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Part 1

Differential Equations and Laplace

Transforms





CHAPTER 1

First-Order Ordinary Differential Equations

1.1. Fundamental Concepts

(a) A differential equation is an equation involving an unkonwn function y,
derivatives of it and functions of the independent variable.

Here are three ordinary differential equations, where ′ :=
d

dx
:

(1) y′ = cosx,
(2) y′′ + 4y = 0,
(3) x2y′′′y′ + 2 exy′′ = (x2 + 2)y2.

Here is a partial differential equation:

∂2u

∂x2
+

∂2u

∂y2
= 0.

(b) The order of a differential equation is equal to the highest-order derivative
that appears in it.

The above equations (1), (2) and (3) are of order 1, 2 and 3, respectively.

(c) An explicit solution of a differential equation with independent variable
x on ]a, b[ is a function y = g(x) of x such that the differential equation becomes
an identity in x on ]a, b[ when g(x), g′(x), etc. are substituted for y, y′, etc. in
the differential equation. The solution y = g(x) describes a curve, or trajectory,
in the xy-plane.

We see that the function

y(x) = e2x

is an explicit solution of the differential equation

dy

dx
= 2y.

In fact, we have

L.H.S. := y′(x) = 2 e2x,

R.H.S. := 2y(x) = 2 e2x.

Hence

L.H.S. = R.H.S., for all x.

We thus have an identity in x on ] −∞,∞[. �

3



4 1. FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS

(d) An implicit solution of a differential equation is a curve which is defined
by an equation of the form G(x, y) = c where c is an arbitrary constant.

Note that G(x, y) represents a surface, a 2-dimensional object in 3-dimensional
space where x and y are independent variables. By setting G(x, y) = c, a rela-
tionship is created between x and y.

We remark that an implicit solution always contains an equal sign, “=”,
followed by a constant, otherwise z = G(x, y) represents a surface and not a
curve.

We see that the curve in the xy-plane,

x2 + y2 − 1 = 0, y > 0,

is an implicit solution of the differential equation

yy′ = −x, on − 1 < x < 1.

In fact, letting y be a function of x and differentiating the equation of the curve
with respect to x,

d

dx
(x2 + y2 − 1) =

d

dx
(0) = 0,

we obtain

2x + 2yy′ = 0 or yy′ = −x. �

(e) The general solution of a differential equation of order n contains n arbi-
trary constants.

The one-parameter family of functions

y(x) = sin x + c

is the general solution of the first-order differential equation

y′(x) = cosx.

This infinite family of curves all have the same slope, and hence all members
of this familiy are solutions of the differential equation. The general solution is
written y(x) = sin x + c (with the arbitrary constant) to represent all of the
possible solutions.

Putting c = 1, we have the unique solution,

y(x) = sinx + 1,

which goes through the point (0, 1) of R2. Given an arbitrary point (x0, y0) of
the plane, there is one and only one curve of the family which goes through that
point. (See Fig. 1.1(a)).

Similarly, we see that the one-parameter family of functions

y(x) = c ex

is the general solution of the differential equation

y′ = y.

Setting c = −1, we have the unique solution,

y(x) = −ex,
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Figure 1.1. (a) Two one-parameter families of curves: (a) y =
sin x + c; (b) y(x) = c exp(x).

which goes through the point (0,−1) of R2. Given an arbitrary point (x0, y0) of
the plane, there is one and only one curve of the family which goes through that
point. (See Fig. 1.1(b)).

1.2. Separable Equations

A differential equation is called separable if it can be written in the form

g(y)
dy

dx
= f(x). (1.1)

We rewrite the equation using the differentials dy and dx and separate it by
grouping on the left-hand side all terms containing y and on the right-hand side
all terms containing x:

g(y) dy = f(x) dx. (1.2)

The solution of a separated equation is obtained by taking the indefinite integral
(primitive or antiderivative) of both sides and adding an arbitrary constant:

∫
g(y) dy =

∫
f(x) dx + c, (1.3)

that is

G(y) = F (x) + c.

Only one constant is needed and it is placed on the right-hand side (i.e. on the
side with the independent variable). The two forms of the implicit solution,

G(y) = F (x) + c, or K(x, y) = −F (x) + G(y) = c,

define y as a function of x or x as a function of y.
Letting y = y(x) be a function of x, we verify that (1.3) is a solution of (1.1):

d

dx
(LHS) =

d

dx
G (y(x)) = G′ (y(x)) y′(x) = g(y)y′,

d

dx
(RHS) =

d

dx
[F (x) + c] = F ′(x) = f(x). �

Example 1.1. Solve y′ = 1 + y2.
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Figure 1.2. Three bell functions.

Solution. Since the differential equation is separable, we have
∫

dy

1 + y2
=

∫
dx + c =⇒ arctany = x + c.

Thus

y(x) = tan(x + c)

is a general solution, since it contains an arbitrary constant. �

When it is possible to solve for an explicit soltuion (i.e. solving for y), it
should be done, as explicit functions are more convenient to work with.

Example 1.2. Solve the initial value problem y′ = −2xy, with y(0) = y0.

Solution. Since the differential equation is separable, the general solution
is ∫

dy

y
= −

∫
2xdx + c1 =⇒ ln |y| = −x2 + c1.

Taking the exponential of the solution, we have

y(x) = e−x2+c1 = ec1 e−x2

which we rewrite in the form

y(x) = c e−x2

.

Note that, since c1 is an arbitrary constant, ec1 is also an arbitrary constant,
which can be denoted by c. We remark that the additive constant c1 has become
a multiplicative constant after exponentiation.

Figure 1.2 shows three bell functions which are members of the one-parameter
family of the general solution.

Finally, the solution which satisfies the initial condition, is

y(x) = y0 e−x2

.

This solution is unique (for each y0). �

Example 1.3. According to Newton’s Law of Cooling, the rate of change of
the temperature T (t) of a body in a surrounding medium of temperature T0 is
proportional to the temperature difference T (t) − T0,

dT

dt
= −k(T − T0).



1.3. EQUATIONS WITH HOMOGENEOUS COEFFICIENTS 7

Let a copper ball be immersed in a large basin containing a liquid whose constant
temperature is 30 degrees. The initial temperature of the ball is 100 degrees. If,
after 3 min, the ball’s temperature is 70 degrees, when will it be 31 degrees?

Solution. Since the differential equation is separable:

dT

dt
= −k(T − 30) =⇒ dT

T − 30
= −k dt,

then

ln |T − 30| = −kt + c1 (additive constant)

T − 30 = ec1−kt = c e−kt (multiplicative constant)

T (t) = 30 + c e−kt.

At t = 0,

100 = 30 + c =⇒ c = 70.

At t = 3,

70 = 30 + 70 e−3k =⇒ e−3k =
4

7
.

When T (t) = 31,

31 = 70
(
e−3k

)t/3
+ 30 =⇒

(
e−3k

)t/3
=

1

70
.

Taking the logarithm of both sides, we have

t

3
ln

(
4

7

)
= ln

(
1

70

)
.

Hence

t = 3
ln(1/70)

ln(4/7)
= 3 × −4.25

−0.56
= 22.78 min �

1.3. Equations with Homogeneous Coefficients

Definition 1.1. A function M(x, y) is said to be homogeneous of degree s
simultaneously in x and y if

M(λx, λy) = λsM(x, y), for all x, y, λ. (1.4)

Differential equations with homogeneous coefficients of the same degree are
separable as follows.

Theorem 1.1. Consider a differential equation with homogeneous coefficients
of degree s,

M(x, y)dx + N(x, y)dy = 0. (1.5)

Then either substitution y = xu(x) or x = yu(y) makes (1.5) separable.

Proof. Letting

y = xu, dy = xdu + u dx,

and substituting in (1.5), we have

M(x, xu) dx + N(x, xu)[xdu + u dx] = 0,

xsM(1, u) dx + xsN(1, u)[xdu + u dx] = 0,

[M(1, u) + uN(1, u)] dx + xN(1, u) du = 0.
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This equation separates,

N(1, u)

M(1, u) + uN(1, u)
du = −dx

x
.

Note that the left-hand side is a function of u only.
The general solution of this equation is

∫
N(1, u)

M(1, u) + uN(1, u)
du = − ln |x| + c. �

Example 1.4. Solve 2xyy′ − y2 + x2 = 0.

Solution. We rewrite the equation in differential form:

(x2 − y2) dx + 2xy dy = 0.

Since the coefficients are homogeneous functions of degree 2 in x and y, let

x = yu, dx = y du + u dy.

Substituting these expressions in the last equation we obtain

(y2u2 − y2)[y du + u dy] + 2y2u dy = 0,

(u2 − 1)[y du + u dy] + 2u dy = 0,

(u2 − 1)y du + [(u2 − 1)u + 2u] dy = 0,

u2 − 1

u(u2 + 1)
du = −dy

y
.

Since integrating the left-hand side of this equation seems difficult (but can be
done by Partial Fractions), let us restart with the substitution

y = xu, dy = xdu + u dx.

Then,

(x2 − x2u2) dx + 2x2u[xdu + u dx] = 0,

[(1 − u2) + 2u2] dx + 2uxdu = 0,
∫

2u

1 + u2
du = −

∫
dx

x
+ c1.

Integrating this last equation is easy:

ln(u2 + 1) = − ln |x| + c1,

ln |x(u2 + 1)| = c1,

x

[(y

x

)2

+ 1

]
= ec1 = c.

The general solution is

y2 + x2 = cx.

Putting c = 2r in this formula and adding r2 to both sides, we have

(x − r)2 + y2 = r2.

The general solution describes a one-parameter family of circles with centre (r, 0)
and radius |r| (see Fig. 1.3).
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x

y

r1 r2

r3

Figure 1.3. One-parameter family of circles with centre (r, 0).

Since Theorem 1.1 states that both substitutions will make the differential
equation separable, we can try one substitution and if it leads to difficult integra-
tions, we can then try the other to see if the integrations are simpler. �

Example 1.5. Solve the differential equation

y′ = g
( y

x

)
.

Solution. Rewriting this equation in differential form,

g
(y

x

)
dx − dy = 0,

we see that this is an equation with homogeneous coefficients of degree zero in x
and y. With the substitution

y = xu, dy = xdu + u dx,

the last equation separates:

g(u) dx − xdu − u dx = 0,

x du = [g(u) − u] dx,

du

g(u) − u
=

dx

x
.

It can therefore be integrated directly,
∫

du

g(u) − u
=

∫
dx

x
+ c.

Finally one substitutes u = y/x in the solution after the integration. �

1.4. Exact Equations

Definition 1.2. The first-order differential equation

M(x, y) dx + N(x, y) dy = 0 (1.6)

is called exact if its left-hand side is the total, or exact, differential

du =
∂u

∂x
dx +

∂u

∂y
dy (1.7)

of some function u(x, y).
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If equation (1.6) is exact, then

du = 0

and by integration we see that its general solution is

u(x, y) = c. (1.8)

Comparing the expressions (1.6) and (1.7), we see that

∂u

∂x
= M,

∂u

∂y
= N. (1.9)

The following important theorem gives a necessary and sufficient condition
for equation (1.6) to be exact.

Theorem 1.2. Let M(x, y) and N(x, y) be continuous functions with contin-
uous first-order partial derivatives on a connected and simply connected (that is,
of one single piece and without holes) set Ω ∈ R2. Then the differential equation

M(x, y) dx + N(x, y) dy = 0 (1.10)

is exact if and only if

∂M

∂y
=

∂N

∂x
, for all (x, y) ∈ Ω. (1.11)

Proof. Necessity: Suppose (1.10) is exact. Then

∂u

∂x
= M,

∂u

∂y
= N.

Therefore,
∂M

∂y
=

∂2u

∂y∂x
=

∂2u

∂x∂y
=

∂N

∂x
,

where exchanging the order of differentiation with respect to x and y is allowed
by the continuity of the first and last terms.

Sufficiency: Suppose that (1.11) holds. We construct a function F (x, y)
such that

dF (x, y) = M(x, y) dx + N(x, y) dy.

Let the function ϕ(x, y) ∈ C2(Ω) be such that

∂ϕ

∂x
= M.

For example, we may take

ϕ(x, y) =

∫
M(x, y) dx, y fixed.

Then,

∂2ϕ

∂y∂x
=

∂M

∂y

=
∂N

∂x
, by (1.11).

Since
∂2ϕ

∂y∂x
=

∂2ϕ

∂x∂y
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by the continuity of both sides, we have

∂2ϕ

∂x∂y
=

∂N

∂x
.

Integrating with respect to x, we obtain

∂ϕ

∂y
=

∫
∂2ϕ

∂x∂y
dx =

∫
∂N

∂x
dx, y fixed,

= N(x, y) + B′(y).

Taking

F (x, y) = ϕ(x, y) − B(y),

we have

dF =
∂ϕ

∂x
dx +

∂ϕ

∂y
dy − B′(y) dy

= M dx + N dy + B′(y) dy − B′(y) dy

= M dx + N dy. �

A practical method for solving exact differential equations will be illus-
trated by means of examples.

Example 1.6. Find the general solution of

3x(xy − 2) dx + (x3 + 2y) dy = 0,

and the solution that satisfies the initial condition y(1) = −1. Plot that solution
for 1 ≤ x ≤ 4.

Solution. (a) Analytic solution by the practical method.— We verify
that the equation is exact:

M = 3x2y − 6x, N = x3 + 2y,

∂M

∂y
= 3x2,

∂N

∂x
= 3x2,

∂M

∂y
=

∂N

∂x
.

Indeed, it is exact and hence can be integrated. From

∂u

∂x
= M,

we have

u(x, y) =

∫
M(x, y) dx + T (y), y fixed,

=

∫
(3x2y − 6x) dx + T (y)

= x3y − 3x2 + T (y),

and from
∂u

∂y
= N,
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we have

∂u

∂y
=

∂

∂y

(
x3y − 3x2 + T (y)

)

= x3 + T ′(y) = N

= x3 + 2y.

Thus

T ′(y) = 2y.

It is essential that T ′(y) be a function of y only; otherwise there is
an error somewhere: either the equation is not exact or there is a
computational mistake.

We integrate T ′(y):

T (y) = y2.

An integration constant is not needed at this stage since such a constant will
appear in u(x, y) = c. Hence, we have the surface

u(x, y) = x3y − 3x2 + y2.

Since du = 0, then u(x, y) = c, and the (implicit) general solution, containing an
arbitrary constant and an equal sign “=” (that is, a curve), is

x3y − 3x2 + y2 = c.

Using the initial condition y(1) = −1 to determine the value of the constant c,
we put x = 1 and y = −1 in the general solution and get

c = −3.

Hence the implicit solution which satisfies the initial condition is

x3y − 3x2 + y2 = −3.

(b) Solution by symbolic Matlab.— The general solution is:

>> y = dsolve(’(x^3+2*y)*Dy=-3*x*(x*y-2)’,’x’)

y =

[ -1/2*x^3+1/2*(x^6+12*x^2+4*C1)^(1/2)]

[ -1/2*x^3-1/2*(x^6+12*x^2+4*C1)^(1/2)]

The solution to the initial value problem is the lower branch with C1 = −3, as is
seen by inserting the initial condition ’y(1)=-1’, in the preceding command:

>> y = dsolve(’(x^3+2*y)*Dy=-3*x*(x*y-2)’,’y(1)=-1’,’x’)

y = -1/2*x^3-1/2*(x^6+12*x^2-12)^(1/2)

(c) Solution to I.V.P. by numeric Matlab.— We use the initial condition
y(1) = −1. The M-file exp1_6.m is

function yprime = exp1_6(x,y); %MAT 2384, Exp 1.6.

yprime = -3*x*(x*y-2)/(x^3+2*y);

The call to the ode23 solver and the plot command are:
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Figure 1.4. Graph of solution to Example 1.6.

>> xspan = [1 4]; % solution for x=1 to x=4

>> y0 = -1; % initial condition

>> [x,y] = ode23(’exp1_6’,xspan,y0);%Matlab 2007 format using xspan

>> subplot(2,2,1); plot(x,y);

>> title(’Plot of solution to initial value problem for Example 1.6’);

>> xlabel(’x’); ylabel(’y(x)’);

>> print Fig.exp1.6

�

Example 1.7. Find the general solution of

(2x3 − xy2 − 2y + 3) dx − (x2y + 2x) dy = 0

and the solution that satisfies the initial condition y(1) = −1. Plot that solution
for 1 ≤ x ≤ 4.

Solution. (a) Analytic solution by the practical method.— First,
note the negative sign in N(x, y) = −(x2y + 2x). Since the left-hand side of the
differential equation in standard form is M dx + N dy, the negative sign is part
of the function N(x, y). We verify that the equation is exact:

∂M

∂y
= −2xy − 2,

∂N

∂x
= −2xy − 2,

∂M

∂y
=

∂N

∂x
.

Hence the equation is exact and can be integrated. From

∂u

∂y
= N,
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we have

u(x, y) =

∫
N(x, y) dy + T (x), x fixed,

=

∫
(−x2y − 2x) dy + T (x)

= −x2y2

2
− 2xy + T (x),

and from
∂u

∂x
= M,

we have
∂u

∂x
= −xy2 − 2y + T ′(x) = M

= 2x3 − xy2 − 2y + 3.

Thus
T ′(x) = 2x3 + 3.

It is essential that T ′(x) be a function of x only; otherwise there is
an error somewhere: either the equation is not exact or there is a
computational mistake.

We integrate T ′(x):

T (x) =
x4

2
+ 3x.

An integration constant is not needed at this stage since such a constant will
appear in u(x, y) = c. Hence, we have the surface

u(x, y) = −x2y2

2
− 2xy +

x4

2
+ 3x.

Since du = 0, then u(x, y) = c, and the (implicit) general solution, containing an
arbitrary constant and an equal sign “=” (that is, a curve), is

x4 − x2y2 − 4xy + 6x = c.

Putting x = 1 and y = −1, we have

c = 10.

Hence the implicit solution which satisfies the initial condition is

x4 − x2y2 − 4xy + 6x = 10.

(b) Solution by symbolic Matlab.— The general solution is:

>> y = dsolve(’(x^2*y+2*x)*Dy=(2*x^3-x*y^2-2*y+3)’,’x’)

y =

[ (-2-(4+6*x+x^4+2*C1)^(1/2))/x]

[ (-2+(4+6*x+x^4+2*C1)^(1/2))/x]

The solution to the initial value problem is the lower branch with C1 = −5,

>> y = dsolve(’(x^2*y+2*x)*Dy=(2*x^3-x*y^2-2*y+3)’,’y(1)=-1’,’x’)

y =(-2+(-6+6*x+x^4)^(1/2))/x

(c) Solution to I.V.P. by numeric Matlab.— We use the initial condition
y(1) = −1. The M-file exp1_7.m is
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Plot of solution to initial value problem for Example 1.7
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y(
x)

Figure 1.5. Graph of solution to Example 1.7.

function yprime = exp1_7(x,y); %MAT ‘2384, Exp 1.7.

yprime = (2*x^3-x*y^2-2*y+3)/(x^2*y+2*x);

The call to the ode23 solver and the plot command:

>> xspan = [1 4]; % solution for x=1 to x=4

>> y0 = -1; % initial condition

>> [x,y] = ode23(’exp1_7’,xspan,y0);

>> subplot(2,2,1); plot(x,y);

>> print Fig.exp1.7

�

The following convenient notation for partial derivatives will often be used:

ux(x, y) :=
∂u

∂x
, uy(x, y) :=

∂u

∂y
.

The following example shows that the practical method of solution breaks
down if the equation is not exact.

Example 1.8. Solve

xdy − y dx = 0.

Solution. We rewrite the equation in standard form:

y dx − xdy = 0.

The equation is not exact since

My = 1 6= −1 = Nx.

Anyway, let us try to solve the inexact equation by the proposed method:

u(x, y) =

∫
ux dx =

∫
M dx =

∫
y dx = yx + T (y),

uy(x, y) = x + T ′(y) = N = −x.

Thus,
T ′(y) = −2x.
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But this is impossible since T (y) must be a function of y only. �

Example 1.9. Consider the differential equation

(ax + by) dx + (kx + ly) dy = 0.

Choose a, b, k, l so that the equation is exact.

