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12 
Fundamentals of Alternating Current 
 

In this chapter, we lead you through a study of the mathematics and physics of 
alternating current (AC) circuits. After completing this chapter you should be able to: 
 

 Develop a familiarity with sinusoidal functions. 
 Write the general equation for a sinusoidal signal based on its amplitude, 

frequency, and phase shift. 
 Define angles in degrees and radians. 
 Manipulate the general equation of a sinusoidal signal to determine its amplitude, 

frequency, phase shift at any time. 
 Compute peak, RMS, and average values of voltage and current. 
 Define root-mean-squared amplitude, angular velocity, and phase angle. 
 Convert between time domain and phasor notation. 
 Convert between polar and rectangular form. 
 Add, subtract, multiply, and divide phasors. 
 Discuss the phase relationship of voltage and current in resistive, inductive, and 

capacitive loads. 
 Apply circuit analysis using phasors. 
 Define components of power and realize power factor in AC circuits. 
 Understand types of connection in three-phase circuits. 

 
 
FOCUS ON MATHEMATICS 
 

This chapter relates the application of mathematics to AC circuits, covering complex 
numbers, vectors, and phasors. All these three concepts follow the same rules. 
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12.1 INTRODUCTION 
 

The majority of electrical power in the world is generated, distributed, and 
consumed in the form of 50- or 60-Hz sinusoidal alternating current (AC) and 
voltage. It is used for household and industrial applications such as television 
sets, computers, microwave ovens, electric stoves, to the large motors used in the 
industry.  

AC has several advantages over DC. The major advantage of AC is the fact 
that it can be transformed, however, direct current (DC) cannot. A transformer 
permits voltage to be stepped up or down for the purpose of transmission. 
Transmission of high voltage (in terms of kV) is that less current is required to 
produce the same amount of power. Less current permits smaller wires to be used 
for transmission. 

In this chapter, we will introduce a sinusoidal signal and its basic 
mathematical equation. We will discuss and analyze circuits where currents i(t) 
and voltages v(t) vary with time. The phasor analysis techniques will be used to 
analyze electric circuits under sinusoidal steady-state operating conditions. 
Single-phase power will conclude the chapter. 

 
 
12.2 SINUSOIDAL WAVEFORMS 
 

AC unlike DC flows first in one direction then in the opposite direction. The 
most common AC waveform is a sine (or sinusoidal) waveform. Sine waves are 
the signal whose shape neither is nor altered by a linear circuit, therefore, it is 
ideal as a test signal. 

In discussing AC signal, it is necessary to express the current and voltage in 
terms of maximum or peak values, peak-to-peak values, effective values, average 
values, or instantaneous values. Each of these values has a different meaning and 
is used to describe a different amount of current or voltage. Figure 12-1 is a plot 
of a sinusoidal wave. The correspondence mathematical form is 
 
 ( ) ( )θ+= wtVtv p cos  (12.1) 

 
 
Where Vp is the peak voltage, ω = 2πf is the angular speed expressed in 

radians per second (rad/s), f is the frequency expressed in Hertz (Hz), t is the time 
expressed in second (s), and θ is phase of the sinusoid expressed in degrees. 

The function (Figure 12-1) starts at a value of 0 at 0o, and rise smoothly to a 
maximum of 1 at 90o. They then fall, just as they rose, back to 0o at 180o. The 
negative peak is reached three quarters of the way at 270o. The function then 
returns symmetrically to 0o at 360o. 
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Figure 12-1 Sinusoidal wave values. 
 
12.2.1 Radian and Degree 
 

A degree is a unit of measurement in degree (its designation is ° or deg), a turn 
of a ray by the 1/360 part of the one complete revolution. So, the complete 
revolution of a ray is equal to 360 deg. 

A radian is defined as the central angle, for which lengths of its arc and radius 
are equal (AB = A0). An arc length is the distance along the arc of a circle from 
the origin to the end of the angle. These terms are shown in Figure 13-8. 

Following Equation (12.1), a length of a circumference C and its radius r can 
be expressed as: 
 
 

R
C  2 =π  

 
(12.2) 

 
So, a round angle, equal to 360° in a degree measure, is simultaneously 2π in 

a radian measure. Hence, we receive a value of one radian: 
 
 o57.3  

2
360  rad 1 ≈=
π

 
 

(12.3) 
 

and, 
 
 

rad 0.017453 
360
2  deg 1 ≈=
π  

 
(12.4) 

 

Peak-to-peak 

Peak value 
RMS value 

1 cycle 
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The following comparative table of degree and radian provides measure for 
some angles we often deal with: 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 12-2 Radian and arc length. 
 
 
 Table 12-1 Angles in Degree and Radian 
 

Angle (deg) 0 45 90 180 270 360 
Angle (rad) 0 π/4 π/2 π 3π/2 2π 

 
 
12.2.2 Peak and Peak-to-Peak Values 
 

During each complete cycle of AC signal there are always two maximum or 
peak values, one for the positive half-cycle and the other for the negative half-
cycle.  

The peak value is measured from zero to the maximum value obtained in 
either the positive or negative direction. 

The difference between the peak positive value and the peak negative value is 
called the peak-to-peak value of the sine wave. This value is twice the maximum 
or peak value of the sine wave and is sometimes used for measurement of ac 
voltages. The peak value is one-half of the peak-to-peak value. 
 
12.2.3 Instantaneous Value 
 

The instantaneous value of an AC signal is the value of voltage or current at 
one particular instant. The value may be zero if the particular instant is the time in 
the cycle at which the polarity of the voltage is changing. It may also be the same 
as the peak value, if the selected instant is the time in the cycle at which the 
voltage or current stops increasing and starts decreasing. There are actually an 
infinite number of instantaneous values between zero and the peak value.  

 

A

B

0
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12.2.4 Average Value 
  

The average value of an AC current or voltage is the average of all the 
instantaneous values during one alternation. They are actually DC values. The 
average value is the amount of voltage that would be indicated by a DC voltmeter 
if it were connected across the load resistor. 

Since the voltage increases from zero to peak value and decreases back to zero 
during one alternation, the average value must be some value between those two 
limits. It is possible to determine the average value by adding together a series of 
instantaneous values of the alternation (between 0° and 180°), and then dividing 
the sum by the number of instantaneous values used. The computation would 
show that one alternation of a sine wave has an average value equal to 0.636 
times the peak value. The formula for a average voltage is  
 
 max636.0 VVav =  (12.5) 
 

Where Vav is the average voltage for one alteration, and Vmax is the maximum 
or peak voltage. Similarly, the formula for average current is  
 
 max636.0 IIav =  (12.6) 
 

Where Iav is the average current for one alteration, and Imax is the maximum or 
peak current. 
 
 
12.2.5 Effective Value 
 

This is the value of AC signal that will have the same effect on a resistance as 
a comparable value of direct voltage or current will have on the same resistance. 
It is possible to compute the effective value of a sine wave of current to a good 
degree of accuracy by taking equally spaced instantaneous values of current 
along the curve and extracting the square root of the average of the sum of the 
squared values. For this reason, the effective value is often called the “root-mean-
square” (RMS) value. Therefore, 
 
 

ins of squares  theof sum  theof Average IIeff =
 

 
(12.7) 

 
The effective or rms value (Ieff) of a sine wave of current is 0.707 times the 

maximum value of current (Imax). Thus, I eff = 0.707 × Imax. When I eff is known, we 
may find Imax by using the formula Imax = 1.414 × Ieff. We might wonder where the 
constant 1.414 comes from. To find out, examine Figure and read the following 
explanation. Assume that the DC in Figure is maintained at 1 A and the resistor 
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temperature at 100°C. Also assume that the AC in Figure is increased until the 
temperature of the resistor is 100° C. At this point it is found that a maximum AC 
value of 1.414 A is required in order to have the same heating effect as DC. 
Therefore, in the AC circuit the maximum current required is 1.414 times the 
effective current.  

