ELG4139: Op Amp-based Active Filters

Advantages:

— Reduced size and weight, and therefore parasitics.

— Increased reliability and improved performance.

— Simpler design than for passive filters and can realize a wider range of
functions as well as providing voltage gain.

— In large quantities, the cost of an IC is less than its passive counterpart.

Disadvantages:

— Limited bandwidth of active devices limits the highest attainable pole
frequency and therefore applications above 100 kHz (passive RLC
filters can be used up to 500 MHz).

— The achievable quality factor is also limited.

— Require power supplies (unlike passive filters).

— Increased sensitivity to variations in circuit parameters caused by
environmental changes compared to passive filters.

For applications, particularly in voice and data communications, the
economic and performance advantages of active RC filters far outweigh
their disadvantages.



First-Order Low-Pass Filter
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First-Order High-Pass Filter
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A high-pass filter with a high frequency gain of —R;/R;
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Higher Order Filters
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Single-Pole Active Filter Designs

High Pass Low Pass
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Two-Pole (Sallen-Key) Filters
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o R,




Three-Pole Low-Pass Filter
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Two-Stage Band-Pass Fi
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Multiple-Feedback Band-Pass Filter
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Transfer function H(jw)
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Frequency Transfer Function of Filters
H( o)

(1) Low - Pass Filter (1V) Band - Stop (Notch) Filter
H(jo)| =1 f<f, H(jw)| =0 f < f<f,
H(jow)|=0 f>f, H(jo) =1 f<f, and f>f,
(11) High - Pass Filter (V) All-Pass (or phase- shift) Filter
H(jw)|=0 f<f, H(jow) =1 forall f

H(jo)| =1 f>f, has a specific phase response

(111) Band - Pass Filter
H(jo) =1 fo<f<f,
H(jo)| =0 f<f and f>f,



Bode Plot

To understand Bode plots, you need to use Laplace transforms!
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The transfer function of the circuit is:
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where f, is called the break frequency, or corner f 1

frequency, and is given by: ¢ 27RC



Bode Plot (Single Pole)
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Bode Plot (Two-Pole)
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Corner Frequency

« The significance of the break frequency is that it represents the
frequency where

A(f) = 070.7 £-45°

 This Is where the output of the transfer function has an
amplitude 3-dB below the input amplitude, and the output
phase Is shifted by -45° relative to the input.

* Therefore, f, Is also known as the 3-dB frequency or the
corner frequency.



-’ PERFORMANCE CRITERIA
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Bode plots use a logarithmic scale for frequency, where a decade is
defined as a range of frequencies where the highest and lowest
frequencies differ by a factor of 10.




Magnitude of the Transfer Function in dB
1
A(f) =

JI+(f /1)

A(f)|, =20logl-20log 1+ (f/f,)

— —20log \/1+(f/f,} =—10logL+(f /)]
=—20log(f /f )

« See how the above expression changes with frequency:
— at low frequencies f << f,, |Av|;s =0 dB
* low frequency asymptote
— at high frequencies f >>f,,
|Av(f)| 4 = -20 log f/ f,
* high frequency asymptote



Real Filters

Butterworth Filters
— Flat Pass-band.
— 20n dB per decade roll-off.

Chebyshev Filters

— Pass-band ripple.

— Sharper cut-off than Butterworth.

Elliptic Filters

— Pass-band and stop-band ripple.

— Even sharper cut-off.

Bessel Filters

— Linear phase response — i.e. no signal distortion in pass-band.
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Filter Response Characteristics
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Butterworth Filters
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Magnitude response for Butterworth filters of various
order with € = 1. Note that as the order increases, the
response approaches the ideal brickwall type
transmission.



Chebyshev Filters
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Sketches of the transmission characteristics of a representative even- and odd-
order Chebyshev filters.



First-Order Filter Functions

Filter Type and 7(s)

s-Plane Singularities

Bode Plot for |T|

Passive Realization

Op Amp-RC Realization
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First-Order Filter Functions

1(s) Singularities |T| and ¢ Passive Realization Op Amp-RC Realization
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Second-Order Filter Functions

Filter Type and 7(s)
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Second-Order Filter Functions
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Second-Order Filter Functions
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Second-Order LCR Resonator
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Second-Order Active Filter: Inductor Replacement
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The Antoniou inductance-simulation circuit. (b) Analysis of the circuit assuming ideal op
amps. The order of the analysis steps is indicated by the circled numbers.



Second-Order Active Filter: Inductor Replacement
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The Antoniou inductance-simulation circuit. Analysis of the circuit assuming ideal op amps.
The order of the analysis steps is indicated by the circled numbers.



Second-Order Active Filter: Inductor Replacement

(d) Notch at w

Realizations for the various second-order filter functions using the op amp-RC resonator of
Fig. 11.21 (b). (a) LP; (b) HP; (c) BP, (d) notch at w,;



The Second-Order Active Filter: Inductor Replacement
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Second-Order Active Filter: Two-Integrator-Loop

Vhp

Rd = QR

——

a

—O — Vl}

Derivation of an alternative two-integrator-loop biquad in which all op amps are used in a
single-ended fashion. The resulting circuit in (b) is known as the Tow-Thomas biquad.



Low-Pass Active Filter Design

Design a fourth-order low-p&ss Butterworth filter having a frequency

cCut-off of 100 Hz
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Low-Pass Active Filter Design
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Low-Pass Active Filter Design
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Infinite-Gain Multiple-Feedback (IGMF)
Negative Feedback Active Filter
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Substitute (1) into (2) gives
Vi 4 Zs V, 4 v,
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rearranging equation (3), it gives,

Or in admittance form:

[TIL Y,
Vo (v ey + vy,
Filter—Yalue Zy Z, Zy Zy Zs
LP R, C, R R, C,
HP C, R, C, C, R
BP R, R, C, C, Re




|IGMF Band-Pass Filter

Band-pass: H(;) =K R
S as

To obtain the band-pass response, we let

1 1 - 1 1
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This filter prototype has a very low G I_|-I
™ = Vv

sensitivity to component tolerance when
compared with other prototypes.



Simplified Design (IGMF Filter)
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Example: IGMF Band Pass Filter

To design a band-pass filter with fo =512Had Q=10
1
= =27(512H
AT
C=100nF — RR.=9,6627410)"
Q. l \/» =10 100nF:: 62,1700
\F _ 1ss40 %
—R, =1554Q R, =62170Q v, 100nF |

With similar analysis, we can choose the following values:

C=10nF R =1554Q and R,=6217000Q



Butterworth Response (Maximally Flat)
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H(jo) \/ a)jzn Butterworth polynomials
1+ —
@, B,(s)=s+1
where n is the order B,(s)= 5% ++/25+1
| B,(s)=s*+2s*+2s+1
Normalize to aio = lrad/s _ (s+1)(32 +s+1)
H(jo)| = — B,(s)=s* +2.615° + 3.41s + 2.615 +1
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Second Order Butterworth Response
1

Started from the low-pass biquadratic function H(s) =K—0
L S+ S+ w;
For o,=1 K=1 Q=— Q,

J2

(second order butterwothpolynomial)

1
H(s) =
(5) s +/25+1

1
—0° +2jo+1
1
V-0 + (V20f
1

- V1= 202 + 0* + 20°

H(jow) =

H(jw)|=

H(]w)

H(Jo)=
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Second order Butterworth Filter
K K'

H(s) =
1+sC,(R +R )+SRC,(1-K)+sRRCC, ¢ Pog 2
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3-11+ 7 R We have 2——2=42=1414
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For But{erworth responsle. 1 We define Damping Factor (DF) as:
QP — A = QF’ - -
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