Diodes and Transistors Semiconductors

- Semiconductor devices are made of alternating layers of positively doped material (P) and negatively doped material (N).
- Diodes are PN or NP, BJTs are PNP or NPN, IGBTs are PNPN. Other devices are more complex

Diodes

- A diode is a device which allows flow in one direction but not the other.
- When conducting, the diodes create a voltage drop, kind of acting like a resistor
- There are three main types of power diodes
 - Power Diode
 - Fast recovery diode
 - Schottky Diodes

Power Diodes

- Max properties: 1500V, 400A, 1kHz
- Forward voltage drop of 0.7 V when on

Diode circuit voltage measurements: (a) Forward biased. (b) Reverse biased.

Fast Recovery Diodes

- Max properties: similar to regular power diodes but recover time as low as 50ns
- The following is a graph of a diode's recovery time. trr is shorter for fast recovery diodes

Schottky Diodes

- Max properties: 400V, 400A
- Very fast recovery time
- Lower voltage drop when conducting than regular diodes
- Ideal for high current low voltage applications

Cross-section view of Schottky diode.

Current vs Voltage Characteristics

- All diodes have two main weaknesses
 - Leakage current when the diode is off. This is power loss
 - Voltage drop when the diode is conducting.
 This is directly converted to heat, i.e. power loss
- Other problems to watch for:
 - Notice the reverse current in the recovery time graph. This can be limited through certain circuits.

Ways Around Maximum Properties

• To overcome maximum voltage, we can use the diodes in series. Here is a voltage sharing circuit

• To overcome maximum current, we can use the diodes in parallel. Here is a current sharing circuit

More information
 (a) Steady-state
 (a) Steady-state
 (a) Steady-state
 (b) Steady-state
 (c) Steady-state
 (c)

Transistors

- Types of Transistors
 - BJT Bipolar Junction Transistors
 - IGBT Insulated-Gate Bipolar Transistor
 - MOSFET Metal-Oxide Semiconductor Field
 Effect Transistor
 - COOLMOS proprietary name
 - SIT Static Induction Transistor

BJT

- There are two types of BJTs. PNP and NPN. NPN are most common
- BJTs are current controlled devices. Putting current into the gate will allow current to flow from the collector to the emitter.
- When operating as a switch, the BJT operates deep in the saturation region (with base current really really high)
- When operating as an amplifier the BJT works in the active region
- Like diodes, they have a voltage drop when conducting but it is very low
- More info
 - http://www.gyte.edu.tr/dosya/102/dersler /ELM%20629/Ch21.pdf

Applied voltages	B-E Junction Bias (NPN)	B-C Junction Bias (NPN)	Mode (NPN)	
E < B < C	Forward	Reverse	Forward active	
E < B > C	Forward	Forward	Saturation	
E > B < C	Reverse	Reverse	Cut-off	
E > B > C	Reverse	Forward	Reverse-active	
	1 L /			
Applied voltages	B-E Junction Bias (PNP)	B-C Junction Bias (PNP)	Mode (PNP)	
Applied voltages E < B < C	B-E Junction Bias (PNP) Reverse	B-C Junction Bias (PNP) Forward	Mode (PNP) Reverse-active	
Applied voltages E < B < C E < B > C	B-E Junction Bias (PNP) Reverse Reverse	B-C Junction Bias (PNP) Forward Reverse	Mode (PNP) Reverse-active Cut-off	
Applied voltages E < B < C E < B > C E > B < C	B-E Junction Bias (PNP) Reverse Reverse Forward	B-C Junction Bias (PNP) Forward Reverse Forward	Mode (PNP) Reverse-active Cut-off Saturation	

Voltage and Current Characteristics of a BJT

MOSFET and COOLMOS

- Advantages of MOSFET
 - Voltage controlled device (Voltage at the gate will make current flow. Very small input current required, less power loss)
 - No second breakdown
 - High speed
- Disadvantages of MOSFET
 - High voltage drop when conducting
 - Can only support low power compared to BJT
- Two main types of MOSFETS
 - Enhancement type (Normally off), Depletion type (Normally on)
- COOLMOS is a better version of a MOSFET because it has much lower voltage drop when conducting but it has lower power capabilities so it's uses are limited.

MOSFET and COOLMOS cont'd

IGBT

- A cross between BJT and MOSFET
 - Low voltage drop when conducting (like BJT)
 - -Voltage controlled (like MOSFET)
- IGBTs are used under 20kHz
- IGBT vs. MOSFET
 - -<u>http://www.irf.com/technical-</u> info/whitepaper/choosewisely.pdf

Voltage and Current Characteristics of an IGBT

Table of Transistors and their Applications

TABLE 4.1 Comparisons of Power Transistors									
Switch Type	Base/Gate Control Variable	Control Characteristic	Switching Frequency	On-State Voltage Drop	Max. Voltage Rating V _s	Max. Current Rating I,	Advantages	Limitations	
ВЈТ	Current	Continuous	Medium 20 kHz	Low	1.5 kV $S_s = V_s I_s$ $= 1.5 \text{ MVA}$	$1 kA$ $S_s = V_s I_s$ $= 1.5 MVA$	Simple switch Low on-state drop Higher off-state voltage capability High switching loss	Current controlled device and requires a higher bas current to turn-on and sustain on-state current	
								Base drive power loss Charge recovery time an- slower switching speed Secondary breakdown region High switching losses Unipolar voltage device	
MOSFET	Voltage	Continuous	Very high	High	1 kV $S_s = V_s I_s$ = 0.1 MVA	150 A $S_s = V_s I_s$ $= 0.1 \text{ MVA}$	Higher switching speed Low switching loss Simple gate drive circu Little gate power. Negative temperature	High on-state drop as high as 10 V it Lower off-state voltage capability Unipolar voltage device	
							coefficient on rain current and facilitates parallel operation		
COOLMOS	Voltage	Continuous	Very high	Low	1 kV	100 A	Low gate drive requirement and low on-state power drop	Low-power device Low voltage and curren ratings	
GBT	Voltage	Continuous	High	Medium	3.5 kV $S_s = V_s I_s$ $= 1.5 \text{ MVA}$	$2 kA$ $S_s = V_s I_s$ $= 1.5 MVA$	Low on-state voltage Little gate power	Lower off-state voltage capability Unipolar voltage devic	
SIT	Voltage	Continuous	Very high	High			High-voltage rating	Higher on-state voltag	

How to Overcome Transistor Limits

 Like diodes, use them in series to increase voltage capacity and parallel to increase current capacity. Timing is CRUCIAL. If one turns on or off first it will take all the current or voltage and break!