_{s \to 0} \left[\left(\frac{5}{s^2(s+1)^3} \right) s^2 \right] = \lim_{s \to 0} \left[\frac{5}{(s+1)^3} \right] = 5$$

$$B = \lim_{s \to 0} \left[\frac{d}{ds} \left(\frac{5}{s^2(s+1)^3} \right) s^2 \right] = \lim_{s \to 0} \left[\frac{d}{ds} \left(\frac{5}{(s+1)^3} \right) \right] = \lim_{s \to 0} \left[\frac{5(-3)}{(s+1)^4} \right] = -15$$

$$C = \lim_{s \to -1} \left[\left(\frac{5}{s^2 (s+1)^3} \right) (s+1)^3 \right] = \lim_{s \to -1} \left[\frac{5}{s^2} \right] = 5$$

$$D = \lim_{s \to -1} \left[\frac{1}{1!} \frac{d}{ds} \left(\frac{5}{s^2 (s+1)^3} \right) (s+1)^3 \right] = \lim_{s \to -1} \left[\frac{1}{1!} \frac{d}{ds} \frac{5}{s^2} \right] = \lim_{s \to -1} \left[\frac{1}{1!} \frac{-2(5)}{s^3} \right] = 10$$

$$E = \lim_{s \to -1} \left[\frac{1}{2!} \frac{d^2}{ds} \left(\frac{5}{s^2 (s+1)^3} \right) (s+1)^3 \right] = \lim_{s \to -1} \left[\frac{1}{2!} \frac{d^2}{ds} \frac{5}{s^2} \right] = \lim_{s \to -1} \left[\frac{1}{2!} \frac{30}{s^4} \right] = 15$$

$$\frac{5}{s^2(s+1)^3} = \frac{5}{s^2} + \frac{-15}{s} + \frac{5}{(s+1)^3} + \frac{10}{(s+1)^2} + \frac{15}{(s+1)}$$

Initial and Final Value Theorems

$$x(s) = \frac{1}{(s^2 + 3s + 2)s}$$

$$x(t \to \infty) = \lim_{s \to 0} [sx(s)]$$

Final value theorem

$$\therefore x(t \to \infty) = \lim_{s \to 0} \left[\frac{1s}{(s^2 + 3s + 2)s} \right] = \lim_{s \to 0} \left[\frac{1}{s^2 + 3s + 2} \right] = \frac{1}{(0)^2 + 3(0) + 2} = \frac{1}{2}$$

$$x(t \to 0) = \lim_{s \to \infty} [sx(s)]$$

Initial value theorem

$$\therefore x(t \to 0) = \lim_{s \to \infty} \left[\frac{1(s)}{(s^2 + 3s + 2)s} \right] = \frac{1}{((\infty)^2 + 3(\infty) + 2)} = \frac{1}{\infty} = 0$$

Why Laplace Transform is that powerful tool?

Solving the Convolution Integral Problem

Response of the system to a single pulse

A set of pulses for a system gives summed responses to give the output

Example

$$L[y(t)=g(t)*u(t)]=y(s)=g(s).u(s)$$

$$y(t) = 5tu(t) + 5(t-1)u(t-1) + 5(t-3)u(t-3) - 5(t-4)u(t-4)$$

$$y(s) = \frac{5}{s^2} + \frac{5e^{-s}}{s^2} + \frac{5e^{-3s}}{s^2} - \frac{5e^{-4s}}{s^2}$$

Solving the System Equation (Response)

Example

$$\dot{X} + 0.5X = 2\delta(t)$$

The homogeneous solution can be found.

$$\dot{X} + 0.5X = 0$$
 , $X_h = e^{At}$ $\dot{X}_h = Ae^{At}$
$$A + 0.5 = 0$$

$$X_h = Ce^{-0.5t}$$

The particular solution is found.

$$\dot{X} + 0.5X = 2\delta(t)$$
 , $X_p = A$ $\dot{X_p} = 0$
 $0 + 0.5A = 2(0)$ $X_p = A = 0$

The initial condition caused by the impulse function found, assuming a zero initial condition.