Solution.

My = b, Nx = k =⇒ k = b.

u(x, y) =

∫
ux(x, y) dx =

∫
M dx =

∫
(ax + by) dx =

ax2

2
+ bxy + T (y),

uy(x, y) = bx + T ′(y) = N = bx + ly =⇒ T ′(y) = ly =⇒ T (y) =
ly2

2
.

Thus,

u(x, y) =
ax2

2
+ bxy +

ly2

2
, a, b, l arbitrary.

The general solution is

ax2

2
+ bxy +

ly2

2
= c1 or ax2 + 2bxy + ly2 = c. �

1.5. Integrating Factors

If the differential equation

M(x, y) dx + N(x, y) dy = 0 (1.12)

is not exact, it can be made exact by multiplication by an integrating factor
µ(x, y),

µ(x, y)M(x, y) dx + µ(x, y)N(x, y) dy = 0. (1.13)

Rewriting this equation in the form

M̃(x, y) dx + Ñ(x, y) dy = 0,

we have

M̃y = µyM + µMy, Ñx = µxN + µNx.

and equation (1.13) will be exact if

µyM + µMy = µxN + µNx. (1.14)

In general, it is difficult to solve the partial differential equation (1.14).
We consider two particular cases, where µ is a function of one variable, that

is, µ = µ(x) or µ = µ(y).
Case 1. If µ = µ(x) is a function of x only, then µx = µ′(x) and µy = 0.

Thus, (1.14) reduces to an ordinary differential equation:

Nµ′(x) = µ(My − Nx). (1.15)

If the left-hand side of the following expression

My − Nx

N
= f(x) (1.16)

is a function of x only, then (1.15) is separable:

dµ

µ
=

My − Nx

N
dx = f(x) dx.
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Integrating this separated equation, we obtain the integration factor

µ(x) = e
R

f(x) dx. (1.17)

Case 2. Similarly, if µ = µ(y) is a function of y only, then µx = 0 and
µy = µ′(y). Thus, (1.14) reduces to an ordinary differential equation:

Mµ′(y) = −µ(My − Nx). (1.18)

If the left-hand side of the following expression

My − Nx

M
= g(y) (1.19)

is a function of y only, then (1.18) is separable:

dµ

µ
= −My − Nx

M
dy = −g(y) dy.

Integrating this separated equation, we obtain the integration factor

µ(y) = e−
R

g(y) dy. (1.20)

One has to notice the presence of the negative sign in (1.20) and its absence in
(1.17).

Example 1.10. Find the general solution of the differential equation

(4xy + 3y2 − x) dx + x(x + 2y) dy = 0.

Solution. (a) The analytic solution.— This equation is not exact since

My = 4x + 6y, Nx = 2x + 2y

and

My 6= Nx.

However, since

My − Nx

N
=

2x + 4y

x(x + 2y)
=

2(x + 2y)

x(x + 2y)
=

2

x
= f(x)

is a function of x only, we have the integrating factor

µ(x) = e
R

(2/x) dx = e2 lnx = elnx2

= x2.

Multiplying the differential equation by x2 produces the exact equation

x2(4xy + 3y2 − x) dx + x3(x + 2y) dy = 0.

The exactness of the differential equation should be verified at this point to ensure
that the integrating factor is correct (otherwise any solution found cannot be
correct).

M̃(x, y) = 4x3y + 3x2y2 − x3, Ñ(x, y) = x4 + 2x3y,

M̃y = 4x3 + 6x2y, Ñx = 4x3 + 6x2y.

Thus, M̃y = Ñx and the equation is certainly exact.
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This equation is solved by the practical method:

u(x, y) =

∫
(x4 + 2x3y) dy + T (x)

= x4y + x3y2 + T (x),

ux(x, y) = 4x3y + 3x2y2 + T ′(x) = µM

= 4x3y + 3x2y2 − x3.

Thus,

T ′(x) = −x3 =⇒ T (x) = −x4

4
.

No constant of integration is needed here; it will come later. Hence,

u(x, y) = x4y + x3y2 − x4

4

and the general solution is

x4y + x3y2 − x4

4
= c1 or 4x4y + 4x3y2 − x4 = c.

(b) The Matlab symbolic solution.— Matlab does not find the general solu-
tion of the nonexact equation:

>> y = dsolve(’x*(x+2*y)*Dy=-(4*x+3*y^2-x)’,’x’)

Warning: Explicit solution could not be found.

> In HD2:Matlab5.1:Toolbox:symbolic:dsolve.m at line 200

y = [ empty sym ]

but it solves the exact equation

>> y = dsolve(’x^2*(x^3+2*y)*Dy=-3*x^3*(x*y-2)’,’x’)

y =

[ -1/2*x^3-1/2*(x^6+12*x^2+4*C1)^(1/2)]

[ -1/2*x^3+1/2*(x^6+12*x^2+4*C1)^(1/2)]

�

Example 1.11. Find the general solution of the differential equation

y(x + y + 1) dx + x(x + 3y + 2) dy = 0.

Solution. (a) The analytic solution.— This equation is not exact since

My = x + 2y + 1 6= Nx = 2x + 3y + 2.

Since
My − Nx

N
=

−x − y − 1

x(x + 3y + 2)

is not a function of x only, we try

My − Nx

M
=

−(x + y + 1)

y(x + y + 1)
= −1

y
= g(y),

which is a function of y only. The integrating factor is

µ(y) = e−
R

g(y) dy = e
R

(1/y) dy = eln y = y.
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Multiplying the differential equation by y produces the exact equation, which
should be verified before continuing,

(xy2 + y3 + y2) dx + (x2y + 3xy2 + 2xy) dy = 0.

This equation is solved by the practical method:

u(x, y) =

∫
(xy2 + y3 + y2) dx + T (y)

=
x2y2

2
+ xy3 + xy2 + T (y),

uy = x2y + 3xy2 + 2xy + T ′(y) = µN

= x2y + 3xy2 + 2xy.

Thus,
T ′(y) = 0 =⇒ T (y) = 0

since no constant of integration is needed here. Hence,

u(x, y) =
x2y2

2
+ xy3 + xy2

and the general solution is

x2y2

2
+ xy3 + xy2 = c1 or x2y2 + 2xy3 + 2xy2 = c.

(b) The Matlab symbolic solution.— The symbolic Matlab command dsolve

produces a very intricate general solution for both the nonexact and the exact
equations. This solution does not simplify with the commands simplify and
simple.

We therefore repeat the practical method having symbolic Matlab do the
simple algebraic and calculus manipulations.

>> clear

>> syms M N x y u

>> M = y*(x+y+1); N = x*(x+3*y+2);

>> test = diff(M,’y’) - diff(N,’x’) % test for exactness

test = -x-y-1 % equation is not exact

>> syms mu g

>> g = (diff(M,’y’) - diff(N,’x’))/M

g = (-x-y-1)/y/(x+y+1)

>> g = simple(g)

g = -1/y % a function of y only

>> mu = exp(-int(g,’y’)) % integrating factor

mu = y

>> syms MM NN

>> MM = mu*M; NN = mu*N; % multiply equation by integrating factor

>> u = int(MM,’x’) % solution u; arbitrary T(y) not included yet

u = y^2*(1/2*x^2+y*x+x)

>> syms DT

>> DT = simple(diff(u,’y’) - NN)

DT = 0 % T’(y) = 0 implies T(y) = 0.

>> u = u

u = y^2*(1/2*x^2+y*x+x) % general solution u = c.
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The general solution is

x2y2

2
+ xy3 + xy2 = c1 or x2y2 + 2xy3 + 2xy2 = c. �

Remark 1.1. Note that a separated equation,

f(x) dx + g(y) dy = 0,

is exact. In fact, since My = 0 and Nx = 0, we have the integrating factors

µ(x) = e
R

0 dx = 1, µ(y) = e−
R

0 dy = 1.

Solving this equation by the practical method for exact equations, we have

u(x, y) =

∫
f(x) dx + T (y),

uy = T ′(y) = g(y) =⇒ T (y) =

∫
g(y) dy,

u(x, y) =

∫
f(x) dx +

∫
g(y) dy = c.

This is the solution that was obtained by the earlier method (1.3).

Remark 1.2. The factor which transforms a separable equation into a sepa-
rated equation is an integrating factor since the latter equation is exact.

Example 1.12. Consider the separable equation

y′ = 1 + y2, that is,
(
1 + y2

)
dx − dy = 0.

Show that the factor
(
1 + y2

)−1
which separates the equation is an integrating

factor.

Solution. We have

My = 2y, Nx = 0,
2y − 0

1 + y2
= g(y).

Hence

µ(y) = e−
R

(2y)/(1+y2) dy

= eln[(1+y2)−1] =
1

1 + y2
. �

In the next example, we easily find an integrating factor µ(x, y) which is a
function of x and y.

Example 1.13. Consider the separable equation

y dx + xdy = 0.

Show that the factor

µ(x, y) =
1

xy
,

which makes the equation separable, is an integrating factor.

Solution. The differential equation

µ(x, y)y dx + µ(x, y)xdy =
1

x
dx +

1

y
dy = 0

is separated; hence it is exact. �
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1.6. First-Order Linear Equations

Consider the nonhomogeneous first-order differential equation of the form

y′ + f(x)y = r(x). (1.21)

The left-hand side is a linear expression with respect to the dependent variable y
and its first derivative y′. In this case, we say that (1.21) is a linear differential
equation.

In this section, we solve equation (1.21) by transforming the left-hand side into
a total derivative by means of an integrating factor. In Example 3.10, the general
solution will be expressed as the sum of a general solution of the homogeneous
equation (with right-hand side equal to zero) and a particular solution of the
nonhomogeneous equation. Power Series solutions and numerical solutions will
be considered in Chapters 6 and 11, respectively.

The first way is to rewrite (1.21) in differential form,

f(x)y dx + dy = r(x) dx, or
(
f(x)y − r(x)

)
dx + dy = 0, (1.22)

and make it exact. Since My = f(x) and Nx = 0, this equation is not exact. As

My − Nx

N
=

f(x) − 0

1
= f(x)

is a function of x only, by (1.17) we have the integration factor

µ(x) = e
R

f(x) dx.

Multiplying (1.21) by µ(x) makes the left-hand side an exact, or total, derivative.
To see this, put

u(x, y) = µ(x)y = e
R

f(x)dxy.

Taking the differential of u we have

du = d
[
e

R

f(x) dxy
]

= e
R

f(x)dxf(x)y dx + e
R

f(x) dx dy

= µ[f(x)y dx + dy]

which is the left-hand side of (1.21) multiplied by µ, as claimed. Hence

d
[
e

R

f(x)dxy(x)
]

= e
R

f(x) dxr(x) dx.

Integrating both sides with respect to x, we have

e
R

f(x) dxy(x) =

∫
e

R

f(x) dxr(x) dx + c.

Solving the last equation for y(x), we see that the general solution of (1.21) is

y(x) = e−
R

f(x) dx

[∫
e

R

f(x)dxr(x) dx + c

]
. (1.23)

It is extremely important to note that the arbitrary constant c is also multiplied
by e−

R

f(x) dx.

Example 1.14. Solve the linear first-order differential equation

x2y′ + 2xy = sinh 3x.
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Solution. Rewriting this equation in standard form, we have

y′ +
2

x
y =

1

x2
sinh 3x.

This equation is linear in y and y′, with f(x) = 2
x and r(x) = 1

x2 sinh 3x. The
integrating factor, which makes the left-hand side exact, is

µ(x) = e
R

(2/x) dx = elnx2

= x2.

Thus,
d

dx
(x2y) = sinh 3x, that is, d(x2y) = sinh 3xdx.

Hence,

x2y(x) =

∫
sinh 3xdx + c =

1

3
cosh 3x + c,

or

y(x) =
1

3x2
cosh 3x +

c

x2
. �

Example 1.15. Solve the linear first-order differential equation

y dx + (3x − xy + 2) dy = 0.

Solution. Rewriting this equation in standard form for the dependent vari-
able x(y), we have

dx

dy
+

(
3

y
− 1

)
x = −2

y
, y 6= 0.

The integrating factor, which makes the left-hand side exact, is

µ(y) = e
R

[(3/y)−1] dy = eln y3−y = y3 e−y.

Then

d
(
y3 e−yx

)
= −2y2 e−y dy, that is,

d

dy

(
y3 e−yx

)
= −2y2 e−y.

Hence,

y3 e−yx = −2

∫
y2 e−y dy + c

= 2y2 e−y − 4

∫
ye−y dy + c (by integration by parts)

= 2y2 e−y + 4y e−y − 4

∫
e−y dy + c

= 2y2 e−y + 4y e−y + 4 e−y + c.

The general solution is

xy3 = 2y2 + 4y + 4 + c ey. �

Some nonlinear differential equations can be reduced to a linear form via a
change of variable. An example of this is the Bernoulli equation,

y′ + p(x)y = g(x)ya,

where a is (real) constant. Notice that the DE is linear if a = 0 or a = 1.
We make the substitution

u(x) = (y(x))1−a.
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Then
d

dx
(u(x)) = u′(x) =

d

dx
((y(x))1−a = (1 − a)(y(x))−a dy

dx
,

that is,

u′ = (1 − a)y−ay′.

But

y′ = gya − py

from the DE, so

u′ = (1 − a)y−a(gya − py)

= (1 − a)(g − py1−a)

= (1 − a)(g − pu)

= (1 − a)g − (1 − a)pu.

And thus, we have the linear equation

u′ + (1 − a)p(x)u = (1 − a)g(x)

which can be solved for u, after which we transform back to y.
As an example, we consider the nonlinear differential equation

y′ + y = −x

y
or y′ + (1)y = (−x)y−1,

which is a Bernoulli equation with p(x) = 1, g(x) = −x and a = −1. Letting
u(x) = (y(x))2, we have the linear DE

u′ + 2u = −2x.

The integrating factor is

µ(x) = e
R

2 dx = e2x.

Thus

u(x) = e−2x

[∫
e2x(−2x) dx + c

]

= e−2x

[
−x e2x +

1

2
e2x + c

]
(by integration by parts)

= −x +
1

2
+ c e−2x.

Therefore, the general solution of the original DE is

y2 =
1

2
− x + c e−2x.

1.7. Orthogonal Families of Curves

A one-parameter family of curves can be given by an equation

u(x, y) = c,

where the parameter c is explicit, or by an equation

F (x, y, c) = 0,

which is implicit with respect to c.
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y

0 x

(x, y)
y(x)

y     (x)orth

n = (– b, a) t = (a, b)

Figure 1.6. Two curves orthogonal at the point (x, y).

In the first case, the curves satisfy the differential equation

ux dx + uy dy = 0, or
dy

dx
= −ux

uy
= m,

where m is the slope of the curve at the point (x, y). Note that this differential
equation does not contain the parameter c.

In the second case we have

Fx(x, y, c) dx + Fy(x, y, c) dy = 0.

To eliminate c from this differential equation we solve the equation F (x, y, c) = 0
for c as a function of x and y,

c = H(x, y),

and substitute this function in the differential equation,

dy

dx
= −Fx(x, y, c)

Fy(x, y, c)
= −Fx

(
x, y, H(x, y)

)

Fy

(
x, y, H(x, y)

) = m.

Let t = (a, b) be the tangent and n = (−b, a) be the normal to the given
curve y = y(x) at the point (x, y) of the curve. Then, the slope, y′(x), of the
tangent is

y′(x) =
b

a
= m (1.24)

and the slope, y′
orth(x), of the curve yorth(x) which is orthogonal to the curve y(x)

at (x, y) is

y′
orth(x) = −a

b
= − 1

m
. (1.25)

(see Fig. 1.6). Thus, the orthogonal family satisfies the differential equation

y′
orth(x) = − 1

m(x)
.

Example 1.16. Consider the one-parameter family of circles

x2 + (y − c)2 = c2 (1.26)

with centre (0, c) on the y-axis and radius |c|. Find the differential equation for
this family and the differential equation for the orthogonal family. Solve the latter
equation and plot a few curves of both families on the same graph.
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Solution. We obtain the differential equation of the given family by differ-
entiating (1.26) with respect to x,

2x + 2(y − c)y′ = 0 =⇒ y′ = − x

y − c
,

and solving (1.26) for c we have

x2 + y2 − 2yc + c2 = c2 =⇒ c =
x2 + y2

2y
.

Substituting this value for c in the differential equation, we have

y′ = − x

y − x2+y2

2y

= − 2xy

2y2 − x2 − y2
=

2xy

x2 − y2
.

The differential equation of the orthogonal family is

y′
orth = −x2 − y2

orth

2xyorth
.

Rewriting this equation in differential form M dx + N dy = 0, and omitting the
subscript “orth”, we have

(x2 − y2) dx + 2xy dy = 0.

Since My = −2y and Nx = 2y, this equation is not exact, but

My − Nx

N
=

−2y − 2y

2xy
= − 2

x
= f(x)

is a function of x only. Hence

µ(x) = e−
R

(2/x) dx = x−2

is an integrating factor. We multiply the differential equation by µ(x),
(

1 − y2

x2

)
dx + 2

y

x
dy = 0,

and solve by the practical method:

u(x, y) =

∫
2

y

x
dy + T (x) =

y2

x
+ T (x),

ux(x, y) = − y2

x2
+ T ′(x) = 1 − y2

x2
,

T ′(x) = 1 =⇒ T (x) = x,

u(x, y) =
y2

x
+ x = c1,

that is, the solution
x2 + y2 = c1x

is a one-parameter family of circles. We may rewrite this equation in the more
explicit form:

x2 − 2
c1

2
x +

c2
1

4
+ y2 =

c2
1

4
,

(
x − c1

2

)2

+ y2 =
(c1

2

)2

,

(x − k)2 + y2 = k2.
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x

y

c1

c2

k1 k2

k3

Figure 1.7. A few curves of both orthogonal families.

The orthogonal family is a family of circles with centre (k, 0) on the x-axis and
radius |k|. A few curves of both orthogonal families are plotted in Fig. 1.7. �

1.8. Direction Fields and Approximate Solutions

Approximate solutions of a differential equation are of practical interest if the
equation has no explicit exact solution formula or if that formula is too compli-
cated to be of practical value. In that case, one can use a numerical method (see
Chapter 11), or use the Method of Direction Fields. By this latter method, one
can sketch many solution curves at the same time, without actually solving the
equation.

The Method of Direction Fields can be applied to any differential equation
of the form

y′ = f(x, y). (1.27)

The idea is to take y′ as the slope of the unknown solution curve. The curve that
passes through the point (x0, y0) has the slope f(x0, y0) at that point. Hence one
can draw lineal elements at various points, that is, short segments indicating the
tangent directions of solution curves as determined by (1.27) and then fit solution
curves through this field of tangent directions.

First draw curves of constant slopes, f(x, y) = const, called isoclines. Second,
draw along each isocline f(x, y) = k many lineal elements of slope k. Thus one
gets a direction field. Third, sketch approximate solutions curves of (1.27).

Example 1.17. Graph the direction field of the first-order differential equa-
tion

y′ = xy (1.28)

and an approximation to the solution curve through the point (1, 2).

Solution. The isoclines are the equilateral hyperbolae xy = k together with
the two coordinate axes as shown in Fig. 1.8 �

1.9. Existence and Uniqueness of Solutions

Definition 1.3. A function f(y) is said to be Lipschitz continuous on the
open interval ]c, d[ if there exists a constant M > 0, called the Lipschitz constant,
such that

|f(z) − f(y)| ≤ M |z − y|, for all y, z ∈]c, d[. (1.29)
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Figure 1.8. Direction field for Example 1.17.

We note that condition (1.29) implies the existence of left and right derivatives
of f(y) of the first order, but not their equality. Geometrically, the slope of the
curve f(y) is bounded on ]c, d[.

We state, without proof, the following Existence and Uniqueness Theorem.

Theorem 1.3 (Existence and Uniqueness Theorem). Consider the initial
value problem

y′ = f(x, y), y(x0) = y0. (1.30)

If the function f(x, y) is continuous and bounded,

|f(x, y)| ≤ K,

on the rectangle

R : |x − x0| < a, |y − y0| < b,

and Lipschitz continuous with respect to y on R, then (1.30) admits one and only
one solution for all x such that

|x − x0| < α, where α = min{a, b/K}.

