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Preliminaries 

• Programming languages and the 

process of programming. 

• Criteria for the design and evaluation 

of programming languages 

• Basic ideas of programming language 

implementations. 

What we will discuss: 
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Programming languages 

and the process of programming 

Points to discuss: 

– Programming means more than 

coding. 

– Why study programming languages? 

– Programming language paradigms 

and applications. 
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Programming means much more than 

coding in a programming language 

• Before coding begins, you analyze the problem, 

design (or borrow) an algorithm, analyze the 

cost of the solution. 

• After all coding has been done, you have to 

maintain the program. 

• Programming languages are used to instruct 

computers. 

– What do we communicate to computers? 

– How do computers talk back to us? 
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Programming means more than coding (2) 

• How do programming languages differ 

from natural languages? Would talking to 

computers (instructing them) in human 

languages be preferable? 

• What makes someone a good 

programmer? 

• Should a good programmer know more 

than one programming language? 
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Why should we study 

programming languages? 

• To have an increased capacity to express 

ideas 

– By learning new language constructs 

– develop an appreciation for valuable language 

features and constructs 

– e.g., simulating Perl’s associative arrays in C 
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Why should we study 

programming languages? (2) 

• To have a choice of programming tools that 

best match the task at hand: 

– people are fluent in multiple languages 

– identify subtasks and apply to each of them 

the best language, using the full expressive 

power of each language. 

– the Microsoft.NET case 

– libraries and community-developed extensions 

could be a differentiating factor 
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Why should we study 

programming languages? (3) 

• To understand better the connection between 

algorithms and programs. 

– some programming languages are more 

suitable for solving particular types of 

programs 

– to be able to look for general, language-

independent solutions 

– To have a choice of programming tools that 

best match the task at hand 

– the Microsoft.NET example 
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Why should we study 

programming languages? (4) 

• To learn new programming languages easily 

– familiarize with the building blocks of the 

language 

– able to recognize them later in other languages 

– e.g., OOP concepts -> Ruby 
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Why should we study 

programming languages? (5) 

• To appreciate the workings of a computer 

equipped with a programming language—by 

knowing how languages are implemented. 

– improve software efficiency by knowing 

implementation issues 

–understanding the impact of the different 

choices (data structures, workflows) on the 

efficiency of the implementation 

– e.g., vectorized operations in MATLAB 

preferred over repetitive constructs 
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Why should we study 

programming languages? (6) 

• To see how a language may influence the 

discipline of computing and strengthen good 

software engineering practice. 

– Some programming languages could have 

become very popular due to some appealing 

features 

– Yet their conceptual design was not well 

understood by the software engineering 

community 

– e.g., ALGOL 60 vs. Fortran 
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The many classes 

of programming languages: 

programming language paradigms 

• Every programming language supports a 

slightly different or dramatically different 

style of problem solving. 

• The same computation can be 

expressed in various languages, and 

then run on the same computer. 
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Programming languages 

classified by paradigm 

• Imperative: how do we solve a problem (what 
steps does a solution have)? 

– Object-oriented: what objects play roles in a 
problem, what can they do, and how do they 
interact to solve the problem? 

• Logic-based: what do we do to solve a problem? 
(The language decides how to do it.) 

• Functional: what simple operations can be 
applied to solving a problem, how are they 
mutually related, and how can they be combined? 
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Classification by generality of use 

• General-purpose programming languages 

(most of the known languages are in this 

category); 

• Specialized programming languages 

– database languages 

– vector-processing languages 

– mobile languages 

– data management languages 

– web languages 

– and more 
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Classification by abstraction level 

• Low-level (1GL-2GL) languages (machine 
languages, assembly languages). 

• High-level (3GL) languages (most of the 
well-known languages belong to this 
category). 

• Very high-level (4GL) languages (Prolog is 
sometimes listed in this category, and 
some specialized languages). 

• Beyond programming languages: 

– Programming environments, software 
development tools and workbenches. 
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Classification by area of application 

• Data processing (also known as "business 
applications"). 

 Now made largely unnecessary, since we have 
databases and other business-related 
packages, such as spreadsheets, and special-
purpose software. 

• Scientific computing (this includes engineering). 

 Today this has been changed by new hardware 
designs such as supercomputers or vector 
computers, and specialized computing devices. 
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Classification by area of application (2) 

• Artificial intelligence and other applications not 
in the computer science mainstream. 

