ELG4125: Substations

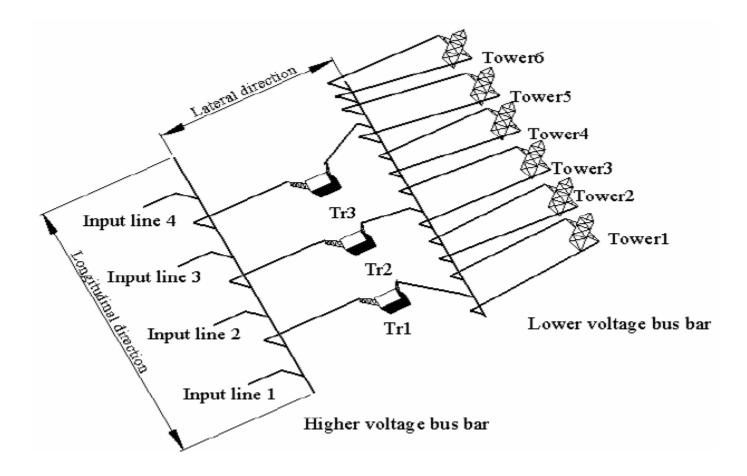
Substation may be defined as an assembly of apparatus installed to perform switching, voltage transformation, power factor correction, power and frequency-converting operations.

Site Selection

Voltage level; Voltage regulation; Cost of subtransmission; Primary feeder mains, etc. In general, Substation should be located near the load center

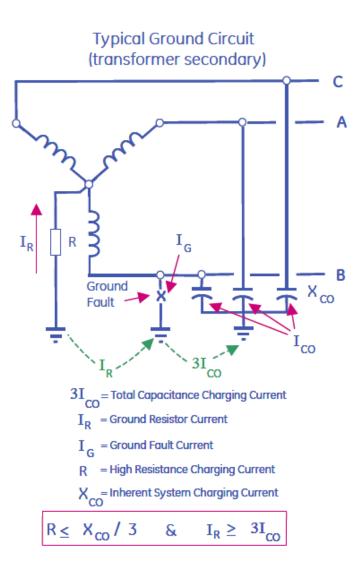
Classification of Substations

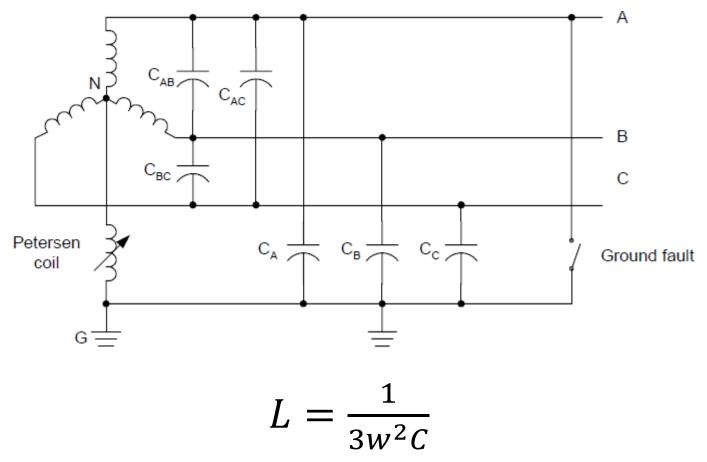
- Transformer Substations:
 - Transmission or Primary: (11 kv-33 kV) to (220 kV and Above.
 - Sub-transmission or Secondary: Above 132 kV to (11 kv-33 kV).
 - Step-down or Distribution: From Sub-transmission to consumers.
- Industrial Substations: For large industrial consumers.
- **Switching Substations:** For switching operations of power lines without the transformation of voltage.
- **Synchronous Substations:** These are phase modifiers for the improvement of power factor.
- Substations may be
 - Indoor up to 11 kV.
 - Outdoor (pole-mounted or foundation mounted) for high voltages!


Substation Operation

Substation Equipment

- Bus Bars (Copper or Copper-clad steel)
 - Single
 - Double with circuit breakers (one or two, or more)
 - Ring
- Switchgears
- Isolators
- Transformers
 - Power Transformers
 - Instrument Transformers
- Relays
- Lightning Arresters
- Fire-fighting Equipment
- Substation for Auxiliary Supply.


Layout Diagram of Single Bus Bars


Earthing or Grounding

- The word "grounding" and "earthing" has the same meaning.
- Equipment grounding refers to connecting the non-current carrying metallic parts to earth (motor body, switch gear, transformer) to ensure safety against damage, fire, etc.
- Neutral grounding refers to connecting the neutral of a Y circuit to earth to ensure that the stator short circuit current is limited. Its main purpose is stability as well as protection. Methods of neutral grounding are:
 - Solid Grounding
 - Resistance Grounding
 - Reactance Grounding
 - Resonant Grounding
 - Voltage Transformer Grounding.

Resistive Grounding

Peterson-Coil Grounding

This condition states that the inductance must be tuned to the capacitance if the Peterson coil is to fulfill its function.