
E11.4 A system described by the matrix equations 
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Determine whether the system is controllable and observable 

Answer: 

The controllability matrix is 
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The observability matrix is  
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E11.9 consider the second-order system 
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For what value of k1 and k2 is the system completely controllable? 

Answer: 
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P11.10  The dynamics of a rocket are represented by 
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and state variable feedback is used, where u=2x1+x2 Determine the roots of the 

characteristic equation of this system and the response of the system when the initial 

conditions are x1(0) = 1 and x2(0) = 0 .  

answer: 
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The characteristic equation is 
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The roots are s1,2=-1, 

The time response of the system is  
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P11.16 a system represented by 
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We want to place the closed-loop poles at 22 js  Determine the required state 

variable feedback using Ackermann's formula. Assume that the complete state vector is 

available for feedback.

 

Answer: 

 

Let Kxu   

Then Ackermann’s formula is   )(1,,0,0 1 AqPK c

  , where q(A) is the desired 

characteristic polynomial, which in this case is 
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(a) Find a matrix differential equation to represent this system 



(b) Select a state variable feedback using u(t), and select the feedback gain so that the 

repeated roots are at 2s  , where y(t)=x1(t) 

Answer: 

A matrix differential equation representation is  
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Then, the close-loop characteristic equation is  
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We desire the characteristic equation 
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AP11.13 Consider the system represented in state variable form 

  ]0[,46

,
1

4
,

105

21




























DandC

BA

where

DuCxy

BuAxx

 

Verify that the system is observable and controllable. If so, design a full-state 

feedback law and an observer by placing the closed-loop system poles at js  12,1

and the observer poles at 102,1 s  

Answer: 

The controllability matrix is 
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And the observability matrix is 
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Computing the determinants yields 
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Hence the system is controllable and observable. The controller gain matrix  

 21.755.3K  

 ToPAqL 100)( 1   

The observer gain matrix is 
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