When a sinusoidal voltage is applied to a resistance, the resulting current is 
also a sinusoidal. This follows Ohm’s law which states that current is directly 
proportional to the applied voltage. Ohm’s law, Kirchhoff’s law, and the various 
rules that apply to voltage, current, and power in a DC circuit also apply to the 
AC circuit. Ohm’s law formula for an AC circuit may be stated as  
 
 

R
V

I eff
eff =  

 
(12.8) 

 
Importantly, all AC voltage and current values are given as effective values.  

 
 
12.2.6 Frequency 
 

If the signal in the Figure makes one complete revolution each second, the 
generator produces one complete cycle of AC during each second (1 Hz). 
Increasing the number of revolutions to two per second will produce two 
complete cycles of ac per second (2 Hz). The number of complete cycles of 
alternating current or voltage completed each second is referred to as the 
“frequency, f” or “event frequency”. Event frequency is always measured and 
expressed in hertz. Because there are 2π radians in a full circle, a cycle, the 
relationship between ω, f, and period, T, can be expressed as 
 
 

condradians/se 22
T

f ππω ==  
 

(12.9) 
 

Where ω is the angular velocity in radians per second (rad/s). The dimension 
of frequency is reciprocal second. The frequency is an important term to 
understand since most AC electrical equipment requires a specific frequency for 
proper operation.  
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Example 12-1 
 
Express each of the following frequencies in Hertz 
 
a) 40 cycles in 4.0 seconds 
b) 80 cycles in 200 milliseconds 
c) 1000 revolutions in 0.5 seconds 
d) 600 rotations in 1 minute 
 
Solution:  
 
a) 40/4.0 = 10 cycles per second = 10 Hz 
b) 80/0.2 = 400 cycles per second = 400 Hz 
c) 1000/0.5 = 2000 cycles per second = 4000 Hz (4 kHz) 
d) 600/60 = 10 cycles per second = 10 Hz 
 
 
Example 12-2  
 
Express each of the following as angular velocity in radians per second 
 
a) 80 rad in 10 s 
b) 2.5 krad in 50 s 
c) 400 rad in 200 s 
d) 40 Mrad in 10 s 
 
Solution:  
 
a) ω = 80/10 = 8 rad/s 
b) ω = 2500/50 = 500 rad/s 
c) ω = 400/200 = 2.0 rad/s 
d) ω = (40×106)/10 = 4.0 rad/s 
 
 
Example 12-3  
 
Express each of the following frequencies as angular velocity in radians per 
second 
 
a) 60 Hz 
b) 500 Hz 
c) 10 kHz 
d) 1 MHz 
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Solution:  
 
a) ω = 2π×60 = 377 rad/s 
b) ω = 2π×500 = 3141.5 rad/s 
c) ω = 2π× (10×103) = 62.83 krad/s 
d) ω = 2π× (1.0×106) = 6.28 Mrad/s 
 
 
 
12.2.7 Period 
 

The period of a waveform is the time required for completing one full cycle. It 
is measured in seconds. In Figure 15-1, the sinusoidal waveform is plotted as a 
function of the argument ωt, and the periodic nature of the sine wave is evident. 
The function repeats itself every 2π radians, and its period is therefore 2π radians. 
The relationship between time (T) and frequency (f) is indicated by the formulas  
 
 

f
T 1
=  

 
(12.10) 

        
Example 12-4  
 
Express each of the following periods in seconds 
 
a) 500 Hz 
b) 90 kHz 
c) 900 MHz 
d) 5 Hz 
 
Solution: Use Equation (12.10) 
 
a) T =  2 ms 
b) T = 1/(90×103) = 11.11 µs 
c) T = 1/(900×106) = 1.11 ps 
d) T = 0.2 s 
 
 
 
12.2.8 Phase 
 

When two sinusoidal waves, such as those represented by Figure 12-3, are 
precisely in step with one another, they are said to be in phase. To be in phase, 
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the two waves must go through their maximum and minimum points at the same 
time and in the same direction.  

To further describe the phase relationship between two sinusoidal waves, the 
terms lead and lag are used. The amount by which one sine wave leads or lags 
another sine wave is measured in degrees. According to Figure 12-3, the sinusoid 
VP sin (ωt + θ) occur θ rad, θ degrees seconds, earlier. In this case we say VP sin 
(ωt + θ) leads VP sin ωt by θ. Also, we may say that VP sin ωt lags VP sin (ωt + θ) 
by θ.  

In general, it is possible for one sine wave to lead or lag another sine wave by 
any number of degrees, except 0° or 360°. When the latter condition exists, the 
two waves are said to be in phase. Thus, two sine waves that differ in phase by 
45o, for example, are actually out of phase with each other, whereas two sine 
waves that differ in phase by 360° are considered to be in phase with each other.  

To determine the phase difference between two sine waves, locate the points 
on the time axis where the two waves cross the time axis traveling in the same 
direction. The number of degrees between the crossing points is the phase 
difference. The wave that crosses the axis at the later time (to the right on the 
time axis) is said to lag the other wave. 
 
12.2.9 Sine and Cosine 
 

The sine and cosine are essentially the same function, but with a 90o phase 
difference. For example, sin ω t = cos (ωt – 90o). Multiples of 360o may be added 
to or subtracted from the argument of any sinusoidal function without changing 
the value of the function. To realize this, let us consider 
 
 

)110  (10sin   

)20  90  (10sin   

)20  (10 cos   

o
P1

oo
P1

o
P11

+=

++=

+=

tV

tV

tVv

 

 
 

(12.11) 

 
leads 
 
 )40- (10sin    o

P22 tVv =  (12.12) 

 
 
by 150o. It is also correct to say that v1 lags v2 by 210o, since v1 may be written as 
 
 )250- (10sin    o

P11 tVv =  (12.13) 
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Figure 12-3 The sine wave VP sin (ωt + θ) leads VP sin ωt. 
 
12.3 PHASORS 
 

We have learnt from the previous section how to define and express in a single 
equation the magnitude, frequency, and phase shift of a sinusoidal signal. Any 
linear circuit that contains resistors, capacitors, and inductors do not alter the 
shape of this signal, nor its frequency. However, the linear circuit does change the 
amplitude of the signal (amplification or attenuation) and shift its phase (causing 
the output signal to lead or lag the input). The amplitude and phase are the two 
important quantities that determine the way the circuit affects the signal. 
Accordingly, signal can be expressed as a linear combination of complex 
sinusoids. Phase and magnitude defines a phasor (vector) or complex number. 
The phasor is similar to vector that has been studied in mathematics.  

Figure 12-4 shows how AC sinusoidal quantities are represented by the 
position of a rotating vector. As the vector rotates it generates an angle. The 
location of the vector on the plane surface is determined by the magnitude 
(length) of the vector and by the generated angle. 

Representing sinusoidal signals by phasors is useful since circuit analysis laws 
such as KVL and KCL and familiar algebraic circuit analysis tools, such as series 
and parallel equivalence, voltage and current division are applicable in the phasor 
domain, which have been studied in DC circuits can be applied. We do not need 
new analysis techniques to handle circuits in the phasor domain. The only 
difference is that circuit responses are phasors (complex numbers) rather than DC 
signals (real numbers). 

In order to work with these complex numbers without drawing vectors, we 
first need some kind of standard mathematical notation. There are two basic 
forms of complex number notation: polar and rectangular. 

v 

ωt 

VP sin ωt VP sin (ωt + θ) 

 θ 

VP 

-VP 
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Figure 12-4 (a) Magnitude of a sine wave. (b) A vector with its end fixed at the 
origin and rotating in a counterclockwise (CCW) direction representing the 
varying conditions of the AC signal. 
 