Theorem 1.3 is applied to the following example.

Example 1.18. Solve the initial value problem

yy′ + x = 0, y(0) = −2

and plot the solution.

Solution. (a) The analytic solution.— We rewrite the differential equation
in standard form, that is, y′ = f(x, y),

y′ = −x

y
.

Since the function

f(x, y) = −x

y
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is not continuous at y = 0, there will be a solution for y < 0 and another solution
for y > 0. We separate the equation and integrate:

∫
xdx +

∫
y dy = c1,

x2

2
+

y2

2
= c1,

x2 + y2 = r2.

The general solution is a one-parameter family of circles with centre at the origin
and radius r. The two solutions are

y±(x) =

{ √
r2 − x2, if y > 0,

−
√

r2 − x2, if y < 0.

Since y(0) = −2, we need to take the second solution. We determine the value of
r by means of the initial condition:

02 + (−2)2 = r2 =⇒ r = 2.

Hence the solution, which is unique, is

y(x) = −
√

4 − x2, −2 < x < 2.

We see that the slope y′(x) of the solution tends to ±∞ as y → 0±. To have a
continuous solution in a neighbourhood of y = 0, we solve for x = x(y).

(b) The Matlab symbolic solution.—

dsolve(’y*Dy=-x’,’y(0)=-2’,’x’)

y = -(-x^2+4)^(1/2)

(c) The Matlab numeric solution.— The numerical solution of this initial
value problem is a little tricky because the general solution y± has two branches.
We need a function M-file to run the Matlab ode solver. The M-file halfcircle.m
is

function yprime = halfcircle(x,y);

yprime = -x/y;

To handle the lower branch of the general solution, we call the ode23 solver and
the plot command as follows.

xspan1 = [0 -2]; % span from x = 0 to x = -2

xspan2 = [0 2]; % span from x = 0 to x = 2

y0 = [0; -2]; % initial condition

[x1,y1] = ode23(’halfcircle’,xspan1,y0);

[x2,y2] = ode23(’halfcircle’,xspan2,y0);

plot(x1,y1(:,2),x2,y2(:,2))

axis(’equal’)

xlabel(’x’)

ylabel(’y’)

title(’Plot of solution’)

The numerical solution is plotted in Fig. 1.9. �
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Figure 1.9. Graph of solution of the differential equation in Example 1.18.

In the following two examples, we find an approximate solution to a differ-
ential equation by Picard’s method and by the method of Section 1.6. In Exam-
ple 6.4, we shall find a series solution to the same equation. One will notice that
the three methods produce the same series solution. Also, in Example 10.9, we
shall solve this equation numerically.

Example 1.19. Use Picard’s recursive method to solve the initial value prob-
lem

y′ = xy + 1, y(0) = 1.

Solution. Since the function f(x, y) = 1 + xy has a bounded partial deriv-
ative of first-order with respect to y,

∂yf(x, y) = x,

on any bounded interval 0 ≤ x ≤ a < ∞, Picard’s recursive formula (1.31),

yn(x) = y0 +

∫ x

x0

f
(
t, yn−1(t)

)
dt, n = 1, 2, . . . ,

converges to the solution y(x). Here x0 = 0 and y0 = 1. Hence,

y1(x) = 1 +

∫ x

0

(1 + t) dt

= 1 + x +
x2

2
,

y2(x) = 1 +

∫ x

0

(
1 + t + t2 +

t3

2

)
dt

= 1 + x +
x2

2
+

x3

3
+

x4

8
,

y3(x) = 1 +

∫ x

0

(
1 + ty2(t)

)
dt,

and so on. �
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Example 1.20. Use the method of Section 1.6 for linear first-order differential
equations to solve the initial value problem

y′ − xy = 1, y(0) = 1.

Solution. An integrating factor that makes the left-hand side an exact de-
rivative is

µ(x) = e−
R

x dx = e−x2/2.

Multiplying the equation by µ(x), we have

d

dx

(
e−x2/2y

)
= e−x2/2,

and integrating from 0 to x, we obtain

e−x2/2y(x) =

∫ x

0

e−t2/2 dt + c.

Putting x = 0 and y(0) = 1, we see that c = 1. Hence,

y(x) = ex2/2

[
1 +

∫ x

0

e−t2/2 dt

]
.

Since the integral cannot be expressed in closed form, we expand the two expo-
nential functions in convergent power series, integrate the second series term by
term and multiply the resulting series term by term:

y(x) = ex2/2

[
1 +

∫ x

0

(
1 − t2

2
+

t4

8
− t6

48
+ − . . .

)
dt

]

=ex2/2

(
1 + x − x3

6
+

x5

40
− x7

336
− + . . .

)

=

(
1 +

x2

2
+

x4

8
+

x6

48
+ . . .

)(
1 + x − x3

6
+

x5

40
− x7

336
− + . . .

)

= 1 + x +
x2

2
+

x3

3
+

x4

8
+ . . . .

As expected, the symbolic Matlab command dsolve produces the solution in
terms of the Maple error function erf(x):

>> dsolve(’Dy=x*y+1’,’y(0)=1’,’x’)

y=1/2*exp(1/2*x^2)*pi^(1/2)*2^(1/2)*erf(1/2*2^(1/2)*x)+exp(1/2*x^2)

�

Under the conditions of Theorem 1.3, the solution of problem (1.30) can be
obtained by means of Picard’s method, that is, the sequence y0, y1, . . . , yn, . . .,
defined by the Picard iteration formula,

yn(x) = y0 +

∫ x

x0

f
(
t, yn−1(t)

)
dt, n = 1, 2, . . . , (1.31)

converges to the solution y(x).
The following example shows that with continuity, but without Lispschitz

continuity of the function f(x, y) in y′ = f(x, y), the solution may not be unique.
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Example 1.21. Show that the initial value problem

y′ = 3y2/3, y(x0) = y0,

has non-unique solutions.

Solution. The right-hand side of the equation is continuous for all y and
because it is independent of x, it is continuous on the whole xy-plane. However,
it is not Lipschitz continuous in y at y = 0 since fy(x, y) = 2y−1/3 is not even
defined at y = 0. It is seen that y(x) ≡ 0 is a solution of the differential equation.
Moreover, for a ≤ b,

y(x) =





(x − a)3, t < a,

0, a ≤ x ≤ b,

(x − b)3, t > b,

is also a solution. By properly choosing the value of the parameter a or b, a
solution curve can be made to satisfy the initial conditions. By varying the other
parameter, one gets a family of solutions to the initial value problem. Hence the
solution is not unique. �





CHAPTER 2

Second-Order Ordinary Differential Equations

In this chapter, we introduce basic concepts for linear second-order differen-
tial equations. We solve linear constant coefficients equations and Euler–Cauchy
equations. Further theory on linear nonhomogeneous equations of arbitrary order
will be developed in Chapter 3.

2.1. Linear Homogeneous Equations

Consider the second-order linear nonhomogeneous differential equation

y′′ + f(x)y′ + g(x)y = r(x). (2.1)

The equation is linear with respect to y, y′ and y′′. It is nonhomogeneous if the
right-hand side, r(x), is not identically zero, i.e. r(x) 6≡ 0.

The capital letter L will often be used to denote a linear differential operator
of the form

L := an(x)Dn + an−1(x)Dn−1 + · · · + a1(x)D + a0(x), D = ′ =
d

dx
.

Specifically, let L := D2 + f(x)D + g(x).
If the right-hand side of (2.1) is zero, we say that the equation

Ly := y′′ + f(x)y′ + g(x)y = 0, (2.2)

is homogeneous.

Theorem 2.1. The solutions of (2.2) form a vector space.

Proof. We shall demonstrate that the space of solutions is closed under
linear combination. Let y1 and y2 be two solutions of (2.2). The result follows
from the linearity of L:

L(αy1 + βy2) = αLy1 + βLy2 = 0, α, β ∈ R. �

Since the general solution of a differential equation must represent all possible
solutions and since the solutions of (2.2) form a vector space, the general solution
of (2.2) must span the vector space of solutions.

2.2. Homogeneous Equations with Constant Coefficients

Consider the second-order linear homogeneous differential equation with con-
stant coefficients :

y′′ + ay′ + by = 0. (2.3)

What kind of functions would satisfy this equation? Notice that the differential
equation requires that a linear combnation of y, y′ and y′′ be equal to zero for all
x. This suggests that y, y′ and y′′ must be all the same kind of function.

33
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To solve this equation we suppose that a solution is of exponential form,

y(x) = eλx.

Inserting this function in (2.3), we have

λ2 eλx + aλ eλx + b eλx = 0, (2.4)

eλx
(
λ2 + aλ + b

)
= 0. (2.5)

Since eλx is never zero, we obtain the characteristic equation

λ2 + aλ + b = 0 (2.6)

for λ and the eigenvalues or roots

λ1,2 =
−a ±

√
a2 − 4b

2
. (2.7)

If λ1 6= λ2, we have two distinct solutions,

y1(x) = eλ1x, y2(x) = eλ2x.

In this case, the general solution, which contains two arbitrary constants, is

y = c1y1 + c2y2.

Example 2.1. Find the general solution of the linear homogeneous differen-
tial equation with constant coefficients

y′′ + 5y′ + 6y = 0.

Solution. The characteristic equation is

λ2 + 5λ + 6 = (λ + 2)(λ + 3) = 0.

Hence λ1 = −2 and λ2 = −3, and the general solution is

y(x) = c1 e−2x + c2 e−3x. �

2.3. Basis of the Solution Space

We generalize to functions the notion of linear independence for two vectors
of Rn.

Definition 2.1. The functions f1(x) and f2(x) are said to be linearly inde-
pendent on the interval [a, b] if the identity

c1f1(x) + c2f2(x) ≡ 0, for all x ∈ [a, b], (2.8)

implies that
c1 = c2 = 0.

Otherwise the functions are said to be linearly dependent.

If f1(x) and f2(x) are linearly dependent on [a, b], then there exist two num-
bers (c1, c2) 6= (0, 0) such that, if, say, c1 6= 0, we have

f1(x)

f2(x)
≡ −c2

c1
= const. (2.9)

If
f1(x)

f2(x)
6= const. on [a, b], (2.10)

then f1 and f2 are linearly independent on [a, b]. This characterization of linear
independence of two functions will often be used.
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Definition 2.2. The general solution of the homogeneous equation (2.2)
spans the vector space of solutions of (2.2).

Theorem 2.2. Let y1(x) and y2(x) be two solutions of (2.2) on [a, b]. Then,
the solution

y(x) = c1y1(x) + c2y2(x)

is a general solution of (2.2) if and only if y1 and y2 are linearly independent on
[a, b].

Proof. The proof will be given in Chapter 3 for equations of order n. �

Notice that we are saying that the dimension of the vector space of solutions
is 2. This follows from the fact that the characteristic equation is a quadratic and
hence has 2 roots.

The next example illustrates the use of the general solution.

Example 2.2. Solve the following initial value problem:

y′′ + y′ − 2y = 0, y(0) = 4, y′(0) = 1.

Solution. (a) The analytic solution.— The characteristic equation is

λ2 + λ − 2 = (λ − 1)(λ + 2) = 0.

Hence λ1 = 1 and λ2 = −2. The two solutions

y1(x) = ex, y2(x) = e−2x

are linearly independent since

y1(x)

y2(x)
= e3x 6= const.

Thus, the general solution is

y = c1 ex + c2 e−2x.

The constants are determined by the initial conditions,

y(0) = c1 + c2 = 4,

y′(x) = c1 ex − 2c2 e−2x,

y′(0) = c1 − 2c2 = 1.

We therefore have the linear system[
1 1
1 −2

] [
c1

c2

]
=

[
4
1

]
, that is, Ac =

[
4
1

]
.

Since
det A = −3 6= 0,

the solution c is unique. This solution is easily computed by Cramer’s rule,

c1 =
1

−3

∣∣∣∣
4 1
1 −2

∣∣∣∣ =
−9

−3
= 3, c2 =

1

−3

∣∣∣∣
1 4
1 1

∣∣∣∣ =
−3

−3
= 1.

The solution of the initial value problem is

y(x) = 3 ex + e−2x.

This solution is unique.

(b) The Matlab symbolic solution.—
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Figure 2.1. Graph of solution of the linear equation in Example 2.2.

dsolve(’D2y+Dy-2*y=0’,’y(0)=4’,’Dy(0)=1’,’x’)

y = 3*exp(x)+exp(-2*x)

(c) The Matlab numeric solution.— To rewrite the second-order differential
equation as a system of first-order equations, we put

y1 = y,

y2 = y′,

Thus, we have

y′
1 = y2,

y′
2 = 2y1 − y2.

The M-file exp22.m:

function yprime = exp22(x,y);

yprime = [y(2); 2*y(1)-y(2)];

The call to the ode23 solver and the plot command:

xspan = [0 4]; % solution for x=0 to x=4

y0 = [4; 1]; % initial conditions

[x,y] = ode23(’exp22’,xspan,y0);

subplot(2,2,1); plot(x,y(:,1))

The numerical solution is plotted in Fig. 2.1. �

2.4. Independent Solutions

The form of independent solutions of a homogeneous equation,

Ly := y′′ + ay′ + by = 0, (2.11)

depends on the form of the roots

λ1,2 =
−a ±

√
a2 − 4b

2
(2.12)
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of the characteristic equation

λ2 + aλ + b = 0. (2.13)

Let ∆ = a2 − 4b be the discriminant of equation (2.13). There are three cases:
λ1 6= λ2 real if ∆ > 0, λ2 = λ̄1 complex if ∆ < 0, and λ1 = λ2 real if ∆ = 0.

Case I. In the case of two real distinct eigenvalues, λ1 6= λ2, it was seen in
Section 2.3 that the two solutions,

y1(x) = eλ1x, y2(x) = eλ2x,

are independent since

y2(x)

y1(x)
=

eλ2x

eλ1x
= e(λ2−λ1)x 6= constant

since λ2 − λ1 6= 0.
Therefore, the general solution is

y(x) = c1e
λ1x + c2e

λ2x. (2.14)

Case II. In the case of two distinct complex conjugate eigenvalues, we have

λ1 = α + iβ, λ2 = α − iβ = λ̄1, where i =
√
−1.

By means of Euler’s identity,

eiθ = cos θ + i sin θ, (2.15)

the two complex solutions can be written in the form

u1(x) = e(α+iβ)x = eαx(cosβx + i sinβx),

u2(x) = e(α−iβ)x = eαx(cosβx − i sinβx) = u1(x).

Since λ1 6= λ2, the solutions u1 and u2 are independent. To have two real indepen-
dent solutions, we use the following change of basis, or, equivalently we take the
real and imaginary parts of u1 since a and b are real and (2.11) is homogeneous
(since the real and imaginary parts of a complex solution of a homogeneous linear
equation with real coefficients are also solutions, or since any linear combination
of solutions is still a solution). Thus,

y1(x) = ℜu1(x) =
1

2
[u1(x) + u2(x)] = eαx cosβx, (2.16)

y2(x) = ℑu1(x) =
1

2i
[u1(x) − u2(x)] = eαx sin βx. (2.17)

It is clear that y1 and y2 are independent. Therefore, the general solution is

y(x) = c1 eαx cosβx + c2 eαx sinβx. (2.18)

Case III. In the case of real double eigenvalues we have

λ = λ1 = λ2 = −a

2

and equation (2.11) admits a solution of the form

y1(x) = eλx. (2.19)
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To obtain a second independent solution, we use the method of variation of pa-
rameters, which is described in greater detail in Section 3.5. Thus, we put

y2(x) = u(x)y1(x). (2.20)

It is important to note that the parameter u is a function of x and that y1 is
a solution of (2.11). We substitute y2 in (2.11). This amounts to adding the
following three equations,

by2(x) = bu(x)y1(x)

ay′
2(x) = au(x)y′

1(x) + ay1(x)u′(x)

y′′
2 (x) = u(x)y′′

1 (x) + 2y′
1(x)u′(x) + y1(x)u′′(x)

to get
Ly2 = u(x)Ly1 + [ay1(x) + 2y′

1(x)]u′(x) + y1(x)u′′(x).

The left-hand side is zero since y2 is assumed to be a solution of Ly = 0. The
first term on the right-hand side is also zero since y1 is a solution of Ly = 0.

The second term on the right-hand side is zero since

λ = −a

2
∈ R,

and y′
1(x) = λy1(x), that is,

ay1(x) + 2y′
1(x) = a e−ax/2 − a e−ax/2 = 0.

It follows that
u′′(x) = 0,

whence
u′(x) = k1

and
u(x) = k1x + k2.

We therefore have
y2(x) = k1x eλx + k2 eλx.

We may take k2 = 0 since the second term on the right-hand side is already
contained in the linear span of y1. Moreover, we may take k1 = 1 since the
general solution contains an arbitrary constant multiplying y2.

It is clear that the solutions

y1(x) = eλx, y2(x) = x eλx,

are linearly independent. The general solution is

y(x) = c1 eλx + c2x eλx. (2.21)

Example 2.3. Consider the following three problems.

i) Find the general solution of the homogeneous equation with constant coeffi-
cients:

y′′ − 7y′ + 12y = 0.

The characteristic equation is

λ2 − 7λ + 12 = (λ − 3)(λ − 4) = 0.

So λ1 = 3 and λ2 = 4 (Case I). Therefore, the general solution is

y(x) = c1 e3x + c2 e4x.
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ii) Find the general solution of the homogeneous equation with constant coeffi-
cients:

y′′ + 4y′ + 10y = 0.

The characteristic equation is

λ2 + 4λ + 10 = 0.

So

λ1,2 =
−4 ±

√
(4)2 − 4(10)

2
=

−4 ±
√
−24

2
= −2 ± i

√
6.

This is Case II and the general solution is

y(x) = c1 e−2x cos(
√

6x) + c2 e−2x sin(
√

6x).

iii) Solve the initial value problem

y′′ − 4y′ + 4y = 0, y(0) = 0, y′(0) = 3.

The characteristic equation is

λ2 − 4λ + 4 = (λ − 2)2 = 0.

So λ1 = λ2 = 2 (Case III) and the general solution is

y(x) = c1 e2x + c2x e2x.

By the first initial condition,

y(0) = c1 e0 + c2(0) e0 = c1 = 0.

So y(x) = c2x e2x. Then

y′(x) = c2 e2x + 2c2x e2x

and, at x = 0,

y′(0) = c2 e0 + 2c2(0) e0 = c2 = 3.

Therefore, the unique solution is

y(x) = 3x e2x.

2.5. Modeling in Mechanics

We consider elementary models of mechanics.

Example 2.4 (Free Oscillation). Consider a vertical spring attached to a rigid
beam. The spring resists both extension and compression with Hooke’s constant
equal to k. Study the problem of the free vertical oscillation of a mass of mkg
which is attached to the lower end of the spring.

Solution. Let the positive Oy axis point downward. Let s0 m be the exten-
sion of the spring due to the force of gravity acting on the mass at rest at y = 0.
(See Fig. 2.2).

We neglect friction. The force due to gravity is

F1 = mg, where g = 9.8 m/sec
2
.

The restoration force exerted by the spring is

F2 = −k s0.



40 2. SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

y

y = 0 s0
m

F1

F2

y

Système au repos
System at rest

Système en mouvement
System in motion

Ressort libre
Free spring

m

k

Figure 2.2. Undamped System.

By Newton’s Second Law of Motion, when the system is at rest, at position y = 0,
the resultant is zero,

F1 + F2 = 0.

Now consider the system in motion in position y. By the same law, the resultant
is

m a = −k y.

Since the acceleration is a = y′′, then

my′′ + ky = 0, or y′′ + ω2y = 0, ω =

√
k

m
,

where ω/2π Hz is the frequency of the system. The characteristic equation of this
differential equation,

λ2 + ω2 = 0,

admits the pure imaginary eigenvalues

λ1,2 = ±iω.

Hence, the general solution is

y(t) = c1 cosωt + c2 sin ωt.

We see that the system oscillates freely without any loss of energy. �

The amplitude, A, and period, p, of the previous system are

A =
√

c2
1 + c2

2, p =
2π

ω
.

