
ELG4125: Power Transmission Lines 
Steady State Operation 



Two-Port Networks and ABCD Models 

A transmission line can be represented by a two-port network, that is a network 

that can be isolated from the outside world by two connections (ports) as shown:. 

If the network is linear, an elementary circuits theorem (analogous to Thevenin’s 

theorem) establishes the relationship between the sending and receiving end 

voltages and currents as 

Constants A and D are dimensionless; constant B has units of , and constant C is 

measured in siemens. These constants are sometimes referred to as generalized 

circuit constants, or ABCD constants. 

𝑉𝑠 = 𝐴𝑉𝑅 + 𝐵𝐼𝑅 

𝐼𝑠 = 𝐶𝑉𝑅 + 𝐷𝐼𝑅 



ABCD Model 

• The ABCD constants can be physically interpreted. Constant A 

represents the effect of a change in the receiving end voltage on the 

sending end voltage; and constant D models the effect of a change 

in the receiving end current on the sending end current. Naturally, 

both constants A and D are dimensionless. 

 

• The constant B represents the effect of a change in the receiving 

end current on the sending end voltage. The constant C denotes the 

effect of a change in the receiving end voltage on the sending end 

current. 

 

• Transmission lines are two-port linear networks, and they are often 

represented by ABCD models. For the short transmission line 

model, IS = IR = I, and the ABCD constants are 



Transmission Matrix Model 
Oftentimes we’re only interested in the terminal characteristics of the 

transmission line.  Therefore we can model it as a “black box”.   
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Short Transmission Line 

The per-phase equivalent circuit of a short line 

VS and VR are the sending and receiving end 

voltages; IS and IR are the sending and receiving 

end currents. Assumption of no line admittance 

leads to  

We can relate voltages through the Kirchhoff’s voltage law 

which is very similar to the equation derived for a synchronous generator. 

𝐼𝑠=𝐼𝑅 

𝑉𝑅 = 𝑉𝑠 − 𝑅𝐼 − 𝑗𝑋𝐿𝐼 



Medium-Length Transmission Line 
Considering medium-length lines (50 to 150 mile-long), the shunt admittance 

must be included in calculations. However, the total admittance is usually 

modeled ( model) as two capacitors of equal values (each corresponding to a 

half of total admittance) placed at the sending and receiving ends. 

The current through the receiving end capacitor can be found as 

And the current through the series impedance elements is 

𝐼𝐶2 = 𝑉𝑅

𝑌

2
 

𝐼𝑠𝑒𝑟 = 𝑉𝑅

𝑌

2
+ 𝐼𝑅 



Medium-Length Transmission Line 
(Between 80 km and 250 km) 

From the Kirchhoff’s voltage law, the sending end voltage is: 

The source current will be 

Therefore, the ABCD constants of a medium-length transmission line are: 

If the shunt capacitance of the line is ignored, the ABCD constants are the 

constants used for a short transmission line. 

𝑉𝑠 = 𝑍𝐼𝑠𝑒𝑟 + 𝑉𝑅 =
𝑌𝑍
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Short Transmission Line: Phasor Diagram 

AC voltages are usually expressed as phasors. 

Load with lagging power factor. 

Load with unity power factor. 

Load with leading power factor. 

For a given source voltage VS and magnitude of 

the line current, the received voltage is lower for 

lagging loads and higher for leading loads. 



Long Transmission Line 
Lines of length above 250 km and voltage above 100 kV 

For long lines, it is not accurate enough to approximate the shunt admittance by two 

constant capacitors at either end of the line. Instead, both the shunt capacitance 

and the series impedance must be treated as distributed quantities; the voltages 

and currents on the line should be found by solving differential equations of the 

line. 