12.3.1 Polar Form 
 

Polar form is where the length (magnitude) and the angle of its vector denote a 
complex number. Standard orientation for vector angles in AC circuit 
calculations defines 0o as being to the right (horizontal), making 90o straight up, 
180o to the left, and 270o straight down. Vectors angled “down” can have angles 
represented in polar form as positive numbers in excess of 180 or negative 
numbers less than 180 (Figure 12-5). For example, a vector angled ∠ 270o 
(straight down) can also be said to have an angle of -90o. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12-5 Standard orientation for vector angles. 
 
 

0o 

   90o 

 
    180o 

    270o
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1 

2 4 
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7 

(a) (b) 



12                                                                               Chapter 12 

 
 
 
 
 
 
 
Figure 12-6 (a) A vector (5.4 ∠ 326o) (b) A vector 5.4 ∠ -34o. 
 

A vector quantity has both magnitude and direction. Figure 12-6a shows a 
vector with positive angle (5.4 ∠ 326o), while Figure 12-6b shows a vector (5.4 ∠ 
-34o) with negative angle. 

In electrical circuits, a sinusoidal voltage may be represented by 
 
 θ∠= rmsV  V  (12.14) 

 
Where the uppercase V, indicates that the quantity is a phasor, having both 

magnitude and phase. The magnitude is usually RMS. The phase angle is in 
degrees. The polarity is very important: + means that the signal leads the 
reference; while – means that the signal lags the reference. 
 
Example 12-5 
 
Write the phasor form for the following signal and draw the phasor diagram. Use 
a scale of 1 cm = 100 Vrms. 
 
 ( )o

p t-   V v 45377sin300=   

 
Solution:  

 V.   

V
  V p

rms

16212
2

300
2

==

=

 

o45- 212.16  V ∠=  
 
The phasor diagram is shown in Figure 12-7. 
 
 

 

(a) (b) 
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Figure 12-7 Phasor diagram of Example 12-5. 
 
 
12.3.2 Rectangular Form 
 

The horizontal and vertical components denote a complex number. The angled 
vector is taken to be the hypotenuse of a right triangle, described by the lengths of 
the adjacent and opposite sides. These two dimensional figures (horizontal and 
vertical) are symbolized by two numerical figures. In order to distinguish the 
horizontal and vertical dimensions from each other, the vertical is prefixed with a 
lower-case “i” (in pure mathematics) or “j” (in electronics). Figure 12-8 shows 
that a point on a complex plane located by a phasor could be described in 
rectangular form. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-8 A point on the complex plane located by the phasor 4+j3 expressed 
in the rectangular form. 
 
 

 
+Real

 
+Imaginary 

 
-Real 

-Imaginary 

-45o 

4+j3 

5 
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15.3.3 Transforming Forms 
 

Consider the triangle in Figure 12-9. The hypotenuse is labeled as C. The 
angle is θ. A represents the real value and B represents the imaginary value of the 
rectangular form. 
 
 B A    C  V j+=∠= θ  (12.15) 

 

 
 
 
 
A complex number is the sum of a real number and an imaginary 
number [A = Real (A) + j Imaginary (A)]. We know what real 
numbers are since we use them very often. What are imaginary 
numbers? The answer to this question is related to another question. 
What is the square root of minus one ( 1− )? The answer is j! Any 
number of the form j is called imaginary number. Sometimes, the 
letter i is used to define the imaginary number. Electrical engineers 
use j because i is used for instantaneous current. 
 
Example 12-6  
 
Express 16− as an imaginary number. 
 
Solution: Write 
 

 161-  16 ×=−   

 
Replace  1−  with j, then 
 

 416 j=−   

 

Focus on Mathematics 
 
Complex Algebra
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Figure 12-9 Relation between polar and rectangular forms. 
 

To convert from the polar to the rectangular form of a phasor, you must 
convert C∠θ into A and B. From trigonometry, the cosine of an included angle 
relates the length of the adjacent side and the length of the hypotenuse. 
 
 

C
B
C
A

 
Hypotenuse

Opposite   sin

 
Hypotenuse

Adjacent   cos

==

==

θ

θ
 

 
 

(12.16) 

 
To convert from rectangular form to polar form requires a different set of 

trigonometric relationships. 
 
 

A
B

BAC

  tan 

    22

=

+=

θ
 

 
(12.17) 

  
Taking the inverse tangent of each side leaves θ as 

 
 







=

A
B  tan 1-θ  

 
(12.18) 

 
In general, any load in rectangular form may be converted into polar form as 

the following 
 
 








∠+=

+=

−

R
XXR

XR

L12
L

2

L

tan    Z

j    Z
 

 
(12.19) 

 
 

C 
B 

A



16                                                                               Chapter 12 

Example 12-7 
 
Convert each of the following polar phasors into their rectangular form. 
 
a)  o

rms 60V 100  V ∠= , and  

b)  o
rms 60-V 100  V ∠=  

 
Solution:  
 
a) rmsrms V 86.6 j  V 50  V +=  
b)  V 86.6 j - V 50  V rmsrms=  
 
 
 
Example 12-8 
 
Convert each of the following polar phasors into their rectangular form. 
 
a) o

rms 45V 2  V ∠=  

b) o
rms 160-V 240  V ∠=  

 
Solution:  
 
a) rmsrms V 1.414 j  V 1.414  V +=  
b) rmsrms V 82.084 j- V 225.526-  V =  
 
 
12.3.4 Euler’s Identity 
 

Euler’s identity forms the basis of phasor notation. It is named after the Swiss 
Mathematician Leonard Euler. It states, the identity defines the complex 
exponential ejθ as a point in the complex plane. It may be represented by real and 
imaginary components: 
 
 θθθ sin  cos  je j +=  (12.20) 

 
Figure 12-10 shows how the complex exponential may be visualized as a point 

(or vector, if referenced to the origin) in the complex plane. The magnitude of ejθ 
is equal to 1 
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Figure 12-10 Euler’s identity. 
 
 
 1  =θje  (12.21) 

 
since 

 
 1   sin  cos  sin   cos 22 =+=+ θθθθ  (12.22) 

 
Remember that writing Euler’s identity corresponds to equating the polar form 

of a complex number to its rectangular form 
 
 θθθθ ∠=+= A  Asin  cosA   jAe j  (12.23) 

 
Simply, Euler’s identity is a trigonometric relationship in the complex form. 

To see how complex numbers are used to represent sinusoidal signals, we may 
rewrite the expression for a generalized sinusoid using Euler’s equation: 
 
 ( ) ( )( ) θwt j A e     θwt  A +=+ Recos  (12.24) 

 
Equation (12.24) is simplified as 

 
 ( ) ( )( ) ( )jwtjθ θwt j  e A e   A e     θwt  A ReRecos ==+ +  (12.25) 

sin θ 

 cos θ 
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Example 12-9 
 
Draw the phasor digram of the following signal. Use a scale of 1 cm = 100 Vrms. 
 

rmsrms  V - j  V V 150300=  
 
Solution: See Figure 12-11. 
 
 
 
 
 
 
 
Figure 12-11 Rectangular phasor plot of Example 12-9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

300 Vrms 

150 Vrms 

 
 
 
 
To add phasor quantities, express each in rectangular form and: 
 

1. Add the real parts of the phasors. 
2. Add the imaginary parts of the phasors. 
3. Form the sum as a phasor written in rectangular form. 