The amplitude can be obtained by rewriting y(t) with phase shift ϕ as follows:

y(t) = A(cos ωt + ϕ)

= A cosϕ cosωt − A sinϕ sin ωt

= c1 cosωt + c2 sin ωt.

Then, identifying coefficients we have

c1
1 + c2

2 = (A cos ϕ)2 + (A sin ϕ)2 = A2.
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Figure 2.3. Damped system.

Example 2.5 (Damped System). Consider a vertical spring attached to a
rigid beam. The spring resists extension and compression with Hooke’s constant
equal to k. Study the problem of the damped vertical motion of a mass of mkg
which is attached to the lower end of the spring. (See Fig. 2.3). The damping
constant is equal to c.

Solution. Let the positive Oy axis point downward. Let s0 m be the exten-
sion of the spring due to the force of gravity on the mass at rest at y = 0. (See
Fig. 2.2).

The force due to gravity is

F1 = mg, where g = 9.8 m/sec2.

The restoration force exerted by the spring is

F2 = −k s0.

By Newton’s Second Law of Motion, when the system is at rest, the resultant is
zero,

F1 + F2 = 0.

Since damping opposes motion, by the same law, the resultant for the system in
motion is

m a = −c y′ − k y.

Since the acceleration is a = y′′, then

my′′ + cy′ + ky = 0, or y′′ +
c

m
y′ +

k

m
y = 0.

The characteristic equation of this differential equation,

λ2 +
c

m
λ +

k

m
= 0,

admits the eigenvalues

λ1,2 = − c

2m
± 1

2m

√
c2 − 4mk =: −α ± β, α > 0.

There are three cases to consider.

Case I: Overdamping. If c2 > 4mk, the system is overdamped. Both eigen-
values are real and negative since

λ1 = − c

2m
− 1

2m

√
c2 − 4mk < 0, λ1λ2 =

k

m
> 0.
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y

y = 0




Figure 2.4. Vertical movement of a liquid in a U tube.

The general solution,

y(t) = c1 eλ1t + c2 eλ2t,

decreases exponentially to zero without any oscillation of the system.
Case II: Underdamping. If c2 < 4mk, the system is underdamped. The

two eigenvalues are complex conjugate to each other,

λ1,2 = − c

2m
± i

2m

√
4mk − c2 =: −α ± iβ, with α > 0.

The general solution,

y(t) = c1 e−αt cosβt + c2 e−αt sin βt,

oscillates while decreasing exponentially to zero.
Case III: Critical damping. If c2 = 4mk, the system is critically

damped. Both eigenvalues are real and equal,

λ1,2 = − c

2m
= −α, with α > 0.

The general solution,

y(t) = c1 e−αt + c2t e−αt = (c1 + c2t) e−αt,

decreases exponentially to zero with an initial increase in y(t) if c2 > 0. �

Example 2.6 (Oscillation of water in a tube in a U form).
Find the frequency of the oscillatory movement of 2 L of water in a tube in a U
form. The diameter of the tube is 0.04m.

Solution. We neglect friction between the liquid and the tube wall. The
mass of the liquid is m = 2kg. The volume, of height h = 2y, responsible for the
restoring force is

V = πr2h = π(0.02)22y m3

= π(0.02)22000y L

(see Fig. 2.4). The mass of volume V is

M = π(0.02)22000y kg

and the restoration force is

Mg = π(0.02)29.8 × 2000y N, g = 9.8 m/s2.

By Newton’s Second Law of Motion,

m y′′ = −Mg,
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Figure 2.5. Pendulum in motion.

that is,

y′′ +
π(0.02)29.8 × 2000

2
y = 0, or y′′ + ω2

0y = 0,

where

ω2
0 =

π(0.02)29.8 × 2000

2
= 12.3150.

Hence, the frequency is

ω0

2π
=

√
12.3150

2π
= 0.5585 Hz. �

Example 2.7 (Oscillation of a pendulum). Find the frequency of the oscil-
lations of small amplitude of a pendulum of mass m kg and length L = 1 m.

Solution. We neglect air resistance and the mass of the rod. Let θ be the
angle, in radian measure, made by the pendulum measured from the vertical axis.
(See Fig. 2.5).

The tangential force is

m a = mLθ′′.

Since the length of the rod is fixed, the orthogonal component of the force is zero.
Hence it suffices to consider the tangential component of the restoring force due
to gravity, that is,

mLθ′′ = −mg sin θ ≈ −mgθ, g = 9.8,

where sin θ ≈ θ if θ is sufficiently small. Thus,

θ′′ +
g

L
θ = 0, or θ′′ + ω2

0θ = 0, where ω2
0 =

g

L
= 9.8.

Therefore, the frequency is

ω0

2π
=

√
9.8

2π
= 0.498 Hz. �

�
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2.6. Euler–Cauchy Equations

Consider the homogeneous Euler–Cauchy equation

Ly := x2y′′ + axy′ + by = 0, x > 0. (2.22)

Because of the particular form of the differential operator of this equation with
variable coefficients,

L = x2D2 + axD + bI, D = ′ =
d

dx
,

where each term is of the form akxkDk, with ak a constant, we can solve (2.22)
by setting

y(x) = xm (2.23)

In fact, if y(x) = xm, then Dky = m(m− 1) · · · (m− k +1)xm−k and so xkDky =
m(m−1) · · · (m−k+1)xm, i.e. all terms will have the same power of x and hence
a linear combination of them can be zero for all x.

In (2.22),

m(m − 1)xm + amxm + bxm = xm[m(m − 1) + am + b] = 0.

We can divide by xm if x > 0. We thus obtain the characteristic equation

m2 + (a − 1)m + b = 0. (2.24)

The eigenvalues or roots are

m1,2 =
1 − a

2
± 1

2

√
(a − 1)2 − 4b. (2.25)

There are three cases: m1 6= m2 real, m1 and m2 = m1 complex and distinct,
and m1 = m2 real.

Case I. If both roots are real and distinct, the general solution of (2.22) is

y(x) = c1x
m1 + c2x

m2 , (2.26)

because y1(x) = xm1 and y2(x) = xm2 are linearly independent as

y2(x)

y1(x)
=

xm2

xm1
= xm2−m1 6= constant

since m2 − m1 6= 0.

Case II. If the roots are complex conjugates of one another,

m1 = α + iβ, m2 = α − iβ, β 6= 0,

we have two independent complex solutions of the form

u1 = xαxiβ = xα eiβ ln x = xα[cos(β lnx) + i sin(β lnx)]

and

u2 = xαx−iβ = xα e−iβ ln x = xα[cos(β lnx) − i sin(β lnx)].

For x > 0, we obtain two real independent solutions by adding and subtracting
u1 and u2, and dividing the sum and the difference by 2 and 2i, respectively, or,
equivalently, by taking the real and imaginary parts of u1 since a and b are real
and (2.22) is linear and homogeneous:

y1(x) = xα cos(β lnx), y2(x) = xα sin(β lnx).
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Clearly, y1(x) and y2(x) are independent. The general solution of (2.22) is

y(x) = c1x
α cos(β lnx) + c2x

α sin(β lnx). (2.27)

Case III. If both roots are real and equal,

m = m1 = m2 =
1 − a

2
,

one solution is of the form
y1(x) = xm.

We find a second independent solution by variation of parameters by putting

y2(x) = u(x)y1(x)

in (2.22). Adding the left- and right-hand sides of the following three expressions,
we have

by2(x) = bu(x)y1(x)

axy′
2(x) = axu(x)y′

1(x) + axy1(x)u′(x)

x2y′′
2 (x) = x2u(x)y′′

1 (x) + 2x2y′
1(x)u′(x) + x2y1(x)u′′(x)

to get

Ly2 = u(x)Ly1 + [axy1(x) + 2x2y′
1(x)]u′(x) + x2y1(x)u′′(x).

The left-hand side is zero since y2 is assumed to be a solution of Ly = 0. The
first term on the right-hand side is also zero since y1 is a solution of Ly = 0.

The coefficient of u′ is

axy1(x) + 2x2y′
1(x) = axxm + 2mx2xm−1 = axm+1 + 2mxm+1

= (a + 2m)xm+1 =

[
a + 2

(
1 − a

2

)]
xm+1 = xm+1.

Hence we have

x2y1(x)u′′ + xm+1u′ = xm+1(xu′′ + u′) = 0, x > 0,

and dividing by xm+1, we have

xu′′ + u′ = 0.

Since u is absent from this differential equation, we can reduce the order by
putting

v = u′, v′ = u′′.

The resulting equation is separable,

x
dv

dx
+ v = 0, that is,

dv

v
= −dx

x
,

and can be integrated,

ln |v| = lnx−1 =⇒ u′ = v =
1

x
=⇒ u = lnx.

No constant of integration is needed here. The second independent solution is

y2 = (lnx)xm.

Therefore, the general solution of (2.22) is

y(x) = c1x
m + c2(lnx)xm. (2.28)
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Example 2.8. Find the general solution of the Euler–Cauchy equation

x2y′′ − 6y = 0.

Solution. (a) The analytic solution.— Putting y = xm in the differential
equation, we have

m(m − 1)xm − 6xm = 0.

The characteristic equation is

m2 − m − 6 = (m − 3)(m + 2) = 0.

The eigenvalues,

m1 = 3, m2 = −2,

are real and distinct. The general solution is

y(x) = c1x
3 + c2x

−2.

(b) The Matlab symbolic solution.—

dsolve(’x^2*D2y=6*y’,’x’)

y = (C1+C2*x^5)/x^2

�

Example 2.9. Solve the initial value problem

x2y′′ − 6y = 0, y(1) = 2, y′(1) = 1.

Solution. (a) The analytic solution.— The general solution as found in
Example 2.8 is

y(x) = c1x
3 + c2x

−2.

From the initial conditions, we have the linear system in c1 and c2:

y(1) = c1+ c2 = 2

y′(1) = 3c1 −2c2 = 1

whose solution is

c1 = 1, c2 = 1.

Hence the unique solution is

y(x) = x3 + x−2.

(b) The Matlab symbolic solution.—

dsolve(’x^2*D2y=6*y’,’y(1)=2’,’Dy(1)=1’,’x’)

y = (1+x^5)/x^2

(c) The Matlab numeric solution.— To rewrite the second-order differential
equation as a system of first-order equations, we put

y1 = y,

y2 = y′,

with initial conditions at x = 1:

y1(1) = 2, y2(1) = 1.
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Figure 2.6. Graph of solution of the Euler–Cauchy equation in Example 2.9.

Thus, we have

y′
1 = y2,

y′
2 = 6y1/x2.

The M-file euler2.m:

function yprime = euler2(x,y);

yprime = [y(2); 6*y(1)/x^2];

The call to the ode23 solver and the plot command:

xspan = [1 4]; % solution for x=1 to x=4

y0 = [2; 1]; % initial conditions

[x,y] = ode23(’euler2’,xspan,y0);

subplot(2,2,1); plot(x,y(:,1))

The numerical solution is plotted in Fig. 2.6. �

Example 2.10. Find the general solution of the Euler–Cauchy equation

x2y′′ + 7xy′ + 9y = 0.

Solution. The characteristic equation

m2 + 6m + 9 = (m + 3)2 = 0

admits a double root m = −3. Hence the general solution is

y(x) = (c1 + c2 lnx)x−3. �

Example 2.11. Find the general solution of the Euler–Cauchy equation

x2y′′ + 1.25y = 0.

Solution. The characteristic equation

m2 − m + 1.25 = 0



48 2. SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS

admits a pair of complex conjuguate roots

m1 =
1

2
+ i, m2 =

1

2
− i.

Hence the general solution is

y(x) = x1/2[c1 cos(ln x) + c2 sin(lnx)]. �

The existence and uniqueness of solutions of initial value problems of order
greater than 1 will be considered in the next chapter.



CHAPTER 3

Linear Differential Equations of Arbitrary Order

3.1. Homogeneous Equations

Consider the linear nonhomogeneous differential equation of order n,

y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = r(x), (3.1)

with variable coefficients, a0(x), a1(x), . . . , an−1(x). Let L denote the differential
operator on the left-hand side,

L := Dn + an−1(x)Dn−1 + · · · + a1(x)D + a0(x), D := ′ =
d

dx
. (3.2)

Then the nonhomogeneous equation (3.1) is written in the form

Lu = r(x).

If r ≡ 0, equation (3.1) is said to be homogeneous,

y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = 0, (3.3)

that is,

Ly = 0.

Definition 3.1. A solution of (3.1) or (3.3) on the interval ]a, b[ is a function
y(x), n times continuously differentiable on ]a, b[, which satisfies identically the
differential equation.

Theorem 2.1 proved in the previous chapter generalizes to linear homogeneous
equations of arbitrary order n.

Theorem 3.1. The solutions of the homogeneous equation (3.3) form a vector
space.

Proof. Let y1, y2, . . . , yk be k solutions of Ly = 0. The linearity of the
operator L implies that

L(c1y1 + c2y2 + · · · + ckyk) = c1Ly1 + c2Ly2 + · · · + ckLyk = 0, ci ∈ R. �

Definition 3.2. We say that n functions, f1, f2, . . . , fn, are linearly depen-
dent on the interval ]a, b[ if and only if there exist n constants not all zero, i.e.

(k1, k2, . . . , kn) 6= (0, 0, . . . , 0),

such that

k1f1(x) + k2f2(x) + · · · + knfn(x) = 0, for all x ∈]a, b[. (3.4)

Otherwise, they are said to be linearly independent.

49
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Remark 3.1. Let f1, f2, . . . , fn be n linearly dependent functions. Without
loss of generality, we may suppose that k1 6= 0 in (3.4). Then f1 is a linear
combination of f2, f3, . . . , fn.

f1(x) = − 1

k1
[k2f2(x) + · · · + knfn(x)].

We have the following Existence and Uniqueness Theorem.

Theorem 3.2 (Existence and Uniqueness). If the functions a0(x), a1(x), . . . , an−1(x)
are continuous on the interval ]a, b[ and x0 ∈]a, b[, then the initial value problem

Ly = 0, y(x0) = k1, y′(x0) = k2, . . . , y(n−1)(x0) = kn, (3.5)

admits one and only one solution.

Proof. One can prove the theorem by reducing the differential equation of
order n to a system of n differential equations of the first order. To do this, define
the n dependent variables

u1 = y, u2 = y′, . . . , un = y(n−1).

Then the initial value problem becomes



u1

u2

...
un−1

un




′

=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . . 0
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1







u1

u2

...
un−1

un




,




u1(x0)
u2(x0)

...
un−1(x0)
un(x0)




=




k1

k2

...
kn−1

kn




,

or, in matrix and vector notation,

u′(x) = A(x)u(x), u(x0) = k.

We say that the matrix A is a companion matrix because the determinant |A−λI|
is the characteristic polynomial of the homogeneous differential equation,

|A − λI| = (−1)n(λn + an−1λ
n−1 + · · · + a0 = (−1)npn(λ).

Using Picard’s method, one can show that this system admits one and only
one solution. Picard’s iterative procedure is as follows:

u[n](x) = u[0](x0) +

∫ x

x0

A(t)u[n−1](t) dt, u[0](x0) = k. �

Definition 3.3. The Wronskian of n functions, f1(x), f2(x), . . . , fn(x), n−1
times differentiable on the interval ]a, b[, is the following determinant of order n:

W (f1, f2, . . . , fn)(x) :=

∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
. (3.6)

The linear dependence of n solutions of the linear homogeneous differential
equation (3.3) is characterized by means of their Wronskian.

First, let us prove Abel’s Lemma.
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Lemma 3.1 (Abel). Let y1, y2, . . . , yn be n solutions of (3.3) on the interval
]a, b[. Then the Wronskian W (x) = W (y1, y2, . . . , yn)(x) satisfies the following
identity:

W (x) = W (x0) e
−

R

x

x0
an−1(t) dt

, x0 ∈]a, b[. (3.7)

Proof. For simplicity of writing, let us take n = 3; the general case is treated
as easily. Let W (x) be the Wronskian of three solutions y1, y2, y3. The derivative
W ′(x) of the Wronskian is of the form

W ′(x) =

∣∣∣∣∣∣

y1 y2 y3

y′
1 y′

2 y′
3

y′′
1 y′′

2 y′′
3

∣∣∣∣∣∣

′

=

∣∣∣∣∣∣

y′
1 y′

2 y′
3

y′
1 y′

2 y′
3

y′′
1 y′′

2 y′′
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

y1 y2 y3

y′′
1 y′′

2 y′′
3

y′′
1 y′′

2 y′′
3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

y1 y2 y3

y′
1 y′

2 y′
3

y′′′
1 y′′′

2 y′′′
3

∣∣∣∣∣∣

=

∣∣∣∣∣∣

y1 y2 y3

y′
1 y′

2 y′
3

y′′′
1 y′′′

2 y′′′
3

∣∣∣∣∣∣

=

∣∣∣∣∣∣

y1 y2 y3

y′
1 y′

2 y′
3

−a0y1 − a1y
′
1 − a2y

′′
1 −a0y2 − a1y

′
2 − a2y

′′
2 −a0y3 − a1y

′
3 − a2y

′′
3

∣∣∣∣∣∣
,

since the first two determinants of the second line are zero because two rows are
equal, and in the last determinant we have used the fact that yk, k = 1, 2, 3, is a
solution of the homogeneous equation (3.3).

Adding to the third row a0 times the first row and a1 times the second row,
we obtain the separable differential equation

W ′(x) = −a2(x)W (x),

namely,
dW

W
= −a2(x) dx.

The solution is

ln |W | = −
∫

a2(x) dx + c,

that is

W (x) = W (x0) e
−

R

x

x0
a2(t) dt

, x0 ∈]a, b[. �

Theorem 3.3. If the coefficients a0(x), a1(x), . . . , an−1(x) of (3.3) are con-
tinuous on the interval ]a, b[, then n solutions, y1, y2, . . . , yn, of (3.3) are linearly
dependent if and only if their Wronskian is zero at a point x0 ∈]a, b[,

W (y1, y2, . . . , yn)(x0) :=

∣∣∣∣∣∣∣∣∣

y1(x0) · · · yn(x0)
y′
1(x0) · · · y′

n(x0)
...

...

y
(n−1)
1 (x0) · · · y

(n−1)
n (x0)

∣∣∣∣∣∣∣∣∣
= 0. (3.8)

Proof. If the solutions are linearly dependent, then by Definition 3.2 there
exist n constants not all zero,

(k1, k2, . . . , kn) 6= (0, 0, . . . , 0),
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such that

k1y1(x) + k2y2(x) + · · · + knyn(x) = 0, for all x ∈]a, b[.

Differentiating this identity n − 1 times, we obtain

k1y1(x) + k2y2(x) + · · · + knyn(x) = 0,

k1y
′
1(x) + k2y

′
2(x) + · · · + kny′

n(x) = 0,

...

k1y
(n−1)
1 (x) + k2y

(n−1)
2 (x) + · · · + kny(n−1)

n (x) = 0.

We rewrite this homogeneous algebraic linear system, in the n unknowns k1, k2, . . . , kn

in matrix form,



y1(x) · · · yn(x)
y′
1(x) · · · y′

n(x)
...

...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)







k1

k2

...
kn


 =




0
0
...
0


 , (3.9)

that is,

Ak = 0.

Since, by hypothesis, the solution k is nonzero, the determinant of the system
must be zero,

detA = W (y1, y2, . . . , yn)(x) = 0, for all x ∈]a, b[.

On the other hand, if the Wronskian of n solutions is zero at an arbitrary point
x0,

W (y1, y2, . . . , yn)(x0) = 0,

then it is zero for all x ∈]a, b[ by Abel’s Lemma 3.1. Hence the determinant
W (x) of system (3.9) is zero for all x ∈]a, b[. Therefore this system admits a
nonzero solution k. Consequently, the solutions, y1, y2, . . . , yn, of (3.3) are linearly
dependent. �

Remark 3.2. The Wronskian of n linearly dependent functions, which are
sufficiently differentiable on ]a, b[, is necessarily zero on ]a, b[, as can be seen
from the first part of the proof of Theorem 3.3. But for functions which are not
solutions of the same linear homogeneous differential equation, a zero Wronskian
on ]a, b[ is not a sufficient condition for the linear dependence of these functions.
For instance, u1 = x3 and u2 = |x|3 are of class C1 in the interval [−1, 1] and are
linearly independent, but satisfy W (x3, |x|3) = 0 identically.

