Electromechanical System Dynamics, energy
Conversion, and Electromechanical Analogies

Modeling of Dynamic Systems
Modeling of dynamic systems may be done in several ways:

» Use the standard equation of motion (Newton’s Law) for mechanical
systems

» Use circuits theorems (Ohm’s law and Kirchhoff's laws: KCL and
KVL)

= Another approach utilizes the notation of energy to model the
dynamic system (Lagrange model).



Mathematical Modeling and System Dynamics
Newtonian Mechanics: Translational Motion

« The equations of motion of
mechanical systems can be ZF:ma
found using Newton’s second
law of motion. F is the vector
sum of all forces applied to the
body; a is the vector of
acceleration of the body with
respect to an inertial reference
frame; and m is the mass of
the body.

« To apply Newton's law, the
free-body diagram in the
coordinate system used should
be studied.



Translational Motion in Electromechanical Systems

Consideration of friction is essential for understanding the operation
of electromechanical systems.

Friction is a very complex nonlinear phenomenon and is very difficult
to model friction.

The classical Coulomb friction is a retarding frictional force (for
translational motion) or torque (for rotational motion) that changes its
sign with the reversal of the direction of motion, and the amplitude of
the frictional force or torque are constant.

Viscous friction is a retarding force or torque that is a linear function
of linear or angular velocity.



Newtonian Mechanics: Translational Motion

* For one-dimensional rotational
systems, Newton’s second law
of motion is expressed as the M
following equation. M is the
sum of all moments about the
center of mass of a body (N-
m); J is the moment of inertial
about its center of mass
(kg/m?); and o is the angular
acceleration of the body
(rad/s?).
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The Lagrange Equations of Motion

Although Newton’s laws of motion form the fundamental foundation for the study
of mechanical systems, they can be straightforwardly used to derive the
dynamics of electromechanical motion devices because electromagnetic and
circuitry transients behavior must be considered. This means, the circuit
dynamics must be incorporated to find augmented models.

This can be performed by integrating torsional-mechanical dynamics and
sensor/actuator circuitry equations, which can be derived using Kirchhoff's laws.
Lagrange concept allows one to integrate the dynamics of mechanical and
electrical components. It employs the scalar concept rather the vector concept

used in Newton’s law of motion to analyze much wider range of systems than F
=ma.

With Lagrange dynamics, focus is on the entire system rather than individual
components.

I, D, IT are the total kinetic, dissipation, and potential energies of the system. g,
and Q, are the generalized coordinates and the generalized applied forces

(input). \
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Electrical and Mechanical Counterparts

Energy Mechanical Electrical
Kinetic Mass / Inertia Inductor
0.5 mv?/0.5 ja? 0.5 L7
Potential Gravity: mgh Capacitor
Spring: 0.5 kx? 0.5 Cv?
Dissipative Damper / Friction Resistor
0.5 Bv? Ri?




Mathematical Model for a Simple Pendulum

2
L . 1 1 -
The kinetic energy of the pendulum bobis: I" = > mv* = Em(l Hj

The potential energy is : I1 = mgh = mgl (1 — COS 6’)




Electrical Conversion

Output Coupling Irreversible
Input . ; : .
Electrical E » Mechanical Electromagnetic ||[Energy Conversion
ectrical Energy Energy Field Energy Losses

Energy Transfer in Electromechanical Systems

For rotational motion, the electromagnetic torque, as a function
aw.(i,0)
do

of current and angular displacement, 1s:7,(i,0) =

Where W, = §wdi; where v 1s the flux.



Electromechanical Analogies

« From Newton’s law or using Lagrange equations of motions, the second-
order differential equations of translational-dynamics and torsional-
dynamics are found as

2
m d—; +B, ax +k,x = F,(¢) (Translational dynamics)
dt dt
2
j d—f +B, a0 +k 0 =T,(¢) (Torsional dynamics)
dt dt



For a series RLC circuit, find the characteristic equation
and define the analytical relationships between the
characteristic roots and circuitry parameters.
d*i Rdi 1 . 1dv,
+ + i =—
dt? Ldt LC L dt
R 1

st +—s5+—=0
L LC

The characteristic roots are

SR _[RY U
Y oL ) LC
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Resistance, R (ohm)

Appied voltage v(z)
Current i(?)
v(t) = Ri(t)

i(f) = %V(r)
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Inductance, L (H)

Appied voltage v(z)
Current i(¢)
di(t)

v(t)=L ”

-
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Capacitance, C (F)

Appied voltage v(7)
Current i(7)

v(t) = % [i(t)dt

dv(t)

i(r)=C—.

