
S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 1

Preliminaries

• Programming languages and the

process of programming.

• Criteria for the design and evaluation

of programming languages

• Basic ideas of programming language

implementations.

What we will discuss:

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 2

Programming languages

and the process of programming

Points to discuss:

– Programming means more than

coding.

– Why study programming languages?

– Programming language paradigms

and applications.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 3

Programming means much more than

coding in a programming language

• Before coding begins, you analyze the problem,

design (or borrow) an algorithm, analyze the

cost of the solution.

• After all coding has been done, you have to

maintain the program.

• Programming languages are used to instruct

computers.

– What do we communicate to computers?

– How do computers talk back to us?

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 4

Programming means more than coding (2)

• How do programming languages differ

from natural languages? Would talking to

computers (instructing them) in human

languages be preferable?

• What makes someone a good

programmer?

• Should a good programmer know more

than one programming language?

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 5

Why should we study

programming languages?

• To have an increased capacity to express

ideas

– By learning new language constructs

– develop an appreciation for valuable language

features and constructs

– e.g., simulating Perl’s associative arrays in C

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 6

Why should we study

programming languages? (2)

• To have a choice of programming tools that

best match the task at hand:

– people are fluent in multiple languages

– identify subtasks and apply to each of them

the best language, using the full expressive

power of each language.

– the Microsoft.NET case

– libraries and community-developed extensions

could be a differentiating factor

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 7

Why should we study

programming languages? (3)

• To understand better the connection between

algorithms and programs.

– some programming languages are more

suitable for solving particular types of

programs

– to be able to look for general, language-

independent solutions

– To have a choice of programming tools that

best match the task at hand

– the Microsoft.NET example

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 8

Why should we study

programming languages? (4)

• To learn new programming languages easily

– familiarize with the building blocks of the

language

– able to recognize them later in other languages

– e.g., OOP concepts -> Ruby

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 9

Why should we study

programming languages? (5)

• To appreciate the workings of a computer

equipped with a programming language—by

knowing how languages are implemented.

– improve software efficiency by knowing

implementation issues

–understanding the impact of the different

choices (data structures, workflows) on the

efficiency of the implementation

– e.g., vectorized operations in MATLAB

preferred over repetitive constructs

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 10

Why should we study

programming languages? (6)

• To see how a language may influence the

discipline of computing and strengthen good

software engineering practice.

– Some programming languages could have

become very popular due to some appealing

features

– Yet their conceptual design was not well

understood by the software engineering

community

– e.g., ALGOL 60 vs. Fortran

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 11

The many classes

of programming languages:

programming language paradigms

• Every programming language supports a

slightly different or dramatically different

style of problem solving.

• The same computation can be

expressed in various languages, and

then run on the same computer.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 12

Programming languages

classified by paradigm

• Imperative: how do we solve a problem (what
steps does a solution have)?

– Object-oriented: what objects play roles in a
problem, what can they do, and how do they
interact to solve the problem?

• Logic-based: what do we do to solve a problem?
(The language decides how to do it.)

• Functional: what simple operations can be
applied to solving a problem, how are they
mutually related, and how can they be combined?

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 13

Classification by generality of use

• General-purpose programming languages

(most of the known languages are in this

category);

• Specialized programming languages

– database languages

– vector-processing languages

– mobile languages

– data management languages

– web languages

– and more

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 14

Classification by abstraction level

• Low-level (1GL-2GL) languages (machine
languages, assembly languages).

• High-level (3GL) languages (most of the
well-known languages belong to this
category).

• Very high-level (4GL) languages (Prolog is
sometimes listed in this category, and
some specialized languages).

• Beyond programming languages:

– Programming environments, software
development tools and workbenches.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 15

Classification by area of application

• Data processing (also known as "business
applications").

 Now made largely unnecessary, since we have
databases and other business-related
packages, such as spreadsheets, and special-
purpose software.

• Scientific computing (this includes engineering).