Corollary 3.1. If the coefficients a0(x), a1(x), . . . , an−1(x) of (3.3) are con-
tinuous on ]a, b[, then n solutions, y1, y2, . . . , yn, of (3.3) are linearly independent
if and only if their Wronskian is not zero at a single point x0 ∈]a, b[.

This follows from Theorem 3.3.

Corollary 3.2. Suppose f1(x), f2(x), . . . , fn(x) are n functions which pos-
sess continuous nth-order derivatives on a real interval I, and W (f1, . . . , fn)(x) 6=
0 on I. Then there exists a unique homogeneous differential equation of order n
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(with the coefficient of y(n) equal to one) for which these functions are linearly
independent solutions, namely,

(−1)n W (y, f1, . . . , fn)

W (f1, . . . , fn)
= 0.

Example 3.1. Show that the functions

y1(x) = coshx and y2(x) = sinhx

are linearly independent.

Solution. Since y1 and y2 are twice continuously differentiable and

W (y1, y2)(x) =

∣∣∣∣
coshx sinhx
sinhx coshx

∣∣∣∣ = cosh2 x − sinh2 x = 1,

for all x, then, by Corollary 3.2, y1 and y2 are linearly independent. Incidently,
it is easy to see that y1 and y2 are solutions of the differential equation

y′′ − y = 0.

�

Remark 3.3. In the previous solution we have used the following identity:

cosh2 x − sinh2 x =

(
ex + e−x

2

)2

−
(

ex − e−x

2

)2

=
1

4

(
e2x + e−2x + 2 ex e−x − e2x − e−2x + 2 ex e−x

)

= 1.

Example 3.2. Use the Wronskian of the functions

y1(x) = xm and y2(x) = xm lnx

to show that they are linearly independent for x > 0 and construct a second-order
differential equation for which they are solutions.

Solution. We verify that the Wronskian of y1 and y2 does not vanish for
x > 0:

W (y1, y2)(x) =

∣∣∣∣
xm xm lnx

mxm−1 mxm−1 lnx + xm−1

∣∣∣∣

= xmxm−1

∣∣∣∣
1 ln x
m m lnx + 1

∣∣∣∣
= x2m−1(1 + m lnx − m lnx) = x2m−1 6= 0, for all x > 0.

Hence, by Corollary 3.2, y1 and y2 are linearly independent. By the same corollary

W (y, xm, xm lnx)(x) =

∣∣∣∣∣∣

y xm xm lnx
y′ mxm−1 mxm−1 lnx + xm−1

y′′ m(m − 1)xm−2 m(m − 1)xm−2 lnx + (2m − 1)xm−2

∣∣∣∣∣∣
= 0.

Multiplying the second and third rows by x and x2, respectively, dividing the
second and third columns by xm, subtracting m times the first row from the
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second row and m(m − 1) times the first row from the third row, one gets the
equivalent simplified determinantal equation

∣∣∣∣∣∣

y 1 lnx
xy′ − my 0 1

x2y′′ − m(m − 1)y 0 2m − 1

∣∣∣∣∣∣
= 0,

which upon expanding by the second column produces the Euler–Cauchy equation

x2y′′ + (1 − 2m)xy′ + m2y = 0. �

Definition 3.4. We say that n linearly independent solutions, y1, y2, . . . , yn,
of the homogeneous equation (3.3) on ]a, b[ form a fundamental system or basis
on ]a, b[.

Definition 3.5. Let y1, y2, . . . , yn be a fundamental system for (3.3). A
solution of (3.3) on ]a, b[ of the form

y(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x), (3.10)

where c1, c2, . . . , cn are n arbitrary constants, is said to be a general solution of
(3.3) on ]a, b[.

Recall that we need the general solution to span the vector space of solutions
as it must represent all possible solutions of the equation.

Theorem 3.4. If the functions a0(x), a1(x), . . . , an−1(x) are continuous on
]a, b[, then the linear homogeneous equation (3.3) admits a general solution on
]a, b[.

Proof. By Theorem 3.2, for each i, i = 1, 2, . . . , n, the initial value problem
(3.5),

Ly = 0, with y(i−1)(x0) = 1, y(j−1)(x0) = 0, j 6= i,

admits one (and only one) solution yi(x) such that

y
(i−1)
i (x0) = 1, y

(j−1)
i (x0) = 0, j = 1, 2, . . . , i − 1, i + 1, . . . , n.

Then the Wronskian W satisfies the following relation

W (y1, y2, . . . , yn)(x0) =

∣∣∣∣∣∣∣∣∣

y1(x0) · · · yn(x0)
y′
1(x0) · · · y′

n(x0)
...

...

y
(n−1)
1 (x0) · · · y

(n−1)
n (x0)

∣∣∣∣∣∣∣∣∣
= |In| = 1,

where In is the identity matrix of order n. It follows from Corollary 3.1 that the
solutions are independent. �

Theorem 3.5. If the functions a0(x), a1(x), . . . , an−1(x) are continuous on
]a, b[, then the solution of the initial value problem (3.5) on ]a, b[ is obtained from
a general solution.

Proof. Let

y = c1y1 + c2y2 + · · · + cnyn



3.2. LINEAR HOMOGENEOUS EQUATIONS 55

be a general solution of (3.3). The system



y1(x0) · · · yn(x0)
y′
1(x0) · · · y′

n(x0)
...

...

y
(n−1)
1 (x0) · · · y

(n−1)
n (x0)







c1

c2

...
cn


 =




k1

k2

...
kn




admits a unique solution c since the determinant of the system is nonzero. �

3.2. Linear Homogeneous Equations

Consider the linear homogeneous differential equation of order n,

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = 0, (3.11)

with constant coefficients, a0, a1, . . . , an−1. Let L denote the differential operator
on the left-hand side,

L := Dn + an−1D
n−1 + · · · + a1D + a0, D := ′ =

d

dx
. (3.12)

Putting y(x) = eλx in (3.11), we obtain the characteristic equation

p(λ) := λn + an−1λ
n−1 + · · · + a1λ + a0 = 0. (3.13)

If the n roots of p(λ) = 0 are distinct, we have n independent solutions,

y1(x) = eλ1x, y2(x) = eλ2x, . . . , yn(x) = eλnx, (3.14)

and the general solution is of the form

y(x) = c1 eλ1x + c2 eλ2x + · · · + cn eλnx. (3.15)

If (3.13) has a double root, say, λ1 = λ2, we have two independent solutions
of the form

y1(x) = eλ1x, y2(x) = x eλ1x.

Similarly, if there is a triple root, say, λ1 = λ2 = λ3, we have three independent
solutions of the form

y1(x) = eλ1x, y2(x) = x eλ1x, y3(x) = x2 eλ1x.

We prove the following theorem.

Theorem 3.6. Let µ be a root of multiplicity m of the characteristic equation
(3.13). Then the differential equation (3.11) has m independent solutions of the
form

y1(x) = eµx, y2(x) = x eµx, . . . , ym(x) = xm−1 eµx. (3.16)

Proof. Let us write

p(D)y = (Dn + an−1D
n−1 + · · · + a1D + a0)y = 0.

Since, by hypothesis,
p(λ) = q(λ)(λ − µ)m,

and the coefficients are constant, the differential operator p(D) can be factored
in the form

p(D) = q(D)(D − µ)m.

We see by recurrence that the m functions (3.16),

xk eµx, k = 0, 1, . . . , m − 1,



56 3. LINEAR DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER

satisfy the following equations:

(D − µ)
(
xk eµx

)
= kxk−1 eµx + µxk eµx − µxk eµx

= kxk−1 eµx,

(D − µ)2
(
xk eµx

)
= (D − µ)

(
kxk−1 eµx

)

= k(k − 1)xk−2 eµx,

...

(D − µ)k
(
xk eµx

)
= k! eµx,

(D − µ)k+1
(
xk eµx

)
= k! (eµx − eµx) = 0.

Since m ≥ k + 1, we have

(D − µ)m
(
xk eµx

)
= 0, k = 0, 1, . . . , m − 1.

Hence, by Lemma 3.2 below, the functions (3.16) are m independent solutions of
(3.11). �

Lemma 3.2. Let

y1(x) = eµx, y2(x) = x eµx, . . . , ym(x) = xm−1 eµx,

be m solutions of a linear homogeneous differential equation. Then they are in-
dependent.

Proof. By Corollary 3.1, it suffices to show that the Wronskian of the solu-
tions is nonzero at x = 0. We have seen, in the proof of the preceding theorem,
that

(D − µ)k
(
xk eµx

)
= k! eµx,

that is,

Dk
(
xk eµx

)
= k! eµx + terms in xl eµx, l = 1, 2, . . . , k − 1.

Hence
Dk
(
xk eµx

) ∣∣
x=0

= k!, Dk
(
xk+l eµx

) ∣∣
x=0

= 0, l ≥ 1.

It follows that the matrix M of the Wronskian at x = 0 is lower triangular with
mi,i = (i − 1)!,

W (0) =

∣∣∣∣∣∣∣∣∣∣∣∣

0! 0 0 . . . 0
× 1! 0 0

× × 2! 0
...

...
. . .

. . . 0
× × . . . × (m − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

=

m−1∏

k=0

k! 6= 0. �

Example 3.3. Find the general solution of

(D4 − 13D2 + 36I)y = 0.

Solution. The characteristic polynomial is easily factored,

λ4 − 13λ2 + 36 = (λ2 − 9)(λ2 − 4)

= (λ + 3)(λ − 3)(λ + 2)(λ − 2).

Hence,
y(x) = c1 e−3x + c2 e3x + c3 e−2x + c4 e2x.
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The Matlab polynomial solver.— To find the zeros of the characteristic poly-
nomial

λ4 − 13λ2 + 36

with Matlab, one represents the polynomial by the vector of its coefficients,

p =
[

1 0 −13 0 36
]

and uses the command roots on p.

>> p = [1 0 -13 0 36]

p = 1 0 -13 0 36

>> r = roots(p)

r =

3.0000

-3.0000

2.0000

-2.0000

In fact the command roots constructs a matrix C of p (see the proof of Theo-
rem 3.2)

C =




0 13 0 −36
1 0 0 0
0 1 0 0
0 0 1 0




and uses the QR algorithm to find the eigenvalues of C which, in fact, are the
zeros of p.

>> p = [1 0 -13 0 36];

>> C = compan(p)

C =

0 13 0 -36

1 0 0 0

0 1 0 0

0 0 1 0

>> eigenvalues = eig(C)’

eigenvalues = 3.0000 -3.0000 2.0000 -2.0000

�

Example 3.4. Find the general solution of the differential equation

(D − I)3y = 0.

Solution. The characteristic polynomial (λ − 1)3 admits a triple zero:

λ1 = λ2 = λ3 = 1,

Hence:
y(x) = c1 ex + c2x ex + c3x

2 ex. �

If the characteristic equation (3.13) has complex roots, say λ1,2 = α ± iβ,
then we have two independent solutions

y1(x) = eαx cos(βx), y2(x) = eαx sin(βx),

as in Chapter 2.
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If the order of the differential equation is n ≥ 4, there are other possibili-
ties for complex roots. Suppose that there are two distinct conjugate pairs, i.e.
λ1,2 = α1 ± iβ1 and λ3,4 = α2 ± iβ2 where (α1, β1) 6= (α2, β2), then we have the
independent solutions

y1(x) = eα1x cos(β1x), y2(x) = eα1x sin(β1x),

y3(x) = eα2x cos(β2x), y4(x) = eα2x sin(β2x).

But we could also have repeated complex roots. Suppose that λ1 = λ2 = α + iβ
and λ3 = λ4 = α − iβ. Then we have the independent solutions

y1(x) = eαx cos(βx), y2(x) = eαx sin(βx),

y3(x) = x eαx cos(βx), y4(x) = x eαx sin(βx),

but the order in which we write them does not matter.

Example 3.5. Find the general solution of the differential equation

y(4) + 13y′′ + 36y = 0.

Solution. The characteristic equation is

λ4 + 13λ2 + 36 = (λ2 + 4)(λ2 + 9) = 0.

So the roots are λ1,2 = ±2i and λ3,4 = ±3i, and the general solution is

y(x) = c1 cos(2x) + c2 sin(2x) + c3 cos(3x) + c4 sin(3x). �

Example 3.6. Find the general solution of the differential equation

y(4) + 8y′′′ + 26y′′ + 40y′ + 25y = 0.

Solution. The characteristic equation is

λ4 + 8λ3 + 26λ2 + 40λ + 25 = (λ2 + 4λ + 5)2 = 0.

So the roots are λ1,2 = −2 + i and λ3,4 = −2 − i, and the general solution is

y(x) = c1 e−2x cosx + c2 e−2x sinx + c3x e−2x cosx + c4x e−2x sinx. �

Example 3.7. Find the general solution of the Euler–Cauchy equation

x3y′′′ − 3x2y′′ + 6xy′ − 6y = 0.

Solution. (a) The analytic solution.— Putting

y(x) = xm

in the differential equation, we have

m(m − 1)(m − 2)xm − 3m(m − 1)xm + 6mxm − 6xm = 0,

and dividing by xm, we obtain the characteristic equation,

m(m − 1)(m − 2) − 3m(m − 1) + 6m− 6 = 0.

Noting that m − 1 is a common factor, we have

(m − 1)[m(m − 2) − 3m + 6] = (m − 1)(m2 − 5m + 6)

= (m − 1)(m − 2)(m − 3) = 0.

Thus,
y(x) = c1 x + c2 x2 + c3 x3.

(b) The Matlab symbolic solution.—
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dsolve(’x^3*D3y-3*x^2*D2y+6*x*Dy-6*y=0’,’x’)

y = C1*x+C2*x^2+C3*x^3

�

If m1 = m2 = m is a double root of the characteristic equation of an Euler–
Cauchy equation, we have from Chapter 2 that y1(x) = xm and y2(x) = xm lnx
are independent solutions.

Suppose that m1 = m2 = m3 = m is a triple root, then we have three
independent solutions

y1(x) = xm, y2(x) = xm lnx, y3(x) = xm(ln x)2.

Example 3.8. Find the general solution of the Euler–Cauchy equation

x3y′′′ + 6x2y′′ + 7xy′ − y = 0.

Solution. The characteristic equation is

m(m − 1)(m − 2) + 6m(m − 1) + 7m + 1 = m3 + 3m2 + 3m + 1 = (m + 1)3 = 0,

and so the general solution is

y(x) = c1x
−1 + c2x

−1 lnx + c3x
−1(lnx)2. �

3.3. Linear Nonhomogeneous Equations

Consider the linear nonhomogeneous differential equation of order n,

Ly := y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = r(x). (3.17)

Let

yh(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x), (3.18)

be a general solution of the corresponding homogeneous equation

Ly = 0.

Moreover, let yp(x) be a particular solution of the nonhomogeneous equation
(3.17). Then,

yg(x) = yh(x) + yp(x)

is a general solution of (3.17). In fact,

Lyg = Lyh + Lyp = 0 + r(x).

As yg(x) is a solution of the nonhomogeneous equation (3.17) which contains n
arbitrary constants, it must be the general solution.

Example 3.9. Find a general solution yg(x) of

y′′ − y = 3 e2x

if

yp(x) = e2x

is a particular solution.



60 3. LINEAR DIFFERENTIAL EQUATIONS OF ARBITRARY ORDER

Solution. (a) The analytic solution.— It is easy to see that e2x is a partic-
ular solution. Since

y′′ − y = 0 =⇒ λ2 − 1 = 0 =⇒ λ = ±1,

a general solution to the homogeneous equation is

yh(x) = c1 ex + c2 e−x

and a general solution of the nonhomogeneous equation is

yg(x) = c1 ex + c2 e−x + e2x.

(b) The Matlab symbolic solution.—

dsolve(’D2y-y-3*exp(2*x)’,’x’)

y = (exp(2*x)*exp(x)+C1*exp(x)^2+C2)/exp(x)

z = expand(y)

z = exp(x)^2+exp(x)*C1+1/exp(x)*C2

�

Here is a second method for solving linear first-order differential equations
treated in Section 1.6.

Example 3.10. Find the general solution of the first-order linear nonhomo-
geneous equation

Ly := y′ + f(x)y = r(x). (3.19)

Solution. The homogeneous equation Ly = 0 is separable:

dy

y
= −f(x) dx =⇒ ln |y| = −

∫
f(x) dx =⇒ yh(x) = e−

R

f(x) dx.

No arbitrary constant is needed here. To find a particular solution by variation
of parameters we put

yp(x) = u(x)yh(x)

in the nonhomogeneous equation Ly = r(x):

y′
p = uy′

h + u′yh

f(x)yp = uf(x)yh.

Adding the left- and right-hand sides of these expressions we have

Lyp = uLyh + u′yh

= u′yh

= r(x).

Since the differential equation u′yh = r is separable,

du = e
R

f(x) dxr(x) dx,

it can be integrated directly,

u(x) =

∫
e

R

f(x) dxr(x) dx.

No arbitrary constant is needed here. Thus,

yp(x) = e−
R

f(x) dx

∫
e

R

f(x) dxr(x) dx.
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Hence, the general solution of (3.19) is

y(x) = cyh(x) + yp(x)

= e−
R

f(x) dx

[∫
e

R

f(x)dxr(x) dx + c

]
,

which agrees with what we saw in Chapter 1. �

In the next two sections we present two methods to find particular solutions,
namely, the Method of Undetermined Coefficients and the Method of Variation of
Parameters. The first method, which is more restrictive than the second, does not
always require the general solution of the homogeneous equation, but the second
always does.

3.4. Method of Undetermined Coefficients

Consider the linear nonhomogeneous differential equation of order n,

y(n) + an−1y
(n−1) + · · · + a1y

′ + a0y = r(x), (3.20)

with constant coefficients, a0, a1, . . . , an−1.
If the dimension of the space spanned by the derivatives of the functions on

the right-hand side of (3.20) is finite, we can use the Method of Undetermined
Coefficients.

Here is a list of usual functions r(x) which have a finite number of linearly
independent derivatives. We indicate the dimension of the space of derivatives.

r(x) = x2 + 2x + 1, r′(x) = 2x + 2, r′′(x) = 2,

r(k)(x) = 0, k = 3, 4, . . . , =⇒ dim. = 3;

r(x) = cos 2x + sin 2x, r′(x) = −2 sin 2x + 2 cos 2x,

r′′(x) = −4r(x), =⇒ dim. = 2;

r(x) = x ex, r′(x) = ex + x ex,

r′′(x) = 2r′(x) − r(x), =⇒ dim. = 2.

More specifically, the functions that have a finite number of independent deriva-
tives are polynomials, exponentials, sine, cosine, hyperbolic sine, hyperbolic co-
sine, and sums and products of them.

The Method of Undetermined Coefficients consists in choosing for a particular
solution a linear combination,

yp(x) = c1p1(x) + c2p2(x) + · · · + clpl(x), (3.21)

of the independent derivatives of the function r(x) on the right-hand side. We
determine the coefficients ck by substituting yp(x) in (3.20) and equating coeffi-
cients. A bad choice or a mistake leads to a contradiction.

Example 3.11. Find a general solution yg(x) of

Ly := y′′ + y = 3x2

by the Method of Undetermined Coefficients.
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Solution. (a) The analytic solution.— Since r(x) = 3x2 is a quadratic, put

yp(x) = ax2 + bx + c

in the differential equation and add the terms on the left- and the right-hand
sides, respectively,

yp = ax2 + bx + c

y′′
p = 2a

Lyp = ax2 + bx + (2a + c)

= 3x2.

Identifying the coefficients of 1, x and x2 on both sides, we have

a = 3, b = 0, c = −2a = −6.

The general solution of Ly = 0 is

yh(x) = A cosx + B sinx.

Hence, the general solution of Ly = 3x2 is

yg(x) = A cosx + B sin x + 3x2 − 6.

