Solantro® Semiconductor corp.

Current Mode Control Using IXC2

November 16, 2018

High Growth Applications

Applications in Data Center, Automotive, Automation, Renewables:

- 1. AC/DC Power-Factor-Corrected- Bridgeless & Interleaved
- 2. DC/DC LLC, Half-Bridge, Phase-Shifted Full-Bridge, etc.
- 3. Charging On-board (EV), Charge Stations, Off-grid
- 4. Inverters Bi-Directional, Automotive, UPS and Storage
- 5. Heavy Industrial Electrified Equipment, HVAC, Welding

Smart Power supply

🖏 solantro

1638

IXC64K SA4041

- 80 PLUS® standards
- ENERGY STAR®
- EN61000-3-2

80 P	80 Plus Performance Specification – Efficiency Requirements							
Load	80 PLUS	80 PLUS BRONZE	80 PLUS SILVER		80 PLUS ⁻ PLATINUM	80 PLUS TITANUM		
10 %						90%		
20 %	80%	82%	85%	87%	90%	92%		
50 %	80%	85%	88%	90%	92%	94%		
100 %	80%	82%	85%	87%	89%	90%		
	≥.90	≥.90	≥.90	≥.90	≥.95	>.95		
PF	at 100%	at 50%	at 50%	at 50%	at 50%	at 20%		

Harmonic Order N	75 W < P < 600 W Maximum Permissible Harmonic Current (mA/W)				
3	3.4				
5	1.9				
7	1.0				
9	0.5				
11	0.35				
13	0.269				
15 < n < 39	3.85/n				

The need for high-voltage, high power density devices operating at high frequencies and junction temperatures higher than 150 °C is growing, especially for advanced power

Table 1. Physical properties for various semiconductors.

Material	$E_G,$ eV	<i>E_C</i> , MV/cm	$n_i,$ cm ⁻³	${\cal E}_r$	μ_r , cm²/V/s	<i>v_{SAT,}</i> 10 ⁷ cm/s	σ _T , W/m/K	CTE, ppm/K
Si	1.1	0.3	10^{10}	11.9	1400	1.02	130	2.6
GaAs	1.424	0.4	2.1 x 10 ⁶	13.1	8500	2.0	55	5.73
3C-SiC	2.36	1	10		≤ 800	2.0	360	3.8
4H-SiC	3.23	3-5	8.2 x 10 ⁻⁹	10.1	≤900	2.0	370	5.12
6H-SiC	3.0	3-5	2.3 x 10 ⁻⁶	9.66	≤ 400	2.0	490	4.3-4.7
GaN wurtzite	3.39	3-5	1.9 x 10 ⁻¹⁰	9	≤ 1000	2.2	130	3.2-5.6
GaN zinc blende	3.2							
Diamond	5.45	5.6	1.6 x 10 ⁻²⁷	5.5	1900	2.7	600-2,000	0.8

$$R_{_{SP-ON}} = \frac{1.716 \times 10^{-6} \varepsilon_r BV^{2.5} E_G^{-3}}{\mu_n} \qquad R_{_{SP-ON}} = \frac{3.351 \times 10^{-3} BV^2 E_G^{-6}}{\varepsilon_r \mu_n} \qquad R_{_{SP-ON}} = \frac{8.725 \times 10^{-3} BV^2 E_G^{-7.5}}{\varepsilon_r \mu_n} 7$$

https://www.infineon.com/dgdl/Infineon-IPB60R060C7-DS-v02_00-EN.pdf?fileId=5546d46258fc0bc1015917ac25385ea1

t _{d(on)}	Turn-On Delay Time	9	
tr	Rise Time	10	
t _{d(off)}	Turn-Off Delay Time	16	ns
tr	Fall Time	6	

Silicon Carbide Power MOSFET C3M[™] MOSFET Technology

N-Channel Enhancement Mode

V_{DS} 900 V I_D @ 25°C 35 A R_{DS(on)} 65 mΩ

https://www.wolfspeed.com/downloads/dl/file/id/145/product/1/c3m0065090j.pdf

- 650 V enhancement mode power switch
- Top-side cooled configuration
- $R_{DS(on)} = 25 \text{ m}\Omega$
- I_{DS(max)} = 60 A