 
Example 12-10  
 
Add 5 + j4 and 5 + j6 
 
Solution: Follow steps 1 to 3 
 

 

1010
65
45

j
j
j

+
+
+

 
 

 
The answer is 10 +j10 

Focus on Mathematics 
 
Adding Phasors
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To subtract phasor quantities, express each in rectangular form 
 

1. Change the sign of both the real and the imaginary part of the 
phasor to be subtracted. 

2. Add the phasors following the steps in the previous box. 
 
Example 12-11  
 
Subtract 10 - j4 from 15 + j8 
 
Solution: Change the signs of 10 – j4. Accordingly the answer is 
 
-(10- j4) = -10 + j4, Now add 

 

125
410

815

j
j

j

+
+−

+
 

 

 
The answer is 5 + j12 

Focus on Mathematics 
 
Subtracting Phasors
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Rectangular Form 
 
To multiply phasor quantities in rectangular form, multiply the 
numbers as if they were two binomials 
 

1. Distribute the real part of the first complex number over the 
second complex number. 

2. Distribute the imaginary part of the first complex number over 
the second complex number. 

3. Replace j2 with –1. 
4. Combine like terms. 
5. Form the product as a phasor written in rectangular form. 

 
Example 12-12  
 
Multiply 3 + j2 and 4 – j5 
 
Solution: Follow steps 1 to 5 
 
Distribute (3 + j2) over (4- j5). This means 
 
(3 + j2)(4- j5) = 12 – j15 + j8 – j210 
 
Replace j2 with –1. This yields 
 
12 – j15 + j8 + 10 
 
Combine like terms to obtain the answer 
 
22 – j7 

Focus on Mathematics 
 
Multiplying Phasors
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Polar Form 
 
To multiply phasor quantities in polar form 
 

1. Multiply the magnitudes. 
2. Add the angles. 
3. Form the products as a phasor written in polar form. 

 
Example 12-13  
 
Multiply 4∠15o and 6∠25o 
 
Solution: Follow steps 1 to 3 
 
Multiply by magnitudes: 
 
4 × 6 = 24 
 
Add the angles: 
 
15o + 25o = 40o 
 
The answer is 24∠40o 
 

Focus on Mathematics 
 
Multiplying Phasors



22                                                                               Chapter 12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Rectangular Form 
 
To divide phasor quantities in rectangular form 
 

1. Multiply the denominator and the numerator by the complex 
conjugate of the denominator.  

4. Divide the real number and the imaginary number of the 
numerator by the denominator. 

5. Form the quotient as a phasor written in rectangular form. 
 
Example 12-14  
 
Divide (15 + j10) by (2 +j1) 
 
Solution: Follow steps 1 to 5 
 

 
12
1015
j
j

+
+  

 

 
Multiply numerator and denominator by 2 - j1, the complex 
conjucate of 2 + j1. This is represented as 
 

 ( )( )
( )( )

5
540

14
10201530

1212
121015

2

2

j
j

jjj
jj
jj

+
=

−
−+−

=

−+
−+

 

 

 
Divide the real and the imaginary number of the numerator 
 

 
5
5

5
40 j

+  
 

 
The answer is 8 + j1 

Focus on Mathematics 
 
Dividing Phasors
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Polar Form 
 
To divide phasor quantities in polar form 
 

1. Divide the magnitudes. 
2. Subtract the angle of the denominator from the angle of the 

numerator. 
3. Form the quotient as a phasor written in polar form. 

 
Example 12-15  
 
Divide 30∠40o by 6∠20o 
 
Solution: Follow steps 1 to 3 
 

 
5

6
30

=  
 

 
Subtract 20o from 40o. That is 40o – 20o = 20o 
 
The answer is 5∠20o 

Focus on Mathematics 
 
Dividing Phasors
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To raise a phasor to a power, express the phasor in polar form, first 
and then: 
 

1. Raise the magnitude to the specified power. 
2. Multiply the angle by the exponent. 
3. Form the solution 

 
Example 12-16  
 
Solve (30∠25o)2 
 
Solution: Follow steps 1 to 3 
 
Raise 30 to the second power: 302 = 900 
Multiply 25o by 2: 25o × 2 = 50o 
Form the equation to find the answer: 900∠50o.  
 
 
 
Example 12-17  
 
Solve (3 + j4)2 
 
Solution: Follow steps 1 to 3 
 
First, express (3 + j4) in polar form:  
3 + j4 = 5∠53.13o 
 
Raise 5 to the second power: 52 = 25 
 
Multiply 53.13 by 2: 53.13 × 2 = 106.26o 
 
The answer is: 25∠106.26o 

Focus on Mathematics 
 
Power of a Phasor
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12.4 ELECTRICAL SYSTEMS OF PHASORS 
 
Phasors may be added, subtracted, multiplied, and divided. Those operations 

can be applied to electrical systems. They provide significant meaning to the 
systems under study. The most insightful phasor operation is addition. 
 
 21total V  V  V +=  (12.26) 

 
To add phasors manually, convert the phasors into rectangular form 

 
 

222

111

B  A  V
B  A  V
j
j

+=
+=  

 
 

 
To complete the process, add the real parts together and the imaginary parts 

together 
 
 ( ) ( )2121total B  B   A  A  V +++= j   
 
12.4.1 Simple Vector Addition 
 

If the current in an AC circuit is described as 50 mA at –60 o, it means that the 
current waveform has amplitude of 50 mA, and it lags 60o behind the reference 
waveform, usually assumed to be the main source voltage waveform.  
 
Example 12-18 
 
Find the total voltage across the terminals of the circuit shown in Figure 12-12. 
The circuit contains two sources connected in series: 3 V with 0o and 4 V with 0o. 
 
Solution: Total length = 3 + 4 = 7 V (angle is 0o) 
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Figure 12-12 Two sources connected in series. 
 
 
 
Example 12-19 
 
Find the total voltage across the terminals of the circuit shown in Figure 12-13. 
The circuit contains two sources connected in series: 3 V with 0o and 4 V with 
180o. 
 
Solution: 
 
Total length = 3 - 4 = -1 V (at 0o), or 
Total length = 4 - 3 = 1 V (at 180o)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-13 Two sources connected in series. 
 
 

  3 V, 0o   4 V, 0o 

+     7 V, 0o        - 

  3 V, 0o   4 V, 180o 

+      1 V, 180o        - 
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12.4.2 Complex Vector Addition 
 

If vectors with uncommon angles are added, their magnitudes (lengths) add up 
quite differently than that of scalar magnitudes:  
 
 
 
 
 
 
 
Figure 12-14 Addition of two complex values. 
 

If two AC voltages, 90o out of phase, are added together by being connected in 
series, their voltage magnitudes do not directly add or subtract as with scalar 
voltages in DC. Instead, these voltage quantities are complex quantities, and just 
like the above vectors, which add up in a trigonometric fashion. For example, in 
Figure 12-14, a 3 V source at 0o added to a 4 V source at 90o results in 5 V at a 
phase angle of 53.13o. 

There is no suitable DC analogy for what we're seeing here with two AC 
voltages slightly out of phase. DC voltages can only directly aid or directly 
oppose, with nothing in between. With AC, two voltages can be aiding or 
opposing one another to any degree between fully-aiding and fully-opposing, 
inclusive. Without the use of vector (complex number) notation to describe AC 
quantities, it would be very difficult to perform mathematical calculations for AC 
circuit analysis.  
 
Example 12-20 
 
Add the following phasors in rectangular form and then express the total in polar. 
 
 

Ω=
Ω+=

 j2 - 3  Z
 3 j  2  Z

2

1   

 
Solution: o

total 78.7 5.099  j1 5  Z ∠=+=  
 
 
 
 
 

3 V, 0o

 
4 V, 90o5 V, 53.13o 
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Example 12-21 
 
Subtract the following phasors and express the result in polar form. 
 