(b) The Matlab symbolic solution.—

dsolve(’D2y+y=3*x^2’,’x’)

y = -6+3*x^2+C1*sin(x)+C2*cos(x)

�

Important remark. If for a chosen term pj(x) in (3.21), xkpj(x) is a solution
of the homogeneous equation, but xk+1pj(x) is not, then pj(x) must be replaced
by xk+1pj(x). Naturally, we exclude from yp the terms which are in the space of
solution of the homogeneous equation since they contribute zero to the right-hand
side.

Example 3.12. Find the form of a particular solution for solving the equation

y′′ − 4y′ + 4y = 3 e2x + 32 sinx

by the Method of Undetermined Coefficients.

Solution. Since the general solution of the homogeneous equation is

yh(x) = c1 e2x + c2x e2x,

a particular solution is of the form

yp(x) = ax2 e2x + b cosx + c sin x.

Since r(x) = 3 e2x + 32 sinx, the exponential part 3 e2x would contribute a e2x,
but this and x e2x appear in yh(x), so we have ax2 e2x and the trigonometric part
32 sinx contributes b cosx and c sinx. We must be careful to note that whenever
sine or cosine appears in r(x), we shall have both of them in yp(x). �

Example 3.13. Solve the initial value problem

y′′′ − y′ = 4 e−x + 3 e2x, y(0) = 0, y′(0) = −1, y′′(0) = 2

and plot the solution.
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Solution. (a) The analytic solution.— The characteristic equation is

λ3 − λ = λ(λ − 1)(λ + 1) = 0.

The general solution of the homogeneous equation is

yh(x) = c1 + c2 ex + c3 e−x.

Considering that e−x is contained in the right-hand side of the differential equa-
tion, we take a particular solution of the form

yp(x) = ax e−x + b e2x.

Then,

y′
p(x) = −ax e−x + a e−x + 2b e2x,

y′′
p (x) = ax e−x − 2a e−x + 4b e2x,

y′′′
p (x) = −ax e−x + 3a e−x + 8b e2x.

Hence,

y′′′
p (x) − y′

p(x) = 2a e−x + 6b e2x

= 4 e−x + 3 e2x, for all x.

Identifying the coefficients of e−x and e2x, we have

a = 2, b =
1

2
.

Thus, a particular solution of the nonhomogeneous equation is

yp(x) = 2x e−x +
1

2
e2x

and the general solution of the nonhomogeneous equation is

y(x) = c1 + c2 ex + c3 e−x + 2x e−x +
1

2
e2x.

The arbitrary constants c1, c2 and c3 are determined by the initial conditions:

y(0) = c1 + c2 + c3+
1

2
= 0,

y′(0) = c2 − c3 +3 = −1,

y′′(0) = c2 + c3 −2 = 2,

yielding the linear algebraic system

c1 + c2 + c3 = −1

2
,

c2 − c3 = −4,

c2 + c3 = 4,

whose solution is

c1 = −9

2
, c2 = 0, c3 = 4,

and the unique solution is

y(x) = −9

2
+ 4 e−x + 2x e−x +

1

2
e2x.

(b) The Matlab symbolic solution.—
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Figure 3.1. Graph of solution of the linear equation in Example 3.13.

dsolve(’D3y-Dy=4*exp(-x)+3*exp(2*x)’,’y(0)=0’,’Dy(0)=-1’,’D2y(0)=2’,’x’)

y = 1/2*(8+exp(3*x)+4*x-9*exp(x))/exp(x)

z =expand(y)

z = 4/exp(x)+1/2*exp(x)^2+2/exp(x)*x-9/2

(c) The Matlab numeric solution.— To rewrite the third-order differential
equation as a system of first-order equations, we put

y(1) = y,

y(2) = y′,

y(3) = y′′.

Thus, we have

y(1)′ = y(2),

y(2)′ = y(3),

y(3)′ = y(2) + 4 ∗ exp(−x) + 3 ∗ exp(2 ∗ x).

The M-file exp39.m:

function yprime = exp39(x,y);

yprime=[y(2); y(3); y(2)+4*exp(-x)+3*exp(2*x)];

The call to the ode23 solver and the plot command:

xspan = [0 2]; % solution for x=0 to x=2

y0 = [0;-1;2]; % initial conditions

[x,y] = ode23(’exp39’,xspan,y0);

plot(x,y(:,1))

The numerical solution is plotted in Fig. 3.1. �
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3.5. Particular Solution by Variation of Parameters

Consider the linear nonhomogeneous differential equation of order n,

Ly := y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = r(x), (3.22)

in standard form, that is, the coefficient of y(n) is equal to 1.
Let

yh(x) = c1y1(x) + c2y2(x) + · · · + cnyn(x), (3.23)

be a general solution of the corresponding homogeneous equation

Ly = 0.

For simplicity, we derive the Method of Variation of Parameters in the case
n = 3,

Ly := y′′′ + a2(x)y′′ + a1(x)y′ + a0(x)y = r(x), (3.24)

The general case follows in the same way.
Following an idea due to Lagrange, we take a particular solution of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x) + c3(x)y3(x), (3.25)

where we let the parameters c1, c2 and c3 of the general solution yh vary, thus
giving us three degrees of freedom.

We differentiate yp(x):

y′
p(x) =

[
c′1(x)y1(x) + c′2(x)y2(x) + c′3(x)y3(x)

]

+ c1(x)y′
1(x) + c2(x)y′

2(x) + c3(x)y′
3(x)

= c1(x)y′
1(x) + c2(x)y′

2(x) + c3(x)y′
3(x),

where, using one degree of freedom, we let the term in square brackets be zero,

c′1(x)y1(x) + c′2(x)y2(x) + c′3(x)y3(x) = 0. (3.26)

We differentiate y′
p(x):

y′′
p (x) =

[
c′1(x)y′

1(x) + c′2(x)y′
2(x) + c′3(x)y′

3(x)
]

+ c1(x)y′′
1 (x) + c2(x)y′′

2 (x) + c3(x)y′′
3 (x)

= c1(x)y′′
1 (x) + c2(x)y′′

2 (x) + c3(x)y′′
3 (x),

where, using another degree of freedom, we let the term in square brackets be
zero,

c′1(x)y′
1(x) + c′2(x)y′

2(x) + c′3(x)y′
3(x) = 0. (3.27)

Lastly, we differentiate y′′
p (x):

y′′′
p (x) =

[
c′1(x)y′′

1 (x) + c′2(x)y′′
2 (x) + c′3(x)y′′

3 (x)
]

+
[
c1(x)y′′′

1 (x) + c2(x)y′′′
2 (x) + c3(x)y′′′

3 (x)
]
.

Using the expressions obtained for yp, y′
p, y′′

p and y′′′
p , we have

Lyp = y′′′
p + a2y

′′
p + a1y

′
p + a0yp

= c′1y
′′
1 + c′2y

′′
2 + c′3y

′′
3 +

[
c1Ly1 + c2Ly2 + c3Ly3

]

= c′1y
′′
1 + c′2y

′′
2 + c′3y

′′
3

= r(x),
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since y1, y2 and y3 are solutions of Ly = 0 and hence the term in square brackets
is zero. Moreover, we want yp to satisfy Lyp = r(x), which we can do by our third
and last degree of freedom. Hence we have

c′1y
′′
1 + c′2y

′′
2 + c′3y

′′
3 = r(x). (3.28)

We rewrite the three equations (3.26)–(3.28) in the unknowns c′1(x), c′2(x) and
c′3(x) in matrix form,




y1(x) y2(x) y3(x)
y′
1(x) y′

2(x) y′
3(x)

y′′
1 (x) y′′

2 (x) y′′
3 (x)






c′1(x)
c′2(x)
c′3(x)


 =




0
0

r(x)


 , (3.29)

that is,

M(x)c′(x) =




0
0

r(x)


 .

Since y1, y2 and y3 form a fundamental system, by Corollary 3.1 their Wronskian
does not vanish,

W (y1, y2, y3) = detM 6= 0.

We solve the linear system for c′(x) and integrate the solution

c(x) =

∫
c′(x) dx.

No constants of integrations are needed here since the general solution will contain
three arbitrary constants. The general solution is (3.24) is

yg(x) = Ay1 + By2 + Cy3 + c1(x)y1 + c2(x)y2 + c3(x)y3. (3.30)

Because of the particular form of the right-hand side of system (3.29), Cramer’s
rule leads to nice formulae for the solution of this system in two and three dimen-
sions. In 2D, we have

yp(x) = −y1(x)

∫
y2(x)r(x)

W (x)
dx + y2(x)

∫
y1(x)r(x)

W (x)
dx. (3.31)

In 3D, solve (3.29) for c′1, c′2 and c′3 by Cramer’s rule:

c′1(x) =
r

W

∣∣∣∣
y2 y3

y′
2 y′

3

∣∣∣∣ , c′2(x) = − r

W

∣∣∣∣
y1 y3

y′
1 y′

3

∣∣∣∣ , c′3(x) =
r

W

∣∣∣∣
y1 y2

y′
1 y′

1

∣∣∣∣ ,
(3.32)

integrate the c′i with respect to x and form yp(x) as in (3.25).

Remark 3.4. If the coefficient an(x) of y(n) is not equal to 1, we must divide
the right-hand side of (3.29) by an(x), that is, replace r(x) by r(x)/an(x). This is
important to remember when solving Euler–Cauchy equations which are usually
not written in standard form.

Example 3.14. Find the general solution of the differential equation

y′′ + y = secx tan x,

by the Method of Variation of Parameters.
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Solution. (a) The analytic solution.— We have that the general solution of
the homogeneous equation y′′ + y = 0 is

yh(x) = c1 cosx + c2 sin x.

Since the term on the right-hand side, r(x) = secx tan x, does not have a finite
number of independent derivatives, we must use Variation of Parameters, i.e. we
must solve

c′1(x)y1 + c′2(x)y2 = 0,

c′1(x)y′
1 + c′2(x)y′

2 = r,

or

c′1(x) cos x + c′2 sin x = 0, (a)

−c′1(x) sin x + c′2 cosx = secx tan x. (b)

Multiply (a) by sinx and (b) by cosx to get

c′1(x) sin x cosx + c′2 sin2 x = 0, (c)

−c′1(x) sin x cosx + c′2 cos2 x = tanx. (d)

Then (c)+(d) gives

c′2 = tanx =⇒ c2(x) = − ln | cosx| = ln | secx|,

and then from (c)

c′1 = −c′2 sinx

cosx
= − tan2 x = 1 − sec2 x =⇒ c1(x) = x − tan x.

So the particular solution is

yp(x) = c1(x) cos x + c2(x) sin x

= (x − tan x) cos x + (ln | secx|) sin x.

Finally, the general solution is

y(x) = yh(x) + yp(x)

= A cos x + B sin x + (x − tan x) cos x + (ln | secx|) sin x.

Note that the term − tanx cosx = − sinx can be absorbed in yh.

(b) The Matlab symbolic solution.—

dsolve(’D2y+y=sec(x)*tan(x)’,’x’)

y = -log(cos(x))*sin(x)-sin(x)+x*cos(x)+C1*sin(x)+C2*cos(x)

�

Example 3.15. Find the general solution of the differential equation

y′′′ − y′ = coshx

by the Method of Variation of Parameters.
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Solution. The characteristic equation is

λ3 − λ = λ(λ2 − 1) = 0 =⇒ λ1 = 0, λ2 = 1, λ3 = −1.

The general solution of the homogeneous equation is

yh(x) = c1 + c2 ex + c3 e−x.

By the Method of Variation of Parameters, the particular solution of the nonho-
mogeneous equation is

yp(x) = c1(x) + c2(x) ex + c3(x) e−x.

Thus, we have the system



1 ex e−x

0 ex −e−x

0 ex e−x






c′1(x)
c′2(x)
c′3(x)


 =




0
0

cosh x


 .

We solve this system by Gaussian elimination:



1 ex e−x

0 ex −e−x

0 0 2e−x






c′1(x)
c′2(x)
c′3(x)


 =




0
0

cosh x


 .

Hence

c′3 =
1

2
ex cosh x =

1

2
ex

(
ex + e−x

2

)
=

1

4

(
e2x + 1

)
,

c′2 = e−2xc′3 =
1

4

(
1 + e−2x

)
,

c′1 = −exc′2 − e−xc′3 = −1

2

(
ex + e−x

)
= − coshx,

and after integration, we have

c1 = − sinhx

c2 =
1

4

(
x − 1

2
e−2x

)

c3 =
1

4

(
1

2
e2x + x

)
.

The particular solution is

yp(x) = − sinhx +
1

4

(
x ex − 1

2
e−x

)
+

1

4

(
1

2
ex + x e−x

)

= − sinhx +
1

4
x
(
ex + e−x

)
+

1

8

(
ex − e−x

)

=
1

2
x coshx − 3

4
sinhx.

The general solution of the nonhomogeneous equation is

yg(x) = A + B′ ex + C′ e−x +
1

2
x coshx − 3

4
sinhx

= A + B ex + C e−x +
1

2
x cosh x,
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where we have used the fact that the function

sinhx =
ex − e−x

2

is already contained in the general solution yh of the homogeneous equation.
Symbolic Matlab does not produce a general solution in such a simple form. �

If one uses the Method of Undetermined Coefficients to solve this problem,
one has to take a particular solution of the form

yp(x) = ax coshx + bx sinhx,

since coshx and sinhx are linear combinations of ex and e−x which are solutions
of the homogeneous equation. In fact, putting

yp(x) = ax cosh x + bx sinhx

in the equation y′′′ − y′ = coshx, we obtain

y′′′
p − y′

p = 2a coshx + 2b sinhx

= coshx,

whence

a =
1

2
and b = 0.

Example 3.16. Find the general solution of the differential equation

Ly := y′′ + 3y′ + 2y =
1

1 + ex
.

Solution. Since the dimension of the space of derivatives of the right-hand
side is infinite, one has to use the Method of Variation of Parameters.

It is to be noted that the symbolic Matlab command dsolve produces a
several-line-long solution that is unusable. We therefore follow the theoretical
method of Lagrange but do the simple algebraic and calculus manipulations by
symbolic Matlab.

The characteristic polynomial of the homogeneous equation Ly = 0 is

λ2 + 3λ + 2 = (λ + 1)(λ + 2) = 0 =⇒ λ1 = −1, λ2 = −2.

Hence, the general solution yh(x) to Ly = 0 is

yh(x) = c1 e−x + c2 e−2x.

By the Method of Variation of Parameters, a particular solution of the inhomo-
geneous equation is searched in the form

yp(x) = c1(x) e−x + c2(x) e−2x.

The functions c1(x) and c2(x) are the integrals of the solutions c′1(x) and c′2(x)
of the algebraic system Ac′ = b,

[
e−x e−2x

−e−x −2 e−2x

] [
c′1
c′2

]
=

[
0

1/(1 + ex)

]
.

We use symbolic Matlab to solve this simple system.
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>> clear

>> syms x real; syms c dc A b yp;

>> A = [exp(-x) exp(-2*x); -exp(-x) -2*exp(-2*x)];

>> b=[0 1/(1+exp(x))]’;

>> dc = A\b % solve for c’(x)

dc =

[ 1/exp(-x)/(1+exp(x))]

[ -1/exp(-2*x)/(1+exp(x))]

>> c = int(dc) % get c(x) by integrating c’(x)

c =

[ log(1+exp(x))]

[ -exp(x)+log(1+exp(x))]

>> yp=c’*[exp(-x) exp(-2*x)]’

yp =

log(1+exp(x))*exp(-x)+(-exp(x)+log(1+exp(x)))*exp(-2*x)

Since −e−x is contained in yh(x), the general solution of the inhomogeneous
equation is

y(x) = Ae−x + B e−2x + [ln (1 + ex)] e−x + [ln (1 + ex)] e−2x. �

Example 3.17. Solve the nonhomogeneous Euler–Cauchy differential equa-
tion with given initial values:

Ly := 2x2y′′ + xy′ − 3y = x−3, y(1) = 0, y′(1) = 2.

Solution. Putting y = xm in the homogeneous equation Ly = 0 we obtain
the characteristic polynomial:

2m2 − m − 3 = 0 =⇒ m1 =
3

2
, m2 = −1.

Thus, general solution, yh(x), of Ly = 0 is

yh(x) = c1x
3/2 + c2x

−1.

To find a particular solution, yp(x), to the nonhomogeneous equation, we use the
Method of Variation of Parameters since the dimension of the space of derivatives
of the right-hand side is infinite and the left-hand side is Euler–Cauchy. We put

yp(x) = c1(x)x3/2 + c2(x)x−1.

We need to solve the linear system
[

x3/2 x−1

3
2 x1/2 −x−2

] [
c′1
c′2

]
=

[
0

1
2 x−5

]
,

where the right-hand side of the linear system has been divided by the coefficient
2x2 of y′′ to have the equation in standard form with the coefficient of y′′ equal
to 1. Solving this system for c′1 and c′2, we obtain

c′1 =
1

5
x−11/2, c′2 = −1

5
x−3.

Thus, after integration,

c1(x) = − 2

45
x−9/2, c2(x) =

1

10
x−2,
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Figure 3.2. Forced damped system.

and the general solution is

y(x) = Ax3/2 + Bx−1 − 2

45
x−3 +

1

10
x−3

= Ax3/2 + Bx−1 +
1

18
x−3.

The constants A and B are uniquely determined by the initial conditions. For
this we need the derivative, y′(x), of y(x),

y′(x) =
3

2
Ax1/2 − Bx−2 − 1

6
x−4.

Thus,

y(1) = A + B +
1

18
= 0,

y′(1) =
3

2
A − B − 1

6
= 2.

Solving for A and B, we have

A =
38

45
, B = − 9

10
.

The (unique) solution is

y(x) =
38

45
x3/2 − 9

10
x−1 +

1

18
x−3. �

3.6. Forced Oscillations

We present two examples of forced vibrations of mechanical systems.
Consider a vertical spring attached to a rigid beam. The spring resists both

extension and compression with Hooke’s constant equal to k. Study the problem
of the forced damped vertical oscillation of a mass of m kg which is attached at
the lower end of the spring. (See Fig. 3.2). The damping constant is c and the
external force is r(t).

We refer to Example 2.5 for the derivation of the differential equation gov-
erning the nonforced system, and simply add the external force to the right-hand
side,

y′′ +
c

m
y′ +

k

m
y =

1

m
r(t).
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Example 3.18 (Forced oscillation without resonance). Solve the initial value
problem with external force

Ly := y′′ + 9y = 8 sin t, y(0) = 1, y′(0) = 1,

and plot the solution.

Solution. (a) The analytic solution.— The general solution of Ly = 0 is

yh(t) = A cos 3t + B sin 3t.

Following the Method of Undetermined Coefficients, we choose yp of the form

yp(t) = a cos t + b sin t.

Substituting this in Ly = 8 sin t we obtain

y′′
p + 9yp = (−a + 9a) cos t + (−b + 9b) sin t

= 8 sin t.

Identifying coefficients on both sides, we have

a = 0, b = 1.

The general solution of Ly = 8 sin t is

y(t) = A cos 3t + B sin 3t + sin t.

We determine A and B by means of the initial conditions:

y(0) = A = 1,

y′(t) = −3A sin 3t + 3B cos 3t + cos t,

y′(0) = 3B + 1 = 1 =⇒ B = 0.

The (unique) solution is

y(t) = cos 3t + sin t.

(b) The Matlab symbolic solution.—

dsolve(’D2y+9*y=8*sin(t)’,’y(0)=1’,’Dy(0)=1’,’t’)

y = sin(t)+cos(3*t)

(c) The Matlab numeric solution.— To rewrite the second-order differential
equation as a system of first-order equations, we put

y1 = y,

y2 = y′,

Thus, we have

y′
1 = y2,

y′
2 = −9y1 + 8 sin t.

The M-file exp312.m:

function yprime = exp312(t,y);

yprime = [y(2); -9*y(1)+8*sin(t)];

The call to the ode23 solver and the plot command:
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Figure 3.3. Graph of solution of the linear equation in Example 3.18.

tspan = [0 7]; % solution for t=0 to t=7

y0 = [1; 1]; % initial conditions

[x,y] = ode23(’exp312’,tspan,y0);

plot(x,y(:,1))

The numerical solution is plotted in Fig. 3.3. �

Example 3.19 (Forced oscillation with resonance). Solve the initial value
problem with external force

Ly := y′′ + 9y = 6 sin 3t, y(0) = 1, y′(0) = 2,

and plot the solution.