– This might include educational software and 
games. 

– New hardware (so far mostly simulated) such 
as connection machines and neural 
networks. 

– e.g. Deep Learning (Theano, TensorFlow) 

• "In-house" computing applications. 

– compiler construction, systems 
programming, GUI, API, and so on. 
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Criteria for the design and evaluation 

of programming languages 

• Points to discuss: 

– Readability 

– Writability 

– Reliability 

– Cost 
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Criteria for the design and evaluation 

of programming languages 

• Readability: the ease with which programs can be 

read and understood 

• Writability: the ease with which a language can be 

used to create programs 

• Reliability: conformance to specifications (i.e., 

performs according to its specifications)  

• Cost: the ultimate total cost 
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Criteria for the design and evaluation 

of programming languages 
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Readability 

• This is subjective, but very important. 

• Language readability is essential because 

of software engineering practices, and in 

particular the needs of software evolution 

and maintenance. 

– 1970s the software lifecycle concept 

– Abstraction—support for generality of 

programs: procedural abstraction, data 

abstraction. 

– Absence of ambiguity (and absence of 

too many coding choices, like having five 

different loop constructs). 



S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 21 

Readability (2) 

• Simplicity: 
– Number of basic constructs: keep it small 

– Minimal feature multiplicity 
count = count + 1 

count += 1 

count++ 

++count 

– Minimal operator overloading 
– could be misleading if users do not employ 

it carefully 

– e.g., “+” to sum all elements in an array 

– “+” to sum the first two elements in an 

array 
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Readability (2) 
• Orthogonality: there are no restrictions on 

combinations of primitive language concepts. 

– Orthogonality follows from a symmetry of 
relationships among primitives. 

– e.g., a pointer to any primitive data type 

– pointers to arrays too (type operators) 

• More orthogonality = fewer special cases in 
the language. 

• This may be carried too far (as in Algol 68). 

• Simplicity is partially dictated by orthogonality. 

• Functional languages are good at both. 
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Readability (3) 

• Data types need to be adequately defined 

– timeOut = 1 

– timeOut = true 

• Syntax design 

– Special words  

–while, class, for… 

–ADD AX, BX vs. AR AX, BX 

– Compound statements, e.g., { } vs. end if 

– Using keywords as variable names (Fortran 95) 
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Writability 

• Simplicity and orthogonality: once more, subjective. 

– Pascal has always been considered simple,  
Ada complicated 

– Basic is very simple 

– Prolog is conceptually simple, but may be difficult 
to learn. 

– is Java simple? 

• Modularity and tools for modularization, support for 
integrated programming environments. 

• Writability should be considered in the context of the 
target problem domain of a language. 
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Writability (2) 

• Expressivity of control and data structures. 

– what is better (easier to read, maintain and so on): 

– a longer program made of simple elements? 

– a shorter program built out of complex, 
specialized constructions? 

– Examples of high expressive power: recursion, 
built-in backtracking (as in Prolog), search in 
database languages. 

– Examples of low expressive power: instructions in 
machine or assembly languages. 

• Appearance: syntax, including comments. 
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Reliability 

• If a program performs according to its specifications 
under all conditions 

– avoiding errors as much as possible 

– More safety for the programmer 

– Type checking 

–Strongly typed languages are often more reliable 

– compile-time checking whenever possible 

– Error and exception handling 

– intercept runtime errors, take corrective measures and 
then continue 

– Aliasing: Accessing same memory locations via different 
names 
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Cost 

• Cost 

– Development time (ease of programming, availability of 
shared code). 

– Efficiency of implementation: how easy it is to build a 
language processor (Algol 68 is a known failure, Ada 
almost a failure; Pascal, C, C++ and Java have been 
notable successes). 

– Translation time and the quality of object code. 

– Maintenance 

– Portability and standardization. 
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In a nutshell… 

• Designing a programming language requires the 
reconciliation and satisfaction of multiple, often 
conflictive, evaluation criteria 

– Reliability vs. cost of execution 

– Type checking increases run time 

– Java designers traded execution efficiency for 
reliability 

– Writability vs. readability 

– Writability vs. reliability 

–Pointers in C++ did not make it to Java 
• Choosing constructs and features for a programming 

language requires many compromises and trade-offs. 
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Implementing programming languages 

• Points to discuss: 

– Language processors, 
virtual computers 

– Models of implementation 

– Compilation and execution 
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Language processors 

• A processor for language L is any device 
(hardware or software) that understands and 
can execute programs in language L. 