 )75 A (100 - )45- A (250 o

rms
o

rms ∠∠   

 
Solution:  
 
 

( ) ( )
 28- A 171 A 80.17 j- A 89.150

A 96.60 j  A 25.88 - A j176.77 -A 176.77
A 96.60 j  A 25.88  75 A 100

A j176.77 -A 176.77  45- A 250

o
rmsrmsrms

rmsrmsrmsrms

rmsrms
o

rms

rmsrms
o

rms

∠=

+
+=∠

=∠

 

 

 
 
 
12.3 RESISTIVE LOADS 
 

In a DC circuit, there is one basic type of load, which is resistive. This is not 
true in AC circuit. AC circuits have three different types of loads: resistive, 
inductive, and capacitive. Each of these loads produces a different circuit 
condition. Voltage divided by current in DC circuits is called resistance. 
However, for AC circuits it is called impedance. The impedance is the opposition 
an element offers to a sinusoidal current. It is a phasor quantity. 

A circuit having pure resistance would have the AC through it and the voltage 
across it rising and failing together. The current and voltage may not have the 
same amplitude, but they are in phase. Any time that a circuit contains resistance, 
heat will be produced. 

Voltage and current are in phase with each other in a pure resistive circuit as 
shown in Figure 12-15 (a). True power can be produced only when both current 
and voltage are either positive or negative. When like signs are multiplied, the 
product is positive and when unlike signs are multiplied the product is negative. 
Since the current and voltage are either positive or negative at the same time, the 
product, watts, will always be positive. 

The impedance in AC circuits is defined through Ohm’s law 
 
 

I
V  Z =  

 
(12.26) 

 
The impedance diagram of a resistor is a phasor whose length is R (along the 

+x axis) as shown in Figure 12-15 (b). 
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Figure 12-15 (a) Voltage in phase with current. (b) Phase angle between voltage 
and current is 0o. 
 
 

When sinusoidal current flows through the impedance, we have 
 
 ( ) ( )  R t itv ×=  (12.27) 
 

where 
 
 ( ) ( )wt   Iti P sin=   
 

then 
 
 ( ) ( )wt RI tv P sin=   

 
Now convert the above equation from time domain form into phasors 

 
 )0(    V o

rms∠×= IR   

 
Substitute into Equation (12.26), we obtain 

 
 ( )

( )o

o
rms

0
0

  Z
∠

∠×
=

rmsI
 IR 

 
 

 

  Voltage 

Current

VP IP 

(a) (b) 
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To divide phasors, divide the magnitudes and subtract the angles 
 
 o0∠=  RZ  (12.28) 

 
The impedance of a resistor has the magnitude of the resistor. Therefore, its 

units are ohms. The voltage across the resistor is in phase with the current 
through the resistor since the phase angle is 0o. The 0o phase shift indicates that 
the voltage across the resistor is in phase with the current through it. The 
impedance of resistor has no imaginary part. 
 
 j0    ZR += R   
 
 
Example 12-22 
 
Calculate the phasor current through a 100-Ω resistor assuming a voltage of (100 
Vrms∠0o) applied across it. 
 
Solution: Apply Ohm’s law 
 

( )
( )

o
rmso

o
rms 0A1

0100
0100

∠=
∠Ω
∠

=    V I  

 
 
 
12.6 INDUCTIVE LOADS 
 
12.6.1 Inductance 
 

The inductance of an inductor (L) is measured in henries (H). It depends upon 
the physical make up of the coil such as the length (l), cross-sectional area (A), 
number of turns of wire (N), and the permeability of the material contained in the 
core (µ). This is expressed mathematically as 
 
 

l
µ AN L

2

=  
 

(12.29) 

 
Inductance is a primary load in AC circuits. Some amount of inductance is 

present in all AC circuits because of the continually changing magnetic field. 
Circuits are generally considered to contain inductance when any type of load 
that contains a coil is used. Loads such as motors, transformers, and chocks all 
contain coils of wire. 
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It is known that whenever current flows through a coil, a magnetic field is 
created around the wire. If the amount of current decreases, the magnetic field 
will collapse. In the case of a circuit having inductance, the opposing force of the 
counter EMF would be enough to keep the current from remaining in phase with 
the applied voltage. In a DC circuit containing pure inductance the current takes 
time to rise to maximum even though the full-applied voltage is immediately at 
maximum. 
 
12.6.2 Inductive Reactance 
 

The inductor in Figure 12-16 is connected to an AC voltage source. This 
causes the magnetic field to continually increase, decrease, and reverse polarity. 
Since the magnetic field changes magnitude and direction, a voltage is induced in 
the coil as shown in Figure 12-17. This induced voltage is 180o out of phase with 
the applied voltage. The induced voltage can limit the flow of current through the 
circuit in a manner similar to resistance. This current-limiting property of the 
inductor is called reactance (X). Since this reactance is caused by inductance, it is 
called inductive reactance (XL). It is measured in ohms just as the resistance is 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                       
 
 
 

 
 
 
 
 
 
 
 
Figure 12-16  (a) Magnetic field increases around the coil as current flows 
through the coil. (b) Magnetic field decreases as current flow decreases. 

 

 

 

(a) 

(b) 
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Figure 12-17 Applied voltage and induced voltage across a coil. 

 
 
 fLL πω 2   XL ==  (12.30) 

 
The voltage and current relationship for an inductor involves a derivative. 

The voltage across the inductor depends on how rapidly the current through it 
changes 
 
 

dt
di L vL =  

 
(12.31) 

 
where 

 
 ( ) o0 sin ∠== rmsP  It   Ii ω   

 
The derivative of a sinusoidal current is calculated as 

 
 ( )o90 sin  t   I  

dt
di

P += ωω  
 

 
Substitute this into Equation (12.31) 

 
 ( ) ( )o

PL  t    IL v 90 sin += ωω   

 
 

 
 
 
 

  
Applied 
voltage 

Induced 
voltage 
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Figure 12-18 (a) Voltage leads the current when AC current passes through an 
inductor. (b) Phasor diagram shows the lead by 90o. 
 
 

The above equation shows that there is a phase shift of 90o. Figure 12-18 (a) 
shows the voltage leading the current when AC current passes through an 
inductor The current is at 0o and the voltage drop across the inductor is at + 90o 
(leads) as shown in Figure 12-18 (b). The equation may be expressed as a phasor 
 
 ( ) ( )o

rmsL  I  L  v 90 ∠×= ω   

 
Applying Equation (12.26) to find the impedance 

 
 ( )

( )o
rms

o
rmsL

L I
  IX  Z
0

90
∠
∠

=  
 

 
Divide the magnitude and subtract the angle 

 
 ( )o

LL X  Z 90∠=  (12.32) 

 
Equation (12.32) indicates that the opposition an inductor presents to a 

sinusoidal current is proportional to the size of the inductor (L) and the value of 
the frequency. The voltage is shifted 90o ahead of the current. 

In rectangular form, the impedance of the inductor contains a real and 
imaginary component. 
 
 ( )LL    0  Z Xj+=   

    Voltage (v) 

  Current (i) 

i 

v 

∠θ = 90o 
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The impedance diagram of an inductor is shown in Figure 12-19. The length 

of the phasor XL lies entirely along the imaginary (+y) axis. 
 
 
 
 
 
 
 
 
 
 
Figure 12-19 Impedance diagram of an inductor. 
 
 
12.6.3 Power in Inductive Load 
 

In a pure resistive circuit, the true power is equal to the product of the voltage 
and current. In a pure inductive circuit, however, no true power is produced. In 
order to produce true power, voltage and current must both be either positive or 
negative. Since the voltage and current are 90o out of phase with each other in a 
pure inductive circuit, the current and voltage will be at different polarities 50% 
of the time and the same polarity 50% of the time. 
 
 
Example 12-23 
 
The inductor shown in Figure has an inductance of 1 H and is connected to a 120 
V 60 Hz line. How much current will flow in this circuit? 