Turn-On Delay	t _{D(on)}	4.6	ns	Γ
Rise Time	t _R	12.4	ns	, ,
Turn-Off Delay	t _{D(off)}	14.9	ns	 •
Fall Time	t _F	22	ns	

https://gansystems.com/wp-content/uploads/2018/04/GS66516T-DS-Rev-180422.pdf

Figure 1 - Block diagram of the 300 W low cost micro-inverter

$$i_{REF}(n) = I_{REFmax} sin\left(\frac{2\pi n}{256}\right)$$
 for $n = 0 \dots 255$

 $\frac{P_{out}}{N_{T_1}}$

V_{Grid}

 $I_{\text{DAC}_peak1}(n) = i_{REF}(n) + I_{R_n}$

 $I_{REF\,max} = \sqrt{2}$

 $I_{DAC_trough}(n) = i_{REF}(n) - I_{R_n}$

$$I_{R_n} = I_{R_{V_{Buck}=0}} + \frac{I_{R_{max}} - I_{R_{V_{Buck}=0}}}{64} \frac{n}{256f}$$
 for $n = 1 \dots 64$

$$I_{R_n} = I_{R_{max}} + \frac{I_{R_{min}} - I_{R_{max}}}{64} \frac{n - 64}{256f}$$
 for $n = 64 \dots 128$

 $I_{R_{max}}$, $I_{R_{min}}$, and $I_{R_{V_{Buck}=0}}$ are tuned to obtain maximum efficiency of the inverter.

🔅 solantro

1638

IXC64K SA4041

_111111111111111111111111111111 🔅 solantro

Power supply

The dement for PFC circuit is mainly driven by EN61000-3-2, ENERGY STAR® and 80 PLUS® standards.

Definition of thee power factor, *PF*, of an AC electrical power system

$$PF = \frac{P}{S}$$
 real power
apparent power

PF = *Displacement Factor* × *Distortion Factor*

 $Displacement\ Factor = cos \varphi$

 $Distortion \ Factor = \frac{1}{\sqrt{1 + THD^2}}$

$$THD = \sqrt{\left(\frac{I_2}{I_1}\right)^2 + \left(\frac{I_3}{I_1}\right)^2 + \cdots}$$

Totem-pole bridgeless PFC converter.

solantro⁻

IXC64K SA4041

1638

The positive half-line cycle equivalent boost circuit

solantro⁻

IXC64K SA4041

1638

The negative half-line cycle equivalent boost circuit.

Totem-pole bridgeless PFC converter.

To improve the efficiency of the totem pole PFC synchronies rectification can be used.

The converter operates as follow.

Switch B_1 is ON, the current trough the inductor is rising. When the inductor current reaches peak value, the switch B_1 is turned OFF and after some delay, the switch B_2 is turned ON, the current trough the inductor is decreasing and when it reaches the trough value and after another delay, the switch B_1 is turned ON.

During the two delays, the currents are passing through the switches intrinsic diodes and capacitors as it is explained above for no synchronous rectification.

Dead time is necessary to avoid cross conduction!

Using IXC2 event driven timers, the two delays can be changed dynamically during the operation and therefore the efficiency of the total pole PFC can be further improved.

solantro⁻

IXC64K SA4041

1638

IXC2 HFCS2_LFCS2 and HFVS1 block diagrams

solantro[°]

IXC64K SA4041

1638

IXC2 Switching Engine

IXC2 Switching Engine configuration for Solantro Totem pole PFC

Timing diagram of the Solantro Totem pole PFC Boost 1.

Totem Pole PFC hardware and control loop for the low frequency switches

$$t_{bl_{min}} = n_{min} \Delta t$$

n _{min}	THD, %
2	0.43
4	0.97
6	1.62
8	2.37
10	3.21
12	4.13

 $V_{Grid} > V_{bl}$ and $n \ge n_{bl}$

.....................

e-mail contacting: ottawapels@gmail.com

Thank you