Solution. (a) The analytic solution.— The general solution of Ly = 0 is

yh(t) = A cos 3t + B sin 3t.

Since the right-hand side of Ly = 6 sin 3t is contained in the solution yh, following
the Method of Undetermined Coefficients, we choose yp of the form

yp(t) = at cos 3t + bt sin 3t.

Then we obtain

y′′
p + 9yp = −6a sin 3t + 6b cos 3t

= 6 sin 3t.

Identifying coefficients on both sides, we have

a = −1, b = 0.

The general solution of Ly = 6 sin 3t is

y(t) = A cos 3t + B sin 3t − t cos 3t.
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We determine A and B by means of the initial conditions,

y(0) = A = 1,

y′(t) = −3A sin 3t + 3B cos 3t − cos 3t + 3t sin 3t,

y′(0) = 3B − 1 = 2 =⇒ B = 1.

The (unique) solution is

y(t) = cos 3t + sin 3t − t cos 3t.

The term −t cos 3t, whose amplitude is increasing, comes from the resonance of
the system because the frequency of the external force coincides with the natural
frequency of the system.

(b) The Matlab symbolic solution.—

dsolve(’D2y+9*y=6*sin(3*t)’,’y(0)=1’,’Dy(0)=2’,’t’)

y = sin(3*t)-cos(3*t)*t+cos(3*t)

(c) The Matlab numeric solution.— To rewrite the second-order differential
equation as a system of first-order equations, we put

y1 = y,

y2 = y′,

Thus, we have

y′
1 = y2,

y′
2 = −9y1 + 6 sin 3t.

The M-file exp313.m:

function yprime = exp313(t,y);

yprime = [y(2); -9*y(1)+6*sin(3*t)];

The call to the ode23 solver and the plot command:

tspan = [0 7]; % solution for t=0 to t=7

y0 = [1; 1]; % initial conditions

[x,y] = ode23(’exp313’,tspan,y0);

plot(x,y(:,1))

The numerical solution is plotted in Fig. 3.4. �
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Figure 3.4. Graph of solution of the linear equation in Example 3.19.





CHAPTER 4

Systems of Differential Equations

4.1. Introduction

In Section 3.1, it was seen that a linear differential equation of order n,

y(n) + an−1(x)y(n−1) + · · · + a1(x)y′ + a0(x)y = r(x),

can be written as a linear system of n first-order equations in the form



u1

u2

...
un−1

un




′

=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . . 0
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1







u1

u2

...
un−1

un




+




0
0
...
0

r(x)




,

where the dependent variables are defined as

u1 = y, u2 = y′, . . . , un = y(n−1).

In this case, the n initial values,

y(x0) = k1, y′(x0) = k2, . . . , y(n−1)(x0) = kn,

and the right-hand side, r(x), becomes



u1(x0)
u2(x0)

...
un−1(x0)
un(x0)




=




k1

k2

...
kn−1

kn




, g(x) =




0
0
...
0

r(x)




,

respectively. In matrix and vector notation, this system is written as

u′(x) = A(x)u(x) + g(x), u(x0) = k,

where the matrix A(x) is a companion matrix.
If g(x) = 0, the system is said to be homogeneous. If g(x) 6= 0, it is nonho-

mogeneous.

Example 4.1. Write the differential equation

y′′ + 5y′ − y = ex (4.1)

as a system of two equations.

Solution. Let
u1 = y, u2 = y′ = u′

1.

Then y′′ = u′
2 and (4.1) becomes

u′
2 + 5u2 − u1 = ex,

77
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m1 m2

1k 2k 3k

Figure 4.1. Mechanical system for Example 4.2.

or

u′
2 = u1 − 5u2 + ex.

If

u(x) =

[
u1

u2

]
, then u′(x) =

[
u′

1

u′
2

]
=

[
u2

u1 − 5u2 + ex

]

or

u′(x) =

[
0 1
1 −5

] [
u1

u2

]
+

[
0
ex

]
= Au(x) + g(x). �

In this chapter, we shall consider linear systems of n equations where the
matrix A(x) is a general n×n matrix, not necessarily of the form of a companion
matrix. An example of such systems follows.

Example 4.2. Set up a system of differential equations for the mechanical
system shown in Fig. 4.1

Solution. Consider a mechanical system in which two masses m1 and m2

are connected to each other by three springs as shown in Fig. 4.1 with Hooke’s
constants k1, k2 and k3, respectively. Let x1(t) and x2(t) be the positions of the
centers of mass of m1 and m2 away from their points of equilibrium, the positive
x-direction pointing to the right. Then, x′′

1 (t) and x′′
2 (t) measure the acceleration

of each mass. The resulting force acting on each mass is exerted on it by the
springs that are attached to it, each force being proportional to the distance the
spring is stretched or compressed. For instance, when mass m1 has moved a
distance x1 to the right of its equilibrium position, the spring to the left of m1

exerts a restoring force −k1x1 on this mass, attempting to return the mass back
to its equilibrium position. The spring to the right of m1 exerts a restoring force
−k2(x2 − x1) on it; the part k2x1 reflects the compression of the middle spring
due to the movement of m1, while −k2x2 is due to the movement of m2 and
its influence on the same spring. Following Newton’s Second Law of Motion, we
arrive at the two coupled second-order equations:

m1x
′′
1 = −k1x1 + k2(x2 − x1), m2x

′′
2 = −k2(x2 − x1) − k3x2. (4.2)

We convert each equation in (4.2) to a first-order system of equations by intro-
ducing two new variables y1 and y2 representing the velocities of each mass:

y1 = x′
1, y2 = x′

2. (4.3)
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Using these new dependent variables, we rewrite (4.2) as the following four simul-
taneous equations in the four unknowns x1, y1, x2 and y2:

x′
1 = y1,

y′
1 =

−k1x1 + k2(x2 − x1)

m1
,

x′
2 = y2,

y′
2 =

−k2(x2 − x1) − k3x2

m2
,

(4.4)

which, in matrix form, become



x′
1

y′
1

x′
2

y′
2


 =




0 1 0 0

−k1+k2

m1
0 k2

m1
0

0 0 0 1
k2

m2
0 −k2+k3

m2
0







x1

y1

x2

y2


 . (4.5)

Using the following notation for the unknown vector, the coefficient matrix and
given initial conditions,

u =




x1

y1

x2

y2


 , A =




0 1 0 0

−k1+k2

m1
0 k2

m1
0

0 0 0 1
k2

m2
0 −k2+k3

m2
0


 u0 =




x1(0)
y1(0)
x2(0)
y2(0)


 ,

the initial value problem becomes

u′ = Au, u(0) = u0. (4.6)

It is to be noted that the matrix A is not in the form of a companion matrix. �

4.2. Existence and Uniqueness Theorem

In this section, we recall results which have been quoted for systems in the
previous chapters. In particular, the Existence and Uniqueness Theorem 1.3 holds
for general first-order systems of the form

y′ = f(x, y), y(x0) = y0, (4.7)

provided, in Definition 1.3, norms replace absolute values in the Lipschitz condi-
tion

‖f(z) − f(y)‖ ≤ M‖z − y‖, for all y, z ∈ R
n,

and in the statement of the theorem.
A similar remark holds for the Existence and Uniqueness Theorem 3.2 for

linear systems of the form

y′ = A(x)y + g(x), y(x0) = y0, (4.8)

provided the matrix A(x) and the vector-valued function f(x) are continuous
on the interval (x0, xf ). The Picard iteration method used in the proof of this
theorem has been stated for systems of differential equations and needs no change
for the present systems.
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4.3. Fundamental Systems

It is readily seen that the solutions to the linear homogeneous system

y′ = A(x)y, x ∈]a, b[, (4.9)

form a vector space since differentiation and matrix multiplication are linear op-
erators.

As before, m vector-valued functions, y1(x), y2(x), . . . , ym(x), are said to be
linearly independent on an interval ]a, b[ if the identity

c1y1(x) + c2y2(x) + · · · + ym(x) = 0, for all x ∈]a, b[,

implies that

c1 = c2 = · · · = cm = 0.

Otherwise, this set of functions is said to be linearly dependent.
For general systems, the determinant W (x) of n column-vector functions,

y1(x), y2(x), . . . , yn(x), with values in Rn,

W (y1, y2, . . . , yn)(x) = det




y11(x) y12(x) · · · y1n(x)
y21(x) y22(x) · · · y2n(x)

...
...

...
...

yn1(x) yn2(x) · · · ynn(x)


 ,

is a generalization of the Wronskian for a linear scalar equation.
We restate and prove Liouville’s or Abel’s Lemma 3.1 for general linear sys-

tems. For this purpose, we define the trace of a matrix A, denoted by tr A, to be
the sum of the diagonal elements, aii, of A,

trA = a11 + a22 + · · · + ann.

Lemma 4.1 (Abel). Let y1(x), y2(x), . . . , yn(x), be n solutions of the system
y′ = A(x)y on the interval ]a, b[. Then the determinant W (y1, y2, . . . , yn)(x)
satisfies the following identity:

W (x) = W (x0) e
−

R

x

x0
tr A(t) dt

, x0 ∈]a, b[. (4.10)

Proof. For simplicity of writing, let us take n = 3; the general case is treated
as easily. Let W (x) be the determinant of three solutions y1, y2, y3. Then its
derivative W ′(x) is of the form

W ′(x) =

∣∣∣∣∣∣

y11 y12 y13

y21 y22 y23

y31 y32 y33

∣∣∣∣∣∣

′

=

∣∣∣∣∣∣

y′
11 y′

12 y′
13

y21 y22 y23

y31 y32 y33

∣∣∣∣∣∣
+

∣∣∣∣∣∣

y11 y12 y13

y′
21 y′

22 y′
23

y31 y32 y33

∣∣∣∣∣∣
+

∣∣∣∣∣∣

y11 y12 y13

y21 y22 y23

y′
31 y′

32 y′
33

∣∣∣∣∣∣
.

We consider the first of the last three determinants. We see that the first row of
the differential system




y′
11 y′

12 y′
13

y21 y22 y23

y31 y32 y33


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33






y11 y12 y13

y21 y22 y23

y31 y32 y33



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is

y′
11 = a11y11 + a12y21 + a13y31,

y′
12 = a11y12 + a12y22 + a13y32,

y′
13 = a11y13 + a12y23 + a13y33.

Substituting these expressions in the first row of the first determinant and sub-
tracting a12 times the second row and a13 times the third row from the first row,
we obtain a11W (x). Similarly, for the second and third determinants we obtain
a22W (x) and a33W (x), respectively. Thus W (x) satisfies the separable equation

W ′(x) = tr
(
A(x)

)
W (x)

whose solution is

W (x) = W (x0) e
R

x

x0
tr A(t) dt

. �

The following corollary follows from Abel’s lemma.

Corollary 4.1. If n solutions to the homogeneous differential system (4.9)
are independent at one point, then they are independent on the interval ]a, b[. If,
on the other hand, these solutions are linearly dependent at one point, then their
determinant, W (x), is identically zero, and hence they are everywhere dependent.

Remark 4.1. It is worth emphasizing the difference between linear indepen-
dence of vector-valued functions and solutions of linear systems. For instance,
the two vector-valued functions

f1(x) =

[
x
0

]
, f2(x) =

[
1 + x

0

]
,

are linearly independent. Their determinant, however, is zero. This does not
contradict Corollary 4.1 since f1 and f2 cannot be solutions to a system (4.9).

Definition 4.1. A set of n linearly independent solutions of a linear homoge-
neous system y′ = A(x)y is called a fundamental system, and the corresponding
invertible matrix

Y (x) =




y11(x) y12(x) · · · y1n(x)
y21(x) y22(x) · · · y2n(x)

...
...

...
...

yn1(x) yn2(x) · · · ynn(x)


 ,

is called a fundamental matrix.

Lemma 4.2. If Y (x) is a fundamental matrix, then Z(x) = Y (x)Y −1(x0) is
also a fundamental matrix such that Z(x0) = I.

Proof. Let C be any constant matrix. Since Y ′ = AY , it follows that
(Y C)′ = Y ′C = (AY )C = A(Y C). The lemma follows by letting C = Y −1(x0).
Obviously, Z(x0) = I. �

In the following, we shall often assume that a fundamental matrix satisfies
the condition Y (x0) = I. We have the following theorem for linear homogeneous
systems.
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Theorem 4.1. Let Y (x) be a fundamental matrix for y′ = A(x)y. Then the
general solution is

y(x) = Y (x)c,

where c is an arbitrary vector. If Y (x0) = I, then

y(x) = Y (x)y0

is the unique solution of the initial value problem

y′ = A(x)y, y(x0) = y0.

Proof. The proof of both statements relies on the Uniqueness Theorem. To
prove the first part, let Y (x) be a fundamental matrix and z(x) be any solution
of the system. Let x0 be in the domain of z(x) and define c by

c = Y −1(x0)z(x0).

Define y(x) = Y (x)c. Since both y(x) and z(x) satisfy the same differential
equation and the same initial conditions, they must be the same solution by the
Uniqueness Theorem. The proof of the second part is similar. �

The following lemma will be used to obtain a formula for the solution of the
initial value problem (4.8) in terms of a fundamental solution.

Lemma 4.3. Let Y (x) be a fundamental matrix for the system (4.9). Then,
(Y T )−1(x) is a fundamental solution for the adjoint system

y′ = −AT (x)y. (4.11)

Proof. Differentiating the identity

Y −1(x)Y (x) = I,

we have

(Y −1)′(x)Y (x) + Y −1(x)Y ′(x) = 0.

Since the matrix Y (x) is a solution of (4.9), we can replace Y ′(x) in the previous
identity with A(x)Y (x) and obtain

(Y −1)′(x)Y (x) = −Y −1(x)A(x)Y (x).

Multiplying this equation on the right by Y −1(x) and taking the transpose of
both sides lead to (4.11). �

Theorem 4.2 (Solution formula). Let Y (x) be a fundamental solution matrix
of the homogeneous linear system (4.9). Then the unique solution to the initial
value problem (4.8) is

y(x) = Y (x)Y −1(x0)y0 + Y (x)

∫ x

x0

Y −1(t)g(t) dt. (4.12)

Proof. Multiply both sides of (4.8) by Y −1(x) and use the result of Lemma 4.3
to get (

Y −1(x)y(x)
)′

= Y −1(x)g(x).

The proof of the theorem follows by integrating the previous expression with
respect to x from x0 to x. �
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4.4. Homogeneous Linear Systems with Constant Coefficients

A homogeneous linear system with constant coefficients has the form

y′ = Ay, (4.13)

where the n × n matrix A is constant, i.e. all entries of A are constants. We
shall assume that all entries of A are real. The form of equation (4.13) is very
reminiscent of the (scalar) differential equation y′ = ay and so we seek solutions
of the form

y(x) = eλxv,

where λ and v are constants (v 6= 0).
If y(x) = eλxv, then y′(x) = λ eλxv, and system (4.13) becomes

λ eλxv = Aeλxv or eλxλv = eλxAv or λv = Av,

which can be rewritten as

(A − λI)v = 0, v 6= 0. (4.14)

Now, since v 6= 0 (otherwise y(x) = 0), we are seeking a nontrivial solution of the
homogeneous system (4.13). For such a solution to exist, the matrix A−λI cannot
be invertible and hence it must have determinant equal to 0, i.e. det(A−λI) = 0,
which is called the characteristic equation of the matrix A and it will imply that a
polynomial of degree n must be zero. The n roots of this equation, λ1, λ2, . . . , λn,
are called the eigenvalues of the matrix A. The corresponding (nonzero) vectors
vi which satisfy (A − λiI)vi = 0 are called the eigenvectors of A.

It is known that for each distinct eigenvalue, A has a corresponding eigenvec-
tor and the set of such eigenvectors are linearly independent. If A is symmetric,
AT = A, that is, A and its transpose are equal, then the eigenvalues are real and
A has n eigenvectors which can be chosen to be orthonormal.

Example 4.3. Find the general solution of the symmetric system y′ = Ay:

y′ =

[
2 1
1 2

]
y.

Solution. The eigenvalues are obtained from the characteristic polynomial
of A,

det(A − λI) = det

[
2 − λ 1

1 2 − λ

]
= λ2 − 4λ + 3 = (λ − 1)(λ − 3) = 0.

Hence the eigenvalues are
λ1 = 1, λ2 = 3.

The eigenvector corresponding to λ1 is obtained from the singular system

(A − I)u =

[
1 1
1 1

] [
u1

u2

]
= 0.

We are free to take any nonzero solution. Taking u1 = 1 we have the eigenvector

u =

[
1

−1

]
.

Similarly, the eigenvector corresponding to λ2 is obtained from the singular system

(A − 3I)v =

[
−1 1

1 −1

] [
v1

v2

]
= 0.
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Taking v1 = 1 we have the eigenvector

v =

[
1
1

]
.

Since λ1 6= λ2, we have two independent solutions

y1 = ex

[
1

−1

]
, y2 = e3x

[
1
1

]
,

and the fundamental system and general solution are

Y (x) =

[
ex e3x

−ex e3x

]
, y = Y (x)c.

The general solution can also be written as

y(x) = c1y1(x) + c2y2(x)

= c1 ex

[
1

−1

]
+ c2 e3x

[
1
1

]
.

The Matlab solution is

A = [2 1; 1 2];

[Y,D] = eig(A);

syms x c1 c2

z = Y*diag(exp(diag(D*x)))*[c1; c2]

z =

[ 1/2*2^(1/2)*exp(x)*c1+1/2*2^(1/2)*exp(3*x)*c2]

[ -1/2*2^(1/2)*exp(x)*c1+1/2*2^(1/2)*exp(3*x)*c2]

Note that Matlab normalizes the eigenvectors in the l2 norm. Hence, the matrix
Y is orthogonal since the matrix A is symmetric. The solution y

y = simplify(sqrt(2)*z)

y =

[ exp(x)*c1+exp(3*x)*c2]

[ -exp(x)*c1+exp(3*x)*c2]

is produced by the nonnormalized eigenvectors u and v. �

If the constant matrix A of the system y′ = Ay has a full set of independent
eigenvectors, then it is diagonalizable

Y −1AY = D,

where the columns of the matrix Y are eigenvectors of A and the corresponding
eigenvalues are the diagonal elements of the diagonal matrix D. This fact can be
used to solve the initial value problem

y′ = Ay, y(0) = y0.

Set

y = Y x, or x = Y −1y.

Since A is constant, then Y is constant and x′ = Y −1y′. Hence the given system
y′ = Ay becomes

Y −1y′ = Y −1AY Y −1y,
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that is,
x′ = Dx.

Componentwise, we have

x′
1(t) = λ1x1(t), x′

2(t) = λ2x2(t), . . . , xn(t)′ = λnxn(t),

with solutions

x1(t) = c1 eλ1t, x2(t) = c2 eλ2t, . . . , xn(t) = cn eλnt,

where the constants c1, . . . , cn are determined by the initial conditions. Since

y0 = Y x(0) = Y c,

it follows that
c = Y −1y0.

These results are used in the following example.

Example 4.4. Solve the system of Example 4.2 with

m1 = 10, m2 = 20, k1 = k2 = k3 = 1,

and initial values
x1 = 0.8, x2 = y0 = y1 = 0,

and plot the solution.

Solution. The matrix A takes the form

A =




0 1 0 0
−0.2 0 0.1 0

0 0 0 1
0.05 0 −0.1 0




The Matlab solution for x(t) and y(t) and their plot are

A = [0 1 0 0; -0.2 0 0.1 0; 0 0 0 1; 0.05 0 -0.1 0];

y0 = [0.8 0 0 0]’;

[Y,D] = eig(A);

t = 0:1/5:60; c = inv(Y)*y0; y = y0;

for i = 1:length(t)-1

yy = Y*diag(exp(diag(D)*t(i+1)))*c;

y = [y,yy];

end

ry = real(y); % the solution is real; here the imaginary part is zero

subplot(2,2,1); plot(t,ry(1,:),t,ry(3,:),’--’);

The Matlab ode45 command from the ode suite produces the same numerical
solution. Using the M-file spring.m,

function yprime = spring(t,y); % MAT 2331, Example 3a.4.2.