It is possible to model a long transmission line as a  model with a modified series 

impedance Z’ and a modified shunt admittance Y’ and to perform calculations on 

that model using ABCD constants. The modified values of series impedance and 

shunt admittance are: 



Derivation of Voltage and Current Relationships 

We can then derive the following relationships:
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We can rewrite these two, first order differential

equations as a single second order equation
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For operation at frequency , let z = r + j L 

and y = g +j C (with g usually equal 0)
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Voltage and Current Relationships 
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Long Transmission Line 

Z is the series impedance of the line; Y is the shunt admittance of the line; d is the 

length of the line;  is the propagation constant of the line: 

where y is the shunt admittance per kilometer and z is the series impedance per km. 

As d gets small, the ratios approach 1.0 and the model becomes a medium-length 

line model. The ABCD constants for a long transmission line are 

𝛾 = 𝑦𝑧 

𝐴 =
𝑍′𝑌′

2
+ 1 𝐵 = 𝑍′ 𝐶 = 𝑌′(

𝑍′𝑌′

4
+ 1) 𝐷 =

𝑍′𝑌′

2
+1 



Transmission Matrix Model 
Oftentimes we’re only interested in the terminal characteristics of the 

transmission line.  Therefore we can model it as a “black box”.   

VS VR 
+ + 

- - 

IS IR 
Transmission 

Line 
S

S

V
With  

I

R

R

VA B

IC D

    
    
    

S

S

V
With  

I

Use voltage/current relationships to solve for A,B,C,D

cosh sinh

cosh sinh

cosh sinh

1
sinh cosh

R

R

S R c R

R
S R

c

c

c

VA B

IC D

V V l Z I l

V
I I l l

Z

l Z l
A B

l lC D
Z

 

 

 

 

    
    
    

 

 

 
        

  

T

Prof. Tom Overbye 



Equivalent Circuit Parameters 
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We now need to solve for Z' and Y'.  Using the B

element solving for Z' is straightforward
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Transmission Line Characteristics 
In real overhead transmission lines, the line reactance XL is normally much larger 

than the line resistance R; therefore, the line resistance is often neglected. We 

consider next some important transmission line characteristics. 

1. The effect of load changes 

Assuming that a single generator supplies a single load through a transmission 

line, we consider consequences of increasing load. 

Assuming that the generator is ideal, an increase of load will increase a real and 

(or) reactive power drawn from the generator and, therefore, the line current, while 

the voltage and the current will be unchanged. 

1. If more load is added with the same lagging power factor, the magnitude of the 

line current increases but the current remains at the same angle  with respect to 

VR as before. 



Transmission Line Characteristics 

The voltage drop across the reactance increases but stays at the same angle. 

Assuming zero line resistance and remembering that the source voltage 

has a constant magnitude: 

voltage drop across reactance jXLI will stretch 

between VR and VS. 

Therefore, when a lagging load increases, the received voltage decreases sharply. 

2. An increase in a unity PF load, on the other hand, 

will slightly decrease the received voltage at the end 

of the transmission line. 



Transmission Line Characteristics 

3. Finally, an increase in a load with leading 

PF increases the received (terminal) 

voltage of the transmission line. 

• If lagging (inductive) loads are added at the end of a line, the voltage at the end 

of the transmission line decreases significantly – large positive VR. 

• If unity-PF (resistive) loads are added at the end of a line, the voltage at the end 

of the transmission line decreases slightly – small positive VR. 

• If leading (capacitive) loads are added at the end of a line, the voltage at the end 

of the transmission line increases – negative VR. 

The voltage regulation of a transmission line is 

where Vnl and Vfl are the no-load and full-load voltages at the line output. 

𝑉𝑅 =
𝑉𝑛𝑙 − 𝑉𝑓𝑙

𝑉𝑓𝑙
× 100% 



Transmission Line Characteristics 

2. Power flow in a transmission line 

The real power input to a 3-phase transmission line can be computed as 

where VS is the magnitude of the source (input) line-to-neutral voltage and VLL,S is 

the magnitude of the source (input) line-to-line voltage. Note that Y-connection is 