 Today this has been changed by new hardware
designs such as supercomputers or vector
computers, and specialized computing devices.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 16

Classification by area of application (2)

• Artificial intelligence and other applications not
in the computer science mainstream.

– This might include educational software and
games.

– New hardware (so far mostly simulated) such
as connection machines and neural
networks.

– e.g. Deep Learning (Theano, TensorFlow)

• "In-house" computing applications.

– compiler construction, systems
programming, GUI, API, and so on.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 17

Criteria for the design and evaluation

of programming languages

• Points to discuss:

– Readability

– Writability

– Reliability

– Cost

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 18

Criteria for the design and evaluation

of programming languages

• Readability: the ease with which programs can be

read and understood

• Writability: the ease with which a language can be

used to create programs

• Reliability: conformance to specifications (i.e.,

performs according to its specifications)

• Cost: the ultimate total cost

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 19

Criteria for the design and evaluation

of programming languages

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 20

Readability

• This is subjective, but very important.

• Language readability is essential because

of software engineering practices, and in

particular the needs of software evolution

and maintenance.

– 1970s the software lifecycle concept

– Abstraction—support for generality of

programs: procedural abstraction, data

abstraction.

– Absence of ambiguity (and absence of

too many coding choices, like having five

different loop constructs).

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 21

Readability (2)

• Simplicity:
– Number of basic constructs: keep it small

– Minimal feature multiplicity
count = count + 1

count += 1

count++

++count

– Minimal operator overloading
– could be misleading if users do not employ

it carefully

– e.g., “+” to sum all elements in an array

– “+” to sum the first two elements in an

array

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 22

Readability (2)
• Orthogonality: there are no restrictions on

combinations of primitive language concepts.

– Orthogonality follows from a symmetry of
relationships among primitives.

– e.g., a pointer to any primitive data type

– pointers to arrays too (type operators)

• More orthogonality = fewer special cases in
the language.

• This may be carried too far (as in Algol 68).

• Simplicity is partially dictated by orthogonality.

• Functional languages are good at both.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 23

Readability (3)

• Data types need to be adequately defined

– timeOut = 1

– timeOut = true

• Syntax design

– Special words

–while, class, for…

–ADD AX, BX vs. AR AX, BX

– Compound statements, e.g., { } vs. end if

– Using keywords as variable names (Fortran 95)

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 24

Writability

• Simplicity and orthogonality: once more, subjective.

– Pascal has always been considered simple,
Ada complicated

– Basic is very simple

– Prolog is conceptually simple, but may be difficult
to learn.

– is Java simple?

• Modularity and tools for modularization, support for
integrated programming environments.

• Writability should be considered in the context of the
target problem domain of a language.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 25

Writability (2)

• Expressivity of control and data structures.

– what is better (easier to read, maintain and so on):

– a longer program made of simple elements?

– a shorter program built out of complex,
specialized constructions?

– Examples of high expressive power: recursion,
built-in backtracking (as in Prolog), search in
database languages.

– Examples of low expressive power: instructions in
machine or assembly languages.

• Appearance: syntax, including comments.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 26

Reliability

• If a program performs according to its specifications
under all conditions

– avoiding errors as much as possible

– More safety for the programmer

– Type checking

–Strongly typed languages are often more reliable

– compile-time checking whenever possible

– Error and exception handling

– intercept runtime errors, take corrective measures and
then continue

– Aliasing: Accessing same memory locations via different
names

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 27

Cost

• Cost

– Development time (ease of programming, availability of
shared code).

– Efficiency of implementation: how easy it is to build a
language processor (Algol 68 is a known failure, Ada
almost a failure; Pascal, C, C++ and Java have been
notable successes).

– Translation time and the quality of object code.

– Maintenance

– Portability and standardization.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 28

In a nutshell…

• Designing a programming language requires the
reconciliation and satisfaction of multiple, often
conflictive, evaluation criteria

– Reliability vs. cost of execution

– Type checking increases run time

– Java designers traded execution efficiency for
reliability

– Writability vs. readability

– Writability vs. reliability

–Pointers in C++ did not make it to Java
• Choosing constructs and features for a programming

language requires many compromises and trade-offs.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 29

Implementing programming languages

• Points to discuss:

– Language processors,
virtual computers

– Models of implementation

– Compilation and execution

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 30

Language processors

• A processor for language L is any device
(hardware or software) that understands and
can execute programs in language L.