 
Solution: 
 
 

Ω=
×××=

=

 377
1601416.32

2

L

L

L

X
X

fLX π
 

 

 
XL may be substituted for R in Ohm’s law 
 
 

A 398.0
377
120

===
LX

VI  
 

 
 

XL 



Fundamentals of Alternating Current                                                                    35  

                                                                                     

15.7 CAPACTIVE LOADS 
 

An inductor opposes a change in current. A capacitor does the opposite. It 
opposes a change in voltage. Capacitors are used to block DC in electronic 
circuits. They are formed whenever two customers run side-by-side. 

The current through a capacitance depends on how rapidly the voltage across 
it changes. 
 
 

dt
dv C iC =  

 
(12.33) 

where 
 
 o

rmsP 0V  ) (sin  V  ∠== tv ω   

 
Taking the derivative of a sinusoidal voltage 
 

 ( )o
P 90   sin V += t

dt
dv ωω  

 

 
Substitute this into the basic equation for the capacitor 

 
 [ ])90   (sin  V    o

PC += tCi ωω   

 
Rewriting this equation, we get 
 

 ( ) ( )o
P 90   sin  V    += ttiC ωω  (12.34) 

 
Equation (12.34) shows that there is a phase shift of 90o. The voltage is at 0o 

but the resulting current through the capacitance is at +90o (leads).  
The current may be expressed in a phasor form 
 

 ( ) ( )o
rmsC 90V     I ∠×= Cω  (12.35) 

 
The capacitive reactance is defined as 

 
 

C
1  C ω

=X  
 

(12.36) 
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Equation (12.36) may be rewritten as 

 
 ( )

C

o
rms

C X
90V  I ∠

=  
 

 
Using Equation (12.26) to find the impedance, we get 

 
 

o

C

rms

o
rms

C

90
X
V

0V  Z
∠

∠
=  

 
(12.37) 

 
Divide the magnitudes and subtract the angles 

 
 

Cj
  

C
-j

 
1

 
 

90-X  Z o
CC

ωω
==

∠=
 

 
(12.38) 

 

where  -j e  
j

/-jπ == 2 1 . Therefore, the impedance of a capacitor is a 

frequency-dependent complex quantity, with the impedance of the capacitor 
varying as an inverse function of frequency. The capacitor acts as a short circuit 
at high frequencies, whears it behaves more as an open circuit at low frequencies.  
Equation (12.28) indicates that the opposition a capacitor presents to a sinusoidal 
voltage is inversely proportional to the size of the capacitor (C) and the value of 
the frequency. The current is shifted 90o ahead of the voltage. 

In rectangular form, the impedance of the capacitor contains a real and 
imaginary component. 
 
 ( )LC  j - 0  Z X=  (12.39) 
 

The impedance diagram of a capacitor is shown in Figure 12-20. The length of 
the phasor XC lies entirely along the imaginary (-y) axis. 
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Figure 12-20 Impedance diagram of a capacitor. 

 
Example 12-24 
 
Compute the reactance of a 10 µF capacitor at a frequency of  (a) 0 Hz, (b) 10 
kHz. (c) 1 MHz. 
 
Solution: Use Equation (12.36) 
 
 

f C
X C   2

1  
π

=   

 
(a) When f = 0 Hz 
 
 

( ) ( ) ∞=
×

= −61010 0  2
1  

πCX  
 

 
(b) When f = 10 kHz 
 
 

( )( ) Ω=
××

= −  59.1
1010 1010  2

1  63πCX  
 

 
(c) When f = 1 MHz 
 
 

( )( ) Ω=
××

= −  016.0
1010 101.0  2

1  66πCX  
 

 
 
 
 
 

 
XC 
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12.8 AC CIRCUIT ANALAYSIS 
 

The impedance parameters defined in the previous sections are very useful in 
solving AC circuit analysis problems, because it makes possible to take 
advantage of most of the network theorems developed for DC circuits by 
replacing resistances with complex-valued impedances. Figure 12-21 depicts the  
impedances of R, L, and C in the complex plane. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-21 Impedances of R, L, and C in the complex plane. 

 
All the rules and laws learned in the study of DC circuits apply to AC circuits 

including Ohm's law, Kirchhoff's laws, and network analysis methods. The only 
qualification is that all variables must be expressed in complex form, taking into 
account phase as well as magnitude, and all voltages and currents must be of the 
same frequency (in order that their phase relationships remain constant).  

It is necessary to emphasize that although the impedance of circuit elements is 
either purely real (for resistors) or purely imaginary (for inductors and 
capacitors), the general definition of impedance for an arbitrary circuit should 
allow for the possibility of having both a real and imaginary part, since practical 
circuits are made up of more or less complex interconnections of various circuit 
elements. 
 
 
 
 
 

Real 

Imaginary 

ωL 

C
1-
ω

R 
ZL 

ZC 
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Example 12-25 
 
Consider three AC voltage sources in series (Figure 12-22) and use complex 
numbers to determine additive voltages. 
 
 
 
 
 
 
 
 
Figure 12-22 Circuit for Example 12-25. 
 
Solution: 
 
 

01535126422
321

∠+∠+−∠=
++=

total

total

V
VVVV

 
 

 
Graphically, the vectors add up in this manner: The sum of these vectors will 

be a resultant vector originating at the starting point for the 22 V vector and 
terminating at the ending point for the 15 V vector. This is shown in Figure 12-
23.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-23 Phasor diagram of Example 12-25. 
 

In order to determine what the resultant vector's magnitude and angle are 
without resorting to graphic images, we can convert each one of these polar-form 
complex numbers into rectangular form and add. Remember. These figures are 

12∠35o 

15∠0o 
22∠-64o 

Resultant 
Vector

22 V, -64o 12 V, 35o 15 V, 0o 
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added together because the polarity marks for the three voltage sources are 
oriented in an additive manner:  
 
 

( ) ( ) ( )
V90.1250.34

0159.68.98.1965.9
015015

9.68.93512
8.1965.96422

jE
jjjE

j
j

j

total

total

−=
++++−=

+=∠
+=∠

−=−∠

 

 

 
In polar form, this equates to 36.80 V ∠ -20.50o. What this means in real 

terms is that the voltage measured across these three voltage sources will be 
36.80 V, lagging the 15 volt (0o phase reference) by 20.50o. A voltmeter 
connected across these points in a real circuit would only indicate the polar 
magnitude of the voltage (36.80 V), not the angle. An oscilloscope could be used 
to display two voltage waveforms and thus provide a phase shift measurement, 
but not a voltmeter. The same principle holds true for AC ammeters: they indicate 
the polar magnitude of the current, not the phase angle.  

This is extremely important in relating calculated figures of voltage and 
current to real circuits. Although rectangular notation is convenient for addition 
and subtraction, and was indeed the final step in our sample problem here, it is 
not very applicable to practical measurements. Rectangular figures must be 
converted to polar figures (specifically polar magnitude) before they can be 
related to actual circuit measurements.  
 
 
 
Example 12-26 
 
Change the polarity of the three AC voltage sources given in Example 12-25 
(Figure 12-24) and use complex numbers to determine additive voltages. 
 
 
 
 
 

 
 

 
Figure 12-24 Circuit for Example 12-26. 
 

15 V, 0o 22 V, -64o 12 V, 35o 
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Solution: See Figure 12-25. Note how the 12 V supply’s phase angle is still 
referred to as 35o, even though the leads have been reversed. Remember that the 
phase angle of any voltage drop is stated in reference to its noted polarity. Even 
though the angle is still written as 35o, the vector will be drawn 180o opposite of 
what it was before: The resultant (sum) vector should begin at the upper-left point 
(origin of the 22 volt vector) and terminate at the right arrow tip of the 15-V 
vector: The connection reversal on the 12-V supply can be represented in two 
different ways in polar form: by an addition of 180o to its vector angle (making it 
12 V ∠ 215o), or a reversal of sign on the magnitude (making it -12 V ∠ 35o).  
 
