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Electromechanical System Dynamics, energy 
Conversion, and Electromechanical Analogies

Modeling of Dynamic Systems
Modeling of dynamic systems may be done in several ways:

Use the standard equation of motion (Newton’s Law) for mechanical 
systems

Use circuits theorems (Ohm’s law and Kirchhoff’s laws: KCL and 
KVL)

Another approach utilizes the notation of energy to model the 
dynamic system (Lagrange model).
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Mathematical Modeling and System Dynamics
Newtonian Mechanics: Translational Motion

• The equations of motion of 
mechanical systems can be 
found using Newton’s second 
law of motion. F is the vector 
sum of all forces applied to the 
body; a is the vector of 
acceleration of the body with 
respect to an inertial reference 
frame; and m is the mass of 
the body.

• To apply Newton’s law, the 
free-body diagram in the 
coordinate system used should 
be studied.

∑ = aF m
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Translational Motion in Electromechanical Systems

• Consideration of friction is essential for understanding the operation 
of electromechanical systems. 

• Friction is a very complex nonlinear phenomenon and is very difficult 
to model friction.

• The classical Coulomb friction is a retarding frictional force (for 
translational motion) or torque (for rotational motion) that changes its 
sign with the reversal of the direction of motion, and the amplitude of 
the frictional force or torque are constant.

• Viscous friction is a retarding force or torque that is a linear function 
of linear or angular velocity.

Fcoulomb :Force
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Newtonian Mechanics: Translational Motion

• For one-dimensional rotational 
systems, Newton’s second law 
of motion is expressed as the 
following equation. M is the 
sum of all moments about the 
center of mass of a body (N-
m); J is the moment of inertial 
about its center of mass 
(kg/m2); and α is the angular 
acceleration of the body 
(rad/s2).

αjM =
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The Lagrange Equations of Motion
• Although Newton’s laws of motion form the fundamental foundation for the study 

of mechanical systems, they can be straightforwardly used to derive the 
dynamics of electromechanical motion devices because electromagnetic and 
circuitry transients behavior must be considered. This means, the circuit 
dynamics must be incorporated to find augmented models.

• This can be performed by integrating torsional-mechanical dynamics and 
sensor/actuator circuitry equations, which can be derived using Kirchhoff’s laws.

• Lagrange concept allows one to integrate the dynamics of mechanical and 
electrical components. It employs the scalar concept rather the vector concept 
used in Newton’s law of motion to analyze much wider range of systems than F
=ma. 

• With Lagrange dynamics, focus is on the entire system rather than individual 
components.

• Γ, D, Π are the total kinetic, dissipation, and potential energies of the system. qi
and Qi are the generalized coordinates and the generalized applied forces 
(input).
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Electrical and Mechanical Counterparts

Resistor
Ri2

Damper / Friction
0.5 Bv2

Dissipative

Capacitor
0.5 Cv2

Gravity: mgh
Spring: 0.5 kx2

Potential

Inductor
0.5 Li2

Mass / Inertia
0.5 mv2 / 0.5 jω2

Kinetic 

ElectricalMechanicalEnergy
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Mathematical Model for a Simple Pendulum
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Electrical Conversion

Input
Electrical Energy

Output
Mechanical

Energy

Coupling
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Field
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Energy Transfer in Electromechanical Systems
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Electromechanical Analogies

• From Newton’s law or using Lagrange equations of motions, the second-
order differential equations of translational-dynamics and torsional-
dynamics are found as
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For a series RLC circuit, find the characteristic equation 
and define the analytical relationships between the 
characteristic roots and circuitry parameters.
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Resistance, R (ohm)
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Inductance, L (H)
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Capacitance, C (F)
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Translational Damper, Bv (N-sec)

Fa(t)

x(t)
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Translational Spring, k (N)

Fa(t)

x(t)
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Rotational Damper, Bm (N-m-sec/rad)

Fa(t)

θ (t)
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Rotational Spring, ks (N-m-sec/rad)

Fa(t)

θ (t)
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Mass Grounded, m (kg)

Fa(t)

x (t)
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Mass Grounded, m (kg)

Fa(t)

θ (t)
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Steady-State Analysis
• State: The state of a dynamic system is the smallest set of variables 

(called state variables) so that the knowledge of these variables at t
= t0, together with the knowledge of the input for t ≥ t0, determines 
the behavior of the system for any time  t ≥ t0.

• State Variables: The state variables of a dynamic system are the 
variables making up the smallest set of variables that determine the 
state of the dynamic system.

• State Vector: If n state variables are needed to describe the 
behavior of a given system, then the n state variables can be 
considered the n components of a vector x. Such vector is called a 
state vector.

• State Space: The n-dimensional  space whose coordinates axes 
consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn are state 
variables, is called a state space.

• State-Space Equations: In state-space analysis we are concerned 
with three types of variables that are involved in the modeling of 
dynamic system: input variables, output variables, and state 
variables.
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State Variables of a Dynamic System

Dynamic System
State x(t)

u(t) Input y(t) Output

x(0) initial condition

dynamics  thedescribing equations  theand
 inputs, excitation  thestate,present  given the

 system, a of response future  thedescribe  variablesstate The
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Electrical Example: An RLC Circuit
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The State Differential Equation
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The Output Equation

Equation) alDifferenti (StateBu Axx
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Example 1: Consider the given series RLC circuit. Derive the 
differential equations that map the circuitry dynamics.
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Example 2: Using the state-space concept, find the state-space model 
and analyze the transient dynamics of the series RLC circuit.

BuAxv
L

i
v

L
R

L

C

dt
di
dt
dv

dt
dx
dt
dx

dt
dx

tv
titxtvtx

tvRiv
Ldt

di

i
Cdt

tdv

a
c

c

c

c

+=















+



























−
=



















=



















=

==

+−−=

=

1
0

-    1

1          0

control  theis )(
states)  theare (These )()( );()(

))((1

1)(

2

1

21



27

Continue with Values..
• Assume R = 2 ohm, L = 0.1 H, 

and C = 0.5 F, find the following 
coefficients.

• The initial conditions are 
assumed to be vc(t0)=vc0=15 V; 
and I (t0) = i0 = 5 A.

• Let the voltage across the 
capacitor be the output; y(t)= 
vc(t). The output equation will be

• The expanded output equation in 
y

• The circuit response depends on 
the value of v (t)
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