• Translation is the process of mapping a 
program in the source language into the target 
language while preserving the meaning or 
function of the source program. 

• The target language may be directly 
executable on the computer or (more often) 
may have to be translated again — into an 
even lower-level language. 



S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 31 

Models of implementation 

• Compilation: 

– translate the program into an equivalent 
form in a lower-layer virtual machine 
language; 

– execute later. 

• Interpretation: 

– divide the program up into small 
(syntactically meaningful) fragments; 

– in a loop, translate and execute each 
fragment immediately. 

–  fetch/execute cycle 
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Models of implementation (2) 

• Compilation: 
– Very fast program execution 

– directly using the native code of the target 
machine 

– opportunity to apply quite powerful optimizations 
during the compilation stage 

• Interpretation: 
– easier to implement 

– no need to run a compilation stage: can execute 
code directly "on the fly“ 
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Models of implementation (3) 

• Pure compilation and pure interpretation are 
seldom used. Normally, an implementation 
employs a mix of these models. 

– For example: compile Java into 
bytecodes, then interpret bytecodes. 

• We consider a language processor an 
interpreter if it has "more interpretation than 
compilation". We consider a language 
processor a compiler if there is more of 
compilation. 
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Models of implementation (4) 
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Models of implementation (5) 

• Some languages are better interpreted, for 
example interactively used Prolog or Lisp. 

• Some languages are better compiled, for 
example, C++, Java. 

• There can also be compiled Prolog or Lisp: 

– an interpretive top-level loop handles user 
interaction. 

– Predicates of functions are compiled into an 
optimized form which is then interpreted. 
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Compilation and execution 

Output Data Input Data 

Target Program 

Abstract Program 

(Optimized) 

Parse Tree 
Symbol Table 

Source program 

Code 

Optimization 
Semantic 

Analysis 

Loader / Linker Code 

Generation 

Computer 

Lexical Analysis 

(scanning) 

Syntactic Analysis 

(parsing) 

compiler 

Token Sequence 

Abstract Program 

(Intermediate code) 

Object Program 

(Native Code) 
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Virtual computers 

• A virtual computer is a software realization 

(simulation) of a language processor. 

• Programming directly for hardware is very 

difficult — we usually "cover" hardware with 

layers of software. 

• A layer may be shared by several language 

processors, each building its own virtual 

computer on top of this layer. 
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Examples of shared layers 

• All language processors require 

support for input/output. 

• All language processors eventually 

must do some calculations, that is, 

use the CPU. 
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Virtual computers 

• We normally have hierarchies of virtual 

machines: 

– at the bottom, hardware; 

– at the top, languages close to the 

programmer's natural way of thinking. 

• Each layer is expressed only in terms of 

the previous layer—this ensures proper 

abstraction. 
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Language processors  

and the operating system 

• OS mediates between a language 

processor and the macroinstruction / 

microinstruction processors. 

– e.g. an OS and a C compiler provide 

a virtual C computer. 
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Virtual computers 
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A generic hierarchy 

of virtual computers 

Layer 0: hardware 

Layer 1: microcode 

Layer 2: machine language 

Layer 3: system routines 

Layer 4: machine-independent code 

Layer 5: high-level language (or assembler) 

Layer 6: application program 

Layer 7: input data [this is also a language!] 



S. Spakowicz, N. Japkowicz, R. Falcon CSI 3120, Preliminaries, page 43 

Virtual computers — example 

Layer 0: IBM Netvista with Intel Pentium 4, 2GHz 

Layer 1: IBM Intel machine language 

Layer 2: Windows NT 4.0 

Layer 3: Java byte-code 

Layer 4: JDK 1.2 

Layer 5: a Java implementation of Prolog 

Layer 6: a Prolog implementation of mySQL 

Layer 7: a database schema defined and created 

Layer 8: records for insertion into the database 
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August 2016  

TIOBE Programming Languages Index 

more details here 

http://www.tiobe.com/tiobe-index/
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2016 IEEE Programming Languages Ranking 

more details here 

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