 
 
 
 
 
 
 
 
 
 
Figure 12-25 Phasor diagram for Example 12-26. 
 
 

( ) ( ) ( ) 65.2681.1480.1965.99.682.9015
321

jjjjE
EEEE

total

total

−=−+−−++=
++=   

 
In polar form, this equates to 30.4964 V ∠  -60.9368o.  
 
 

 
12.9 POWER AND POWER FACTOR 
 

An understanding of load characteristics in electrical power systems involves 
the concept of power and power factor. The power consumed by a load will be 
comprised of several individual power components. These components are 
apparent power, reactive power, and active or real power. 
 
12.9.1 Power Components 
 

The active or real power component of the load is that portion of the load that 
performs real work. The reactive power component of the load is used to supply 

22∠-64o 

-12∠35o 

15∠0o 

Resultant 
Vector 
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energy that is stored in either a magnetic or electrical field. An example of 
reactive power being used to supply a magnetic field is the magnetizing current 
consumed by a transformer or an electric motor. An example of a device that 
supplies reactive power is the capacitor. Whether or not a load consumes or 
supplies reactive power is a characteristic of the load itself. 

The relationship between these electrical power quantities is best realized by 
using the power triangle shown in Figure 12-26 (a). In addition Figure 12-26 
shows the related impedance triangle. 

When an AC power is applied to a reactive load, the voltage is 90o out of 
phase with the current. When the instantaneous amplitudes of the voltage and 
current are multiplied, the resultant wave represents the instantaneous power of 
the reactor. Accordingly, the average power is zero, which means that reactive 
loads do not dissipate power. 

In reference to Figure 12-26 (a), it may be seen that the base of the power 
triangle represents the real power component, while the vertical component 
represents the reactive power component. The hypotenuse of the triangle 
represents the apparent power component, which is calculated as 
 
 22 QPS +=  

 
(12.40) 

 
Where: 
 
S = magnitude of power apparent in VA 
P = magnitude of real (active) power in W 
Q = magnitude of reactive power in VAR 
 
 
12.9.2 Power Factor 
 

The ratio of real power to apparent power provides us with an important 
quantity called power factor. It is expressed as 
 
 ( )θ cosPF ==

S
P  

 
(12.41) 

 
The ratio of reactive power to apparent power is referred to as the reactive 

factor of the load. It is expressed as 
 
 ( )θsin  RF ==

S
Q  

 
(12.42) 

 
The power factor is a measure of how well the load is converting the total 

power consumed into real work. A power factor equal to 1.0 indicates that the 
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load is converting all the power consumed into real work. However, power factor 
of 0.0 indicates that the load is not producing any real work. In general, the power 
factor of a load will be between 0.0 and 1.0. 

Because only the resistive portion of an AC circuit dissipates power, we are 
interested in the resistive part of the impedance. The ratio of the circuit resistance 
to the amplitude of the circuit impedance is called power factor. This is expressed 
mathematically as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-26 (a) Power triangle. (b) Impedance triangle. 
 
 

Z
 factor Power R
=  

 
(12.43) 

 
According to Equation (12.28), the impedance of an AC circuit is resistive ( Z 

= R). Therefore, the power factor is 1. When the impedance is reactive (Z = jX), 
the power factor is zero. In general, the power factor is related to the phase angle 
through the impedance diagram (Figure 12-26). This is expressed as 
 
 ZR/  )( cos factor Power == θ   
 
12.9.3 Leading and Lagging Power Factor 
 

A load in which the current lags the applied voltage is said to have a lagging 
power factor. However, a load in which the current leads the applied voltage is 
said to have a leading power factor. The current in an inductive load will lag the 

Q 

P 

S 

θ 

R 

Z 

θ 

X 

(a) 

(b) 
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applied voltage by certain angle as shown in Figure 12-27 (a). Therefore, an 
inductive load will have a lagging power factor. Good examples of inductive 
loads are transformers, motors, generators, and typical residential loads. 

A leading power factor is one in which the current leads the applied voltage by 
certain angle as shown in Figure 12-27 (b). A power factor correction capacitor is 
an example for a load having a leading power factor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-27 (a) Power triangle for lagging power factor. (b) Power triangle for 
leading power factor. 

 
 
Example 12-27 
 
Compute the power factor for each of the following cases. 
 
a) Z = 100 ∠ -30o 
b) 100 + j50 Ω 
 
Solution: 
 
a) θ = -30o 

cos (θ) = cos (-30o) = 0.866 
Power factor is 0.866. 
 

Q 

P 

S 

θ 

P 

S 

θ 

Q 

(a) 

(b) 
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b)   Convert 100 +j50 to polar form 
100 +j50 = 111.8 ∠ 26.56o 

cos (θ) = cos (26.56o) = 0.894 
Power factor is 0.894. 

  
 
 
Example 12-28 
 
A three-phase load consumes 100 kW, and 50 kVAR. Determine the apparent 
power, reactive factor, and the power factor angle. 
 
Solution: Use Equation (12-40) to find the apparent power 
 
 ( ) ( ) kVA 8.111000,50000,100 22 =+=S   

 
Now, use Equation (12-41) to find the power factor 
 
 

8944.0
111,803
100,000 PF ==  

 

 
Use Equation (12-42) to find the reactive power 
 
 

4472.0
803,111
000,50 RF ==  
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12.10 THREE-PHASE AC CIRCUITS 
 

Nearly all-electric power generation and most of power transmission in the 
world today are in the form of three-phase AC circuits. However, the single-
phase supply is the most common supply for domestic premises and other single-
occupier premises where the load demand is relatively small. The three-phase 
system is the usual type of supply for commercial and industrial premises of 
medium size: schools, hotels, blocks of apartments, hospitals, etc. A three-phase 
circuit is a combination of three single-phase circuits.  

A three-phase power system consists of three-phase generators, transmission 
lines, and loads. Three-phase systems have two major advantages over single-
phase systems: (1) More power is obtained per kilogram of metal from three-
phase system, and (2) the power delivered to a three-phase load is constant all the 
times, instead of pulsing as it does in single-phase system. 
 
12.10.1 Wye-Connected System 
 

A three-phase system consists of three AC sources, with voltages equal in 
magnitude but differing in phase angle from the others by 120o, and connected at 
a common point called neutral as shown in Figure 12-28. The current flowing to 
each load can be found from the following equation 
 
 

Z
VI =  

 
(12.44) 

 
Accordingly, the currents flowing in the three phases are 
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Figure 12-28 (a) Three phases of a generator with their loads. (b) Voltage 
waveforms of each phase of the generator. 
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It is possible to connect the negative ends of these three single-phase 
generators and loads together, so they share a common neutral. This type of 
connection is called wye or Y. In this case four wires are required to supply 
power from the three generators to resistive load as shown in Figure 12-29. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-29 Y-connected generator with a resistive load. 
 

The voltages between any two line terminals (a, b, or c) are called line-to-line 
voltages, and the voltages between any line terminal and the neutral terminal are 
called phase voltages. 

Since the load connected to this generator is assumed to be resistive, the 
current in each phase of the generator will be at the same angle as the voltage. 
Therefore, the current in each phase will be given by 
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(12.46) 

 
It is obvious that the current in any line is the same as the current in the 

corresponding phase. Therefore, for a Y connection 
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 φI  I L =  (12.47) 

 
The relationship between line voltage and phase voltage is given by the 

following equation 
 
 

φV 3  VL =  (12.48) 

 
12.10.2 Delta (∆) Connection 
 

Another possible connection is the delta (∆) connection, in which the three 
generators are connected head to tail as shown in Figure 12-30. The ∆ connection 
is possible because the sum of the three voltages VA + VB + VC = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-30 ∆-connected generator with a resistive load. 
 