assumed! Similarly, the real output power from the transmission line is 

The reactive power input to a 3-phase transmission line can be computed as 

𝑃𝑖𝑛 = 3𝑉𝑠𝐼𝑠𝑐𝑜𝑠𝜃𝑠 

𝑃𝑜𝑢𝑡 = 3𝑉𝑅𝐼𝑅𝑐𝑜𝑠𝜃𝑅 

𝑄𝑖𝑛 = 3𝑉𝑠𝐼𝑠𝑠𝑖𝑛𝜃𝑠 



Transmission Line Characteristics 

The apparent power input to a 3-phase transmission line can be computed as 

And the reactive output power is 

And the apparent output power is 

𝑄𝑜𝑢𝑡 = 3𝑉𝑅𝐼𝑅𝑠𝑖𝑛𝜃𝑅 

𝑆𝑖𝑛 = 3𝑉𝑠𝐼𝑠 

𝑆𝑜𝑢𝑡 = 3𝑉𝑅𝐼𝑅 



Transmission Line Characteristics 

The efficiency of the transmission line is 

Several practical constrains limit the maximum real and reactive power that a 
transmission line can supply. The most important constrains are: 
 

The maximum steady-state current must be limited to prevent the overheating in the 
transmission line. The power lost in a line is approximated as 

The voltage drop in a practical line should be limited to approximately 5%. In other words, 
the ratio of the magnitude of the receiving end voltage to the magnitude of the sending 
end voltage should be 

The angle  in a transmission line should typically be  300 ensuring that the power flow in 
the transmission line is well below the static stability limit and, therefore, the power 
system can handle transients. 

Efficiency =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
× 100% 

𝑃𝑙𝑜𝑠𝑠 = 3𝐼2𝑅 

𝑉𝑅

𝑉𝑠
≤ 0.95 



Line Voltage and Line Current 
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Transmission Line Example 

R
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Power Transfer 
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Surge Impedance Loading 
• The surge impedance loading or SIL of a transmission line is the MW loading of 

a transmission line at which a natural reactive power balance 
occurs.  Transmission lines produce reactive power (Mvar) due to their natural 
capacitance. The amount of Mvar produced is dependent on the transmission 
line's capacitive reactance (XC) and the voltage (kV) at which the line is 

energized.  In equation form the Mvar produced is:   

 
MVAr =

(kV)2

𝑋𝑐
 

Transmission lines also utilize reactive power to support their magnetic fields.  The 
magnetic field strength is dependent on the magnitude of the current flow in the line 
and the line's natural inductive reactance (XL).  It follows then that the amount of 
Mvar used by a transmission line is a function of the current flow and inductive 
reactance.  In equation form the Mvar used by a transmission line is:  

MVAr = 𝐼2𝑋𝐿  



• A transmission line's surge impedance loading or SIL is simply the MW loading (at a 
unity power factor) at which the line's Mvar usage is equal to the line's Mvar 
production.  In equation form we can state that the SIL occurs when:   

𝐼2𝑋𝐿 =
(kV)2

𝑋𝑐
 

𝑋𝐿𝑋𝑐 =
(kV)2

𝐼2
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𝑉

𝐼
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𝐿

𝐶
 The Surge Impedance 



The concept of a surge impedance is more readily applied to telecommunication 
systems than to power systems.  However, we can extend the concept to the power 
transferred across a transmission line.  The surge impedance loading or SIL (in MW) is 
equal to the voltage squared (in kV) divided by the surge impedance (in ohms).  In 
equation form:   

SIL (MW)  =
(𝑉𝐿𝐿)2

Surge Impedance
 

This formula that the SIL is dependent only on the kV the line is energized at and the 
line's surge impedance.  The line length is not a factor in the SIL or surge impedance 
calculations.  Therefore the SIL is not a measure of a transmission line's power transfer 
capability as it does not take into account the line's length nor does it consider the 
strength of the local power system.  
 
The value of the SIL to a system operator is realizing that when a line is loaded above 
its SIL it acts like a shunt reactor - absorbing Mvar from the system and when a line is 
loaded below its SIL it acts like a shunt capacitor - supplying Mvar to the system. 


