Electric Machines and Power Systems Summary of Chapter 1: Introduction to Machinery Principles

Chapter 1: Introduction to Machinery Principles	
Electrical Machines	Transformer, Motor, Generator
Rotational Motion	Angular position θ (radians or degrees)
	Angular velocity $\omega_m = d\theta / dt$ (radians per second)
	Angular velocity $f_m = \omega_m / 2\pi$
	Angular velocity $n_m = 60 f_m$
	Angular acceleration $\alpha = d\omega_m / dt$ (radians per second square)
	Torque $\tau = rF\sin\theta$ (Newton-meters)
Newton's Law of	F = ma (object moving along straight line)
Rotation	$\tau = J\alpha$ (<i>J</i> is moment of inertia) (rotating object)
Work	$W = \int F dr$
	$W = \int \tau d\theta$
Power	$P = \frac{dW}{dt} = Fv$ $P = \frac{dW}{dt} = \tau\omega$
	at
	$P = \frac{dW}{dt} = \tau \omega$
Magnetic Field	A current-carrying wire produces a magnetic field in the area
	around it.
	A time-changing magnetic field induces a voltage in a coil or
	wire if it passes through that coil or wire (basis of transformer
	action).
	A current-carrying wire in the presence of a magnetic field has a force induced on it (basis of motor action)
	force induced on it (basis of motor action)
	A moving wire in the presence of a magnetic field has a voltage induced in it (basis of generator action).
Production of	
Magnetic Field	Ampere's Law: $\oint \mathbf{H}.dl = I$
	$\mathbf{B} = \mu \mathbf{H}$ (B magnetic flux density; H magnetic field intensity)
	$\phi = \int_A \mathbf{B} \cdot dA = BA$
Magnetic Circuits	$V = IR; \ \mathfrak{I} = Ni \ (\mathfrak{I} \text{ magnetomotive force})$
	$\Im = \phi R$
Faraday's Law	$e_{ind} = -N \frac{d\phi}{dt} (e_{ind} = \text{voltage induced in the coil})$
	$\frac{dt}{dt}$
Production of	$\mathbf{F} = i(\mathbf{I} \times \mathbf{B})$
Induced Force on a	$F = ilB\sin\theta$
Wire	
Induced Voltage on a	$e_{ind} = (\mathbf{v} \times \mathbf{B}).\mathbf{I}$
Conductor Moving in	
a Magnetic Field	
Real Power	P = VI (DC circuit)

AC Average Power	$P = VI\cos\theta$
Or Real Power	
Reactive Power	$Q = VI\sin\theta$
Complex Power	$\mathbf{S} = P + jQ$
Impedance Angle	$I = \frac{V}{Z} = \frac{V \angle 0^o}{ Z \angle \theta} = \frac{V}{ Z } \angle -\theta$
Power Factor	$PF = \cos\theta$