-
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Translational Damper, B, (N-sec)

Appied force F, (¢) in Newton
Linear velocity v(¢) (m/sec)
Linear position x(z) (m)

F. (t)=B,v(t)

W(e) = —— F, (t)

Bm

B L dx(?)
Fa(t)_BmV(t)_Bm dt
x(t) = Bi jF (t)dt

v I

<Fa(l‘)

x(t)

5"‘5
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Translational Spring, k (N)

Appied force F, (f) in Newton
Linear velocity v(¢) (m/sec)
Linear position x(¢) (m)

F, (1) = kox(2)

¥ = F, 0

A

dx(t) _ 1 dF,(1)

v(il) =
() dt  k, dt

S

F ()=k, jv(z)dt

)

<Fa(t)
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Rotational Damper, B, (N-m-sec/rad)

Appied torque 7, () (N - m)
Angular velocity w(¢) (rad/sec)

Angular displacement &(¢) (rad)
T,(t) = B, o)

o) =T,

m

do(r)

)= B,o(t) =B, —

o(t) = BL iTa (t)dt

m t0
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Rotational Spring, k. (N-m-sec/rad)

Appied torque 7, (¢) (N -m)
Angular velocity a(t) (rad/sec)

Angular displacement 6(¢) (rad)
I, ()= B,0()

o) = kiTa (0

S

do(r) 1 dT, (1)
dt k. dt

S

w(t) =

T.(t)=k, ja)(t)dt

)
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Mass Grounded, m (kg)

Appied torque 7, (¢) (N -m)
Linear velocity v(¢) (m/sec)

Linear position x(¢) (m)

dv d*x(1)
F (t)=m—=m
a() dt dl‘2

W(t) = - jF (t)dt

mto

<Fa(l‘)
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Mass Grounded, m (kg)

Appied torque 7, (1) (N - m)
Angular velocity w (¢) (rad/sec)
Angular displacement & (¢) (rad)

2
T, (f) = jdo _ ,d700)
dt dt*

o(t) = % jTa (t)dt
t0

<Fa(t)
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Steady-State Analysis

State: The state of a dynamic system is the smallest set of variables
(called state variables) so that the knowledge of these variables at ¢
= t,, together with the knowledge of the input for t > {,, determines
the behavior of the system for any time t > {,.

State Variables: The state variables of a dynamic system are the
variables making up the smallest set of variables that determine the
state of the dynamic system.

State Vector: If n state variables are needed to describe the
behavior of a given system, then the n state variables can be
considered the n components of a vector x. Such vector is called a
state vector.

State Space: The n-dimensional space whose coordinates axes
consist of the x, axis, x, axis, .., x, axis, where x,, X,, .., x,, are state
variables, is called a state space.

State-Space Equations: In state-space analysis we are concerned
with three types of variables that are involved in the modeling of
dynamic system: input variables, output variables, and state
variables.
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State Variables of a Dynamic System

@ x(0) initial condition

u(t) Input y(f) Output

> Dynamic System >
State x(f)

The state variables describe the future response of a system,

given the present state, the excitation inputs,

and the equations describing the dynamics

21



Electrical Example: An RLC Circuit

X =ve(t);xy =i ()
E=(1/2)Li; +(1/2)Cv?
x,(ty) and x, (¢,) 1s the total initial

energy of the network

USE KCL at the junction
dv

I, =C—==+u(t)—i

c dt ( ) L

C
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The State Differential Equation
X1 = a; X, +apx, +...tay,x, +bu +...+b,u,
X3 = Ay X; + Ay Xy +.oct Ay, X, +Dyuy +...4+ by U,

Xn =0a,X +a,,Xy +...+a,,x, +bu +...+b, u,

State \_/echr

X1 iy dip 1, || 5 b b Ty
11O1m || U
d | X2 | _ |21 G oy | X2 |
dt
| DygeeeDyy || U |
_xn_ _anl Ayo Ayy __xn_

x = Ax + Bu (State Differential Equation) 4 .qtate matrix: B -input matrix

y = Cx + Du (Output Equation) C : Output matrix; D : direct transmission matrix
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The Output Equation

M hy by by, | X
V2 hyy hyy hy, || X,

Vb _hbl hyy hy, L Xn

x = AX + Bu (State Differential Equation) 4 .qtate matrix: B -input matrix

y = Hx + Du (Output Equation) H : Output matrix; D : direct transmission matrix
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Example 1: Consider the given series RLC circuit. Derive the
differential equations that map the circuitry dynamics.
dv , R
C—==1i >
dt i(t)
di .
L—=—v.—Ri+v(t)
dt G(t) )
dv, _ ii
dt C
di 1 ] -
= (— v, —Ri+ v(t))
dt L
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Example 2: Using the state-space concept, find the state-space model
and analyze the transient dynamics of the series RLC circuit.

dv(t) 1 ;
dt C
di

2 %(—vc — Ri+v(1))

x;(t) =v.(t); x,(t) = i(t) (These are the states)
v(t) 1s the control

dx; | | dv, | 1
dx | dt dt C
dr dx, di 1 R
dt ) lar ] L L L

0"
.
{C}— 1 |v, = Ax+ Bu
l P
| L |
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Continue with Values..

Assume R = 2 ohm, L = 0.1 H,
and C = 0.5 F, find the following
coefficients.

The initial  conditions are
assumed to be v (t,)=v,=15 V;
and [ (t,) =i, = 5 A.

Let the voltage across the
capacitor be the output; y(f)=
v (). The output equation will be

The expanded output equation in
y

The circuit response depends on
the value of v (f)

0 2 0
A= and B =
{—10 —20} LO}

Az
y=l o]{‘.’c}Hx;H:[l )

l

l

y= o]{‘fc}[o]va  Hr+ Du
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