
ELG4139: Op Amp-based Active Filters 

• Advantages: 

– Reduced size and weight, and therefore parasitics. 

– Increased reliability and improved performance. 

– Simpler design than for passive filters and can realize a wider range of 

functions as well as providing voltage gain. 

– In large quantities, the cost of an IC is less than its passive counterpart. 

• Disadvantages: 

– Limited bandwidth of active devices limits the highest attainable pole 

frequency and therefore applications above 100 kHz (passive RLC 

filters can be used up to 500 MHz). 

– The achievable quality factor is also limited. 

– Require power supplies (unlike passive filters). 

– Increased sensitivity to variations in circuit parameters caused by 

environmental changes compared to passive filters.  

• For applications, particularly in voice and data communications, the 

economic and performance advantages of active RC filters far outweigh 

their disadvantages. 
 



First-Order Low-Pass Filter 
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A low-pass filter with a dc gain of –Rf /Ri 
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First-Order High-Pass Filter 
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A high-pass filter with a high frequency gain of –Rf /Ri 



Higher Order Filters 
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Single-Pole Active Filter Designs 

High Pass Low Pass 
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Two-Pole (Sallen-Key) Filters 
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Three-Pole Low-Pass Filter 
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Two-Stage Band-Pass Filter 
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Multiple-Feedback Band-Pass Filter 
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Transfer function H(j)  

Transfer

Function
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Frequency Transfer Function of Filters 
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Bode Plot 

To understand Bode plots, you need to use Laplace transforms! 

The transfer function of the circuit is:  
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where fc is called the break frequency, or corner 

frequency, and is given by: RC
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Bode Plot (Single Pole) 
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Bode Plot (Two-Pole) 
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Corner Frequency 

• The significance of the break frequency is that it represents the 
frequency where 

Av(f) = 070.7-45 

 

• This is where the output of the transfer function has an 
amplitude 3-dB below the input amplitude, and the output 
phase is shifted by   -45 relative to the input. 

 

• Therefore, fc is also known as the 3-dB frequency or the 
corner frequency. 



Bode plots use a logarithmic scale for frequency, where a decade is 

defined as a range of frequencies where the highest and lowest 

frequencies differ by a factor of 10. 



Magnitude of the Transfer Function in dB 
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• See how the above expression changes with frequency: 

– at low frequencies f << fb, |Av|dB = 0 dB 

• low frequency asymptote 

– at high frequencies f >>fb,  

    |Av(f)|dB = -20 log f/ fb 

• high frequency asymptote 



Real Filters 

• Butterworth Filters 
– Flat Pass-band. 

– 20n dB per decade roll-off. 

• Chebyshev Filters 
– Pass-band ripple. 

– Sharper cut-off than Butterworth. 

• Elliptic Filters 
– Pass-band and stop-band ripple. 

– Even sharper cut-off. 

• Bessel Filters 
– Linear phase response – i.e. no signal distortion in pass-band. 



Filter Response Characteristics 



The magnitude response of a Butterworth filter. 

Butterworth Filters 

Magnitude response for Butterworth filters of various 

order with  = 1.  Note that as the order increases, the 

response approaches the ideal brickwall type 

transmission. 



Sketches of the transmission characteristics of a representative even- and odd-

order Chebyshev filters. 

Chebyshev Filters 



First-Order Filter Functions 



First-Order Filter Functions 



Second-Order Filter Functions 



Second-Order Filter Functions 



Second-Order Filter Functions 



Second-Order LCR Resonator 



The Antoniou inductance-simulation circuit.  (b) Analysis of the circuit assuming ideal op 

amps.  The order of the analysis steps is indicated by the circled numbers. 

Second-Order Active Filter: Inductor Replacement 



The Antoniou inductance-simulation circuit. Analysis of the circuit assuming ideal op amps.  

The order of the analysis steps is indicated by the circled numbers. 

Second-Order Active Filter: Inductor Replacement 



Realizations for the various second-order filter functions using the op amp-RC resonator of 

Fig. 11.21 (b).  (a) LP;  (b) HP;  (c) BP,  (d) notch at 0;   

Second-Order Active Filter: Inductor Replacement 



The Second-Order Active Filter: Inductor Replacement 



Derivation of an alternative two-integrator-loop biquad in which all op amps are used in a 

single-ended fashion.  The resulting circuit in (b) is known as the Tow-Thomas biquad. 

Second-Order Active Filter: Two-Integrator-Loop 



Low-Pass Active Filter Design 

Design a fourth-order low-pass Butterworth filter having a frequency cut-off of 100 Hz 
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Low-Pass Active Filter Design 



Low-Pass Active Filter Design 



Infinite-Gain Multiple-Feedback (IGMF) 

Negative Feedback Active Filter 
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Substitute (1) into (2) gives  
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rearranging equation (3), it gives, 
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Or in admittance form: 

Z1 Z2 Z3 Z4 Z5 

LP R1 C2 R3 R4 C5 

HP C1 R2 C3 C4 R5 

BP R1 R2 C3 C4 R5 

Filter Value 



IGMF Band-Pass Filter 
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To obtain the band-pass response, we let  
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This filter prototype has a very low 

sensitivity to component tolerance when 

compared with other prototypes.  



Simplified Design (IGMF Filter) 
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Comparing with the band-pass response 
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Example: IGMF Band Pass Filter 

To design a band-pass filter with                          and 10          Hz512  QfO
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With similar analysis, we can choose the following values: 

  700,621    and     554,1     10 51 RRnFC



Butterworth Response (Maximally Flat) 
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where n is the order 

Normalize to o = 1rad/s  
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Butterworth polynomials  

Butterworth polynomials: 
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Second Order Butterworth Response 

Started from the low-pass biquadratic function  
22

1
)(

P

P

P s
Q

s

KsH








2

1
11  QKp

   

    n
jH

jH

jH

jH

j
jH

ss
sH

























222

4

242

222

2

2

1

1

1

1
)(

1

1
)(

221

1
)(

21

1
)(

12

1
)(

)polynomial butterwothorder  (second
12

1
)(

















For 



Second order Butterworth Filter 
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Setting R1= R2 and C1 = C2 

    KKK
Q

P










3

1

12

1

1111

1

Now K = 1 + RB/ RA 

v
in

C
4

v
o

+

-

R
1

R
2

C
3

R
B

R
A

A

B

A

B

P

R

R

R

RK
Q




















2

1

13

1

3

1

For Butterworth response: 
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