• Translation is the process of mapping a
program in the source language into the target
language while preserving the meaning or
function of the source program.

• The target language may be directly
executable on the computer or (more often)
may have to be translated again — into an
even lower-level language.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 31

Models of implementation

• Compilation:

– translate the program into an equivalent
form in a lower-layer virtual machine
language;

– execute later.

• Interpretation:

– divide the program up into small
(syntactically meaningful) fragments;

– in a loop, translate and execute each
fragment immediately.

– fetch/execute cycle

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 32

Models of implementation (2)

• Compilation:
– Very fast program execution

– directly using the native code of the target
machine

– opportunity to apply quite powerful optimizations
during the compilation stage

• Interpretation:
– easier to implement

– no need to run a compilation stage: can execute
code directly "on the fly“

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 33

Models of implementation (3)

• Pure compilation and pure interpretation are
seldom used. Normally, an implementation
employs a mix of these models.

– For example: compile Java into
bytecodes, then interpret bytecodes.

• We consider a language processor an
interpreter if it has "more interpretation than
compilation". We consider a language
processor a compiler if there is more of
compilation.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 34

Models of implementation (4)

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 35

Models of implementation (5)

• Some languages are better interpreted, for
example interactively used Prolog or Lisp.

• Some languages are better compiled, for
example, C++, Java.

• There can also be compiled Prolog or Lisp:

– an interpretive top-level loop handles user
interaction.

– Predicates of functions are compiled into an
optimized form which is then interpreted.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 36

Compilation and execution

Output Data Input Data

Target Program

Abstract Program

(Optimized)

Parse Tree
Symbol Table

Source program

Code

Optimization
Semantic

Analysis

Loader / Linker Code

Generation

Computer

Lexical Analysis

(scanning)

Syntactic Analysis

(parsing)

compiler

Token Sequence

Abstract Program

(Intermediate code)

Object Program

(Native Code)

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 37

Virtual computers

• A virtual computer is a software realization

(simulation) of a language processor.

• Programming directly for hardware is very

difficult — we usually "cover" hardware with

layers of software.

• A layer may be shared by several language

processors, each building its own virtual

computer on top of this layer.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 38

Examples of shared layers

• All language processors require

support for input/output.

• All language processors eventually

must do some calculations, that is,

use the CPU.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 39

Virtual computers

• We normally have hierarchies of virtual

machines:

– at the bottom, hardware;

– at the top, languages close to the

programmer's natural way of thinking.

• Each layer is expressed only in terms of

the previous layer—this ensures proper

abstraction.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 40

Language processors

and the operating system

• OS mediates between a language

processor and the macroinstruction /

microinstruction processors.

– e.g. an OS and a C compiler provide

a virtual C computer.

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 41

Virtual computers

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 42

A generic hierarchy

of virtual computers

Layer 0: hardware

Layer 1: microcode

Layer 2: machine language

Layer 3: system routines

Layer 4: machine-independent code

Layer 5: high-level language (or assembler)

Layer 6: application program

Layer 7: input data [this is also a language!]

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 43

Virtual computers — example

Layer 0: IBM Netvista with Intel Pentium 4, 2GHz

Layer 1: IBM Intel machine language

Layer 2: Windows NT 4.0

Layer 3: Java byte-code

Layer 4: JDK 1.2

Layer 5: a Java implementation of Prolog

Layer 6: a Prolog implementation of mySQL

Layer 7: a database schema defined and created

Layer 8: records for insertion into the database

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 44

August 2016

TIOBE Programming Languages Index

more details here

http://www.tiobe.com/tiobe-index/

S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 45

2016 IEEE Programming Languages Ranking

more details here

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