In the case of the ∆ connection, it is obvious that the line-to-line voltage 
between any two lines will be the same as the voltage in the corresponding phase. 
In a ∆ connection 
 
 φV  VL =  (12.49) 

 
The relationship between line current and phase current can be found by 

applying Kirchhoff’s current law at a nodes of the ∆ 
 
 

φI3  IL =  (12.50) 
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SUMMARY 
 

1. A sinusoidal signal is mathematically represented in one of two ways: a time-
domain forms ( ( ) ( )θω     cosA    += ttv  and a frequency-domain (phasor) form 

( ( ) θω θ ∠== AAj   e    V j ). 
2. A phasor is a complex number, expressed in rectangular form and polar form. 
3. In rectangular form, the phasor has both real and imaginary parts. 
4. In polar form, the phasor consists of a magnitude equal to the peak amplitude 

of the sinusoidal signal and a phase angle equal to the phase shift of the 
sinusoidal signal referenced to a cosine signal. 

5. The three basic types of AC loads are resistive, inductive, and capacitive. 
6. In AC resistive load, the current and voltage are in phase with each other. 
7. True power can be produced only during periods of time that both the voltage 

and current have the same polarity. 
8. The impedance of a resistor is simply its resistance. 
9. Induced voltage is proportional to the rate of change of current. 

10. Induced voltage is always opposite in polarity to the applied voltage. 
11. Pure inductive load contains no true power. 
12. The impedance of an inductor is jωL Ω. 
13. The impedance of an inductor is 1/jωC Ω. 
14. Once a circuit is represented in phasor-impedance form, all analysis 

techniques practiced in resistive circuits (Chapter 11) apply once all elements 
are replaced by their frequency-domain equivalents. 

15. Phasor analysis can only be performed on single-frequency circuit. 
Otherwise, principles of superposition must be followed. 

16. The power factor is a measure of how well the load is converting the total 
power consumed into real work. 

17. The majority of electricity production is in the form of three-phase power. 
18. Three-phase sources or loads can be either Y- or ∆-connected. Both types of 

sources have three terminals, one for each phase; Y-connected sources have a 
neutral connection as well. 
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REVIEW QUESTIONS 
 

1. What is the difference between AC and DC electricity?  
2. Find 5 electrical appliances around the house and determine their voltage, 

current, and power requirements. 
3. Identify an AC electrical device in an automobile. 
4. How many degrees are the current and voltage out of phase with each other 

in a pure resistive circuit? 
5. How many degrees are the current and voltage out of phase with each other 

in a pure inductive circuit? 
6. To what is inductive reactance proportional? 
7. What two factors determine the capacitive reactance of a capacitor? 
8. What is power factor and reactive factor? 
9. What is meant by a leading and lagging power factor? 

10. What types of connections are possible for three-phase generators and loads? 
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PROBLEMS 
 

12-1 Express each of the following frequencies in Hertz. 
 

a. 40 cycles in 5.0 s. 
b. 120 cycles in 100 ms. 
c. 1000 revolutions on 0.5 s. 
d. 500 rotations in 2.0 min. 

 
12-2 Determine the value of the resistive load for a circuit having the phasor 

diagram shown in Figure 12-31. 
 
 
 
 
 
 
 
 
 
 
Figure 12-31 Phasor diagram of Problem 16-2. 
 

12-3 Determine the inductance of the inductor in henries whose phasor diagram is 
given in Figure 12-32. Assume the frequency as 2.4 kHz. 

 
 
 
 
 
 
 
 
 
 
 
Figure 12-32 Circuit for problem 12-3. 
 

12-4 Determine the capacitance of the capacitor in farads whose phasor diagram is 
given in Figure 12-33. Assume the frequency as 2 MHz. 

 
 
 
 
 

I = 1.0 A V = 120 V 

E = 100 V 

I = 800 mA
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Figure 12-33 Circuit for Problem 16-4. 
 
 

12-5 Construct the phasor diagram for the circuit shown in Figure 12-34. Find the 
value of E. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-34 Circuit for Problem 16-5. 
 

12-6 Consider a series circuit consisting of a 2.0-µF capacitor and a 500-Ω 
resistance. An AC source is powering the circuit with a current of 50∠0o 
mA.  Draw the circuit and find the source voltage. 

 
12-7 Repeat Problem 16-6. Find the voltage across the capacitor and resistor, then 

draw the voltage phasor diagram. 
 

12-8 A 100∠0o-V (200 kHz) is applied across a parallel circuit consisting of 5.2-
kΩ resistance and a 3.2-H inductor. Find the current through each branch 
component and find the source current. 

I = 20 mA 

E = 40 V 

VC = 120 V 

VR = 100 V 

VL = 150 V E 
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12-9 Repeat Problem 12-8. Replace the 5.2-kΩ resistance with a 3-µF capacitor. 
 

12-10 Determine the circuit components used in each of the four series circuits 
 

60 ∠ 30o 

60 ∠ -30o 
60 ∠ 0o 
60 ∠ -90o 

 

12-11 Determine the power dissipated in an AC circuit having a peak source 
voltage of EP = 120 V and an impedance of Z = 120∠110o. 

 
12-12 Determine the power factor for each of the following circuit conditions and 

state if it is leading or lagging 
 

a. R = 30 Ω; |Z| = 90 Ω 
b. Z = 13 – j6 Ω 
c. Z = 32∠-60o 
 

12-13 Write the instantaneous equations for voltage and current for the phasor 
diagram shown in Figure 12-35 at a frequency of 800 Hz. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-34 Circuit for Problem 12-35. 
 

12-14 Calculate the magnitude of the line current for the following loads: 
 
a. 10 kVA, unity power factor, 120 V, single-phase system. 
b. 100 kW, 0.9 lagging power factor, 480Y/260 V, three-phase system. 

 
 
 
 
 
 

I = 2 A 

E = 20 V 

θ = -50o 
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MULTIPLE CHOICE QUESTIONS 
 
• The peak value of a sine wave occurs 
 

a. Once each cycle at the positive maximum value. 
b. Once each cycle at the negative maximum value. 
c. Twice each cycle at the positive and negative maximum value. 
d. Twice each cycle at the positive maximum value. 

 
• One of the following is not a right format to express the sinusoid V cos ωt. 
 

a. V cos (2πft) 
b. V cos (2πt/T) 
c. V cos (t – T) 
d. V sin (2πft – 80o) 

 
• 36− can be expressed as the following imaginary number 
 

a. 6 
b. j6 
c. –6 
d. -j6 

 
• - 36− can be expressed as the following imaginary number 
 

e. 6 
f. j6 
g. –6 
h. -j6 

 
• Total opposition to current flow in a circuit  with resistance and reactance is 
 

a. Resistance 
b. Reactance 
c. Impedance 
d. Inductance 
 

• The imaginary part of an impedance is called: 
 

a. Resistance 
b. Reactance 
c. Admittance 
d. Conductance 
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• In a purely inductive circuit 
 

a. Current leads voltage by 90o. 
b. Voltage leads current by 90o. 
c. Voltage leads current by 180o. 
d. Current and voltage are in phase. 

 
• In a purely capacitive circuit 
 

a. Current leads voltage by 90o. 
b. Voltage leads current by 90o. 
c. Voltage leads current by 180o. 
d. Current and voltage are in phase. 

 
• In the circuit shown in Figure 12-36, what is the voltage across the 

capacitor? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12-36 Circuit for Problem 1. 
 

a. 16∠10o 
b. 12.7∠10o 
c. 16∠-80o 
d. 12.7∠100o 
e. None of the above. The answer is  

 
•                                 Is the ratio of true power to apparent power 
 

a. Reactive power 
b. Power ratio 
c. Power factor 
d. Phase angle 

16 sin (5000 t + 10o) 150 mH  0.001 µF 2.2 kΩ