$$\left(\frac{1}{dt}\right)X_0 + 0.5(0) = 2\left(\frac{1}{dt}\right)$$
$$X_0 = 2$$

The initial condition caused by the impulse function found, assuming a zero initial condition.

$$X(t) = Ce^{-0.5t}$$

$$X(0) = 2 = Ce^{0}$$

$$X(t) = 2e^{-0.5t}$$

Solving for system response using Laplace Transforms

$$(s+0.5)X(s) = 2$$

$$X(s) = \frac{2}{s+0.5}$$

$$X(t) = L^{-1}[X(s)] = 2e^{-0.5t}$$

System Analysis Based on State Transition Matrix

State equations as functions of time

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

In the s-domain

$$\begin{split} sX - X_0 &= AX + BU \\ X(sI - A) &= BU + X_0 \\ X &= (sI - A)^{-1}BU + (sI - A)^{-1}X_0 \\ Y &= CX + DU \\ Y &= C((sI - A)^{-1}BU + (sI - A)^{-1}X_0) + DU \\ Y &= (C(sI - A)^{-1}B + D)U + C(sI - A)^{-1}X_0 \end{split}$$

Assuming the system starts at rest,

$$Y = (C(sI - A)^{-1}B + D)U$$

$$\frac{Y}{U} = (C(sI - A)^{-1}B + D)$$
 (the transfer function)

State Transition Matrix

The transfer function can be said to be equivalent to the determinants of the matrix form.

$$G = C(sI - A)^{-1}B + D = \frac{\begin{vmatrix} (sI - A) - B \\ C & D \end{vmatrix}}{|sI - A|} = \underbrace{\frac{poles}{zeros}}$$

|sI - A| = characteristic equation = homogeneous

Solving the Model Equations in Time Domain

$$\dot{x} = Ax + Bu$$

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$y = Cx + Du$$

$$y(t) = Ce^{At}x(0) + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

$$initial impulse$$

$$response response$$

Solving in s-domain (Open form)

The homogeneous equation can be written in the s-domain, and then converted to time.

$$\begin{split} X_h &= |sI - A| X_0 \\ X_h(t) &= L^{-1}[|sI - A| X_0] \\ X_h(t) &= L^{-1} \boxed{\left[\frac{I}{s} + \frac{A}{s} + \frac{A^2}{s^2} + \frac{A^3}{s^3} + \dots\right]} X_0 \end{bmatrix} \\ X_h(t) &= e^{At} X_0 \qquad \qquad e^{At} = \text{transition matrix} \end{split}$$

aside: This expansion is a McLaurin (Taylor) series.

$$e^{At} = I + At + \left(\frac{1}{2!}\right)A^2t^2 + \left(\frac{1}{3!}\right)A^3t^3 + \dots$$

 Solving for the Closed Form of the State Transition Matrix

$$e^{At} = L^{-1}[(sI - A)^{-1}]$$

Example

$$F = M\ddot{x}$$

$$\dot{x} = v$$

$$\dot{v} = \frac{F}{M}$$

$$\left[\dot{x}\right] = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} F$$

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

This can be used to find the inverse matrix,

$$(sI - A)^{-1} = \left(s \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right)^{-1} = \left[\begin{bmatrix} s & -1 \\ 0 & s \end{bmatrix}^{-1} = \frac{\left[\begin{bmatrix} s & 1 \\ 0 & s \end{bmatrix} \right]}{s^2 - 0} = \left[\frac{s}{s^2} \frac{1}{s^2} \right] = \left[\frac{1}{s} \frac{1}{s^2} \right] = \left[\frac{1}{s} \frac{1}{s^2} \right]$$

· The forced/particular solution

The function of time can be found assuming an initial position of 10 and velocity of 5.

$$e^{At} = L^{-1}[(sI - A)^{-1}] = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$
$$x_h(t) = \begin{bmatrix} x \\ y \end{bmatrix} = e^{At} \begin{bmatrix} 10 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 5 \end{bmatrix} = \begin{bmatrix} 10 + 5t \\ 5 \end{bmatrix}$$

Another Example Back to our motor model!

Your Questions

fkhal022@uottawa.ca