A = [0 1 0 0; -0.2 0 0.1 0; 0 0 0 1; 0.05 0 -0.1 0];

yprime = A*y;

we have

y0 = [0.8 0 0 0]; tspan=[0 60];

[t,y]=ode45(’spring’,tspan,y0);

subplot(2,2,1); plot(t,y(:,1),t,y(:,3));
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Figure 4.2. Graph of solution x1(t) (solid line) and x2(t)
(dashed line) to Example 4.4.

The plot is shown in Fig. 4.2. �

The case of multiple eigenvalues may lead to a lack of eigenvectors in the
construction of a fundamental solution. In this situation, one has recourse to
generalized eigenvectors.

Definition 4.2. Let A be an n × n matrix. We say that λ is a deficient
eigenvalue of A if it has algebraic multiplicity m > 1 and fewer than m eigen-
vectors associated with it. If there are k < m linearly independent eigenvectors
associated with λ, then the integer

r = m − k

is called the degree of deficiency of λ. A vector u is called a generalized eigenvector
of A associated with λ if there is an integer s > 0 such that

(A − λI)su = 0,

but

(A − λI)s−1u 6= 0.

In general, given a matrix A with an eigenvalue λ of degree of deficiency r
and corresponding eigenvector u1, we construct a set of generalized eigenvectors
{u2, . . . , ur} as solutions of the systems

(A − λI)u2 = u1, (A − λI)u3 = u2, . . . , (A − λI)ur = ur−1.

The eigenvector u1 and the set of generalized eigenvectors, in turn, generate the
following set of linearly independent solutions of (4.13):

y1(x) = eλxu1, y2(x) = eλx(xu1+u2), y3(x) = eλx

(
x2

2
u1 + xu2 + u3

)
, . . . .

It is a result of linear algebra that any n × n matrix has n linearly independent
generalized eigenvectors.

Let us look at the details of the 2 × 2 situation. Suppose we have y′ = Ay

where the eigenvalue is repeated, λ1 = λ2 = λ. Then one solution is

y1(x) = eλxv.
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From Chapter 2, we would suspect that the second independent solution should
be

y2(x) = x eλxv,

but then

y′
2(x) = eλxv + λx eλxv,

whereas

Ay2(x) = Axeλxv = x eλxAv = x eλxv

and so this y2(x) is not a solution (y′
2 6= Ay2). Instead, we seek a solution of the

form

y2(x) = eλx(xv + u).

Then

y′
2(x) = eλxv + λx eλxv + λeλxu

and

Ay2 = A(x eλxv + eλxu) = xλ eλxv + eλxAu;

so, by succesive simplifications, y′
2 = Ay2 requires that

eλxv + λx eλxv + λeλxu = xλ eλxv + eλxAu

eλxv + λeλxu = eλxAu

v + λu = Au,

that is,

(A − λI)u = v, (4.15)

as seen above. So provided u satisfies (4.15),

y2(x) = eλx(xv + u)

is the second independent solution.

Example 4.5. Find the general solution of the system

y′ =

[
1 1
0 1

]
y.

Solution. Since

det(A − λI) =

∣∣∣∣
[

1 1
0 1

]
− λ

[
1 0
0 1

]∣∣∣∣ =

∣∣∣∣
1 − λ 1

0 1 − λ

∣∣∣∣ = (1 − λ)2 = 0,

we have a repeated eigenvalue λ1 = λ2 = 1. The eigenvector v must satisfy the
homogeneous system (A − λI)v = 0, which is

[
0 1
0 0

]
v = 0

Taking

v =

[
1
0

]
,

we have the first solution

y1(x) = eλxv = ex

[
1
0

]
.

To get the second solution, we must solve the nonhomogeneous system

(A − λI)u = v
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for u, or [
0 1
0 0

]
u =

[
1
0

]
.

We take

u =

[
0
1

]

so the second solution is

y2(x) = eλx(xv + u) = ex

(
x

[
1
0

]
+

[
0
1

])
.

The general solution can be written as

yg(x) = c1y1(x) + c2y2(x) = c1 ex

[
1
0

]
+ c2 ex

(
x

[
1
0

]
+

[
0
1

])
. �

Example 4.6. Solve the system y′ = Ay:

y′ =




0 1 0
0 0 1
1 −3 3


y.

Solution. One finds that the matrix A has a triple eigenvalue λ = 1. Row-
reducing the matrix A − I, we obtain a matrix of rank 2; hence A − I admits a
single eigenvector u1:

A − I ∼




−1 1 0
0 −1 1
0 0 0


 , u1 =




1
1
1


 .

Thus, one solution is

y1(x) =




1
1
1


 ex.

To construct a first generalized eigenvector, we solve the equation

(A − I)u2 = u1.

Thus,

u2 =




−2
−1

0




and

y2(x) = (xu1 + u2) ex =


x




1
1
1


+




−2
−1

0




 ex

is a second linearly independent solution.
To construct a second generalized eigenvector, we solve the equation

(A − I)u3 = u2.

Thus,

u3 =




3
1
0



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and

y3(x) =

(
x2

2
u1 + xu2 + u3

)
ex =


x2

2




1
1
1


+ x




−2
−1

0


+




3
1
0




 ex

is a third linearly independent solution. �

In the previous example, the invariant subspace associated with the triple
eigenvalue is one-dimensional. Hence the construction of two generalized eigen-
vectors is straightforward. In the next example, this invariant subspace associated
with the triple eigenvalue is two-dimensional. Hence the construction of a gener-
alized eigenvector is a bit more complex.

Example 4.7. Solve the system y′ = Ay:

y′ =




1 2 1
−4 7 2

4 −4 1


y.

Solution. (a) The analytic solution.— One finds that the matrix A has a
triple eigenvalue λ = 3. Row-reducing the matrix A − 3I, we obtain a matrix of
rank 1; hence A − 3I two independent eigenvectors, u1 and u2:

A − 3I ∼




−2 2 1
0 0 0
0 0 0


 , u1 =




1
1
0


 , u2 =




1
0
2


 .

Thus, two independent solutions are

y1(x) =




1
1
0


 e3x, y2(x) =




1
0
2


 e3x.

To obtain a third independent solution, we construct a generalized eigenvector by
solving the equation

(A − 3I)u3 = αu1 + βu2,

where the parameters α and β are to be chosen so that the right-hand side,

u4 = αu1 + βu2 =




α + β
α
2β


 ,

is in the space V spanned by the columns of the matrix (A−3I). Since rank(A−
3I) = 1, then

V = span




1
2

−2




and we may take 


α + β
α
2β


 =




1
2

−2


 .

Thus, α = 2 and β = −1, It follows that

u4 =




1
2

−2


 , u3 =




0
0
1



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and

y3(x) = (xu4 + u3) e3x =


x




1
2

−2


+




0
0
1




 e3x

is a third linearly independent solution.

(b) The Matlab symbolic solution.— To solve the problem with symbolic
Matlab, one uses the Jordan normal form, J = X−1AX , of the matrix A. If we
let

y = Xw,

the equation simplifies to
w′ = Jw.

A = 1 2 1

-4 7 2

4 -4 1

[X,J] = jordan(A)

X = -2.0000 1.5000 0.5000

-4.0000 0 0

4.0000 1.0000 1.0000

J = 3 1 0

0 3 0

0 0 3

The matrix J − 3I admits the two eigenvectors

u1 =




1
0
0


 , u3 =




0
0
1


 ,

and the generalized eigenvector

u2 =




0
1
0


 ,

the latter being a solution of the equation

(J − 3I)u2 = u1.

Thus three independent solutions are

y1 = e3xXu1, y2 = e3xX(xu1 + u2), y3 = e3xXu3,

that is

u1=[1 0 0]’; u2=[0 1 0]’; u3=[0 0 1]’;

syms x; y1 = exp(3*x)*X*u1

y1 = [ -2*exp(3*x)]

[ -4*exp(3*x)]

[ 4*exp(3*x)]
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y2 = exp(3*x)*X*(x*u1+u2)

y2 = [ -2*exp(3*x)*x+3/2*exp(3*x)]

[ -4*exp(3*x)*x]

[ 4*exp(3*x)*x+exp(3*x)]

y3 = exp(3*x)*X*u3

y3 = [ 1/2*exp(3*x)]

[ 0]

[ exp(3*x)]

�

4.5. Nonhomogeneous Linear Systems

In Chapter 3, the Method of Undetermined Coefficients and the Method of
Variation of Parameters have been used for finding particular solutions of nonho-
mogeneous differential equations. In this section, we generalize these methods to
linear systems of the form

y′ = Ay + f (x). (4.16)

We recall that once a particular solution yp of this system has been found, the
general solution is the sum of yp and the solution yh of the homogeneous system

y′ = Ay.

4.5.1. Method of Undetermined Coefficients. The Method of Unde-
termined Coefficients can be used when the matrix A in (4.16) is constant and
the dimension of the vector space spanned by the derivatives of the vector func-
tion f(x) of (4.16) is finite. This is the case when the components of f(x) are
combinations of cosines, sines, exponentials, hyperbolic sines and cosines, and
polynomials. For such problems, the appropriate choice of yp is a linear combi-
nation of vectors in the form of the functions that appear in f (x) together with
all their independent derivatives.

Example 4.8. Find the general solution of the nonhomogeneous linear system

y′ =

[
0 1

−1 0

]
y +

[
4 e−3x

e−2x

]
:= Ay + f (x).

Solution. The eigenvalues of the matrix A of the system are

λ1 = i, λ2 = −i,

and the corresponding eigenvectors are

u1 =

[
1
i

]
, u2 =

[
1

−i

]
.

Hence the general solution of the homogeneous system is

yh(x) = k1 eix

[
1
i

]
+ k2 e−ix

[
1

−i

]
,

where k1 and k2 are complex constants. To obtain real independent solutions we
use the fact that the real and imaginary parts of a solution of a real homogeneous



92 4. SYSTEMS OF DIFFERENTIAL EQUATIONS

linear equation are solutions. We see that the real and imaginary parts of the
first solution,

u1 =

[
1
i

]
eix =

([
1
0

]
+ i

[
0
1

])
(cosx + i sinx)

=

[
cosx

− sinx

]
+ i

[
sinx
cosx

]
,

are independent solutions. Hence, we obtain the following real-valued general
solution of the homogeneous system

yh(x) = c1

[
cosx

− sin x

]
+ c2

[
sin x
cosx

]
.

The function f (x) can be written in the form

f(x) = 4

[
1
0

]
e−3x +

[
0
1

]
e−2x = 4e1 e−3x + e2 e−2x

with obvious definitions for e1 and e2. Note that f(x) and yh(x) do not have
any part in common. We therefore choose yp(x) in the form

yp(x) = a e−3x + b e−2x.

Substituting yp(x) in the given system, we obtain

0 = (3a + Aa + 4e1) e−3x + (2b + Ab + e2) e−2x.

Since the functions e−3x and e−2x are linearly independent, their coefficients must
be zero, from which we obtain two equations for a and b,

(A + 3I)a = −4e1, (A + 2I)b = −e2.

Hence,

a = −4(A + 3I)−1e1 = −1

5

[
6
2

]

b = −(A + 2I)−1e2 =
1

5

[
1

−2

]
.

Finally,

yh(x) = −




6

5
e−3x − 1

5
e−2x

2

5
e−3x +

2

5
e−2x


 .

The general solution is

yg(x) = yh(x) + yp(x).

�

Example 4.9. Find the general solution of the nonhomogeneous system

y′ =

[
2 −1
1 4

]
y +

[
0

9x − 24

]
.
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Solution. The corresponding homogeneous equation is

y′ =

[
2 −1
1 4

]
y.

Since

det(A − λI) =

∣∣∣∣
2 − λ −1

1 4 − λ

∣∣∣∣ = (2 − λ)(4 − λ) = λ2 − 6λ + 9 = (λ − 3)2 = 0,

we have repeated eigenvalues λ1 = λ2 = 3. To find the first eigenvector, we solve
(A − λI)v = 0 which is [

−1 −1
1 1

]
v = 0.

So we take

v =

[
1

−1

]
.

To find the second solution, which is a generalized eigenvector, we solve (A −
λI)u = v which is [

−1 −1
1 1

]
u =

[
1

−1

]
,

so we take

u =

[
−1

0

]
.

Thus the general solution of the homogeneous system is

yh = c1 e3x

[
1

−1

]
+ c2 e3x

(
x

[
1

−1

]
+

[
−1

0

])
.

Now,

f(x) =

[
0

9x − 24

]
=

[
0
9

]
x +

[
0

−24

]
.

So the guess for the particular solution is yp(x) = ax + b. Thus

y′
p(x) = a =

[
a1

a2

]

and

Ayp + f(x) =

[
2 −1
1 4

]
[ax + b] +

[
0

9x − 24

]

=

[
2 −1
1 4

] [
a1x + b1

a2x + b2

]
+

[
0

9x − 24

]

=

[
(2a1 − a2)x + 2b1 − b2

(a1 + 4a2)x + b1 + 4b2 + 9x − 24

]

=

[
(2a1 − a2)x + 2b1 − b2

(a1 + 4a2 + 9)x + b1 + 4b2 − 24

]
.

So y′
p(x) = Ayp(x) + f means that

[
a1

a2

]
=

[
(2a1 − a2)x + 2b1 − b2

(a1 + 4a2 + 9)x + b1 + 4b2 − 24

]
.
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Equating the components, which are polynomials, and hence we must equate
coefficients, yields

a1 = (2a1 − a2)x + 2b1 − b2 ⇒ 2a1 − a2 = 0, 2b1 − b2 = a1,

and

a2 = (a1 + 4a2 + 9)x + b1 + 4b2 − 24 ⇒ a1 + 4a2 + 9 = 0, b1 + 4b2 − 24 = a2.

Solving for the constants gives

a1 = −1, a2 = −2, b1 = 2, b2 = 5.

Thus, the particular solution is

yp(x) =

[
−x + 2
−2x + 5

]

and the general solution is yg(x) = yh(x) + yp(x).
It is important to note that even though the first component of f(x) was 0,

that is not the case in yp(x).
�

4.5.2. Method of Variation of Parameters. The Method of Variation
of Parameters can be applied, at least theoretically, to nonhomogeneous systems
with nonconstant matrix A(x) and general vector function f (x). A fundamental
matrix solution

Y (x) = [y1, y2, . . . , yn],

of the homogeneous system
y′ = A(x)y

satisfies the equation
Y ′(x) = A(x)Y (x).

Since the columns of Y (x) are linearly independent, the general solution yh(x) of
the homogeneous system is a linear combinations of these columns,

yh(x) = Y (x)c,

where c is an arbitrary n-vector. The Method of Variation of Parameters seeks a
particular solution yp(x) to the nonhomogeneous system

y′ = A(x)y + f(x)

in the form
yp(x) = Y (x)c(x).

Substituting this expression in the nonhomogeneous system, we obtain

Y ′c + Y c′ = AY c + f .

Since Y ′ = AY , therefore Y ′c = AY c. Thus, the previous expression reduces to

Y c′ = f .

The fundamental matrix solution being invertible, we have

c′(x) = Y −1(x)f (x), or c(x) =

∫ x

0

Y −1(s)f (s) ds.

It follows that

yp(x) = Y (x)

∫ x

0

Y −1(s)f (s) ds.
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In the case of an initial value problem with

y(0) = y0,

the unique solution is

y(x) = Y (x)Y −1(0)y0 + Y (x)

∫ x

0

Y −1(s)f (s) ds.

It is left to the reader to solve Example 4.9 by the Method of Variation of Pa-
rameters.





CHAPTER 5

Laplace Transform

5.1. Definition

Definition 5.1. Let f(t) be a function defined on [0,∞). The Laplace Trans-
form F (s) of f(t) is defined by the integral

L{f}(s) := F (s) =

∫ ∞

0

e−stf(t) dt, (5.1)

provided the integral exists for s > γ. Note that the integral defining the Laplace
transform is improper and, hence, it need not converge. Theorem 5.2 will specify
conditions on f(t) for the integral to exist, that is, for F (s) to exist. If the integral
exists, we say that f(t) is transformable and that it is the original of F (s).

We see that the function

f(t) = et2

is not transformable since the integral (5.1) does not exist for any s > 0.
We illustrate the definition of Laplace transform by means of a few examples.

Example 5.1. Find the Laplace transform of the function f(t) = 1.

Solution. (a) The analytic solution.—

L{1}(s) =

∫ ∞

0

e−st dt, s > 0,

= −1

s
e−st

∣∣∣
∞

0
= −1

s
(0 − 1)

=
1

s
.

The condition s > 0 is required here for the integral to converge as

lim
t→∞

e−st = 0 only if s > 0.

(b) The Matlab symbolic solution.—

>> f = sym(’Heaviside(t)’);

>> F = laplace(f)

F = 1/s

The function Heaviside is a Maple function. Help for Maple functions is obtained
by the command mhelp. �

Example 5.2. Show that

L
{
eat
}

(s) =
1

s − a
, s > a. (5.2)

97
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Solution. (a) The analytic solution.— Assuming that s > a, we have

L
{
eat
}

(s) =

∫ ∞

0

e−st eat dt

=

∫ ∞

0

e−(s−a)t dt

= − 1

s − a

[
e−(s−a)t

∣∣∣
∞

0

=
1

s − a
.

Again, the condition s − a > 0 is required here for the integral to converge as

lim
t→∞

e−(s−a)t = 0 only if s − a > 0.

(b) The Matlab symbolic solution.—

>> syms a t;

>> f = exp(a*t);

>> F = laplace(f)

F = 1/(s-a)

�

Theorem 5.1. The Laplace transform

L : f(t) 7→ F (s)

is a linear operator.

Proof.

L{af + bg} =

∫ ∞

0

e−st
[
af(t) + bg(t)

]
dt

= a

∫ ∞

0

e−stf(t) dt + b

∫ ∞

0

e−stg(t) dt

= aL{f}(s) + bL{g}(s). �

Example 5.3. Find the Laplace transform of the function f(t) = coshat.

Solution. (a) The analytic solution.— Since

coshat =
1

2

(
eat + e−at

)
,

we have

L{coshat}(s) =
1

2

[
L
{
eat
}

+ L
{
e−at

}]

=
1

2

[
1

s − a
+

1

s + a

]

=
s

s2 − a2
.

(b) The Matlab symbolic solution.—
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>> syms a t;

>> f = cosh(a*t);

>> F = laplace(f)

F = s/(s^2-a^2)

�

Example 5.4. Find the Laplace transform of the function f(t) = sinh at.

Solution. (a) The analytic solution.— Since

sinh at =
1

2

(
eat − e−at

)
,

we have

L{sinh at}(s) =
1

2

[
L
{
eat
}
− L

{
e−at

}]

=
1

2

[
1

s − a
− 1

s + a

]

=
a

s2 − a2
.

(b) The Matlab symbolic solution.—

>> syms a t;

>> f = sinh(a*t);

>> F = laplace(f)

F = a/(s^2-a^2)

�

Remark 5.1. We see that L{coshat}(s) is an even function of a and L{sinhat}(s)
is an odd function of a.

Example 5.5. Find the Laplace transform of the function f(t) = tn.

Solution. We proceed by induction. Suppose that

L{tn−1}(s) =
(n − 1)!

sn
.

This formula is true for n = 1,

L{1}(s) =
0!

s1
=

1

s
.

If s > 0, by integration by parts, we have

L{tn}(s) =

∫ ∞

0

e−sttn dt

= −1

s

[
tn e−st

∣∣∣
∞

0
+

n

s

∫ ∞

0

e−sttn−1 dt

=
n

s
L{tn−1}(s).
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Now, the induction hypothesis gives

L{tn}(s) =
n

s

(n − 1)!

sn

=
n!

sn+1
, s > 0. �

Symbolic Matlab finds the Laplace transform of, say, t5 by the commands

>> syms t

>> f = t^5;

>> F = laplace(f)

F = 120/s^6

or

>> F = laplace(sym(’t^5’))

F = 120/s^6

or

>> F = laplace(sym(’t’)^5)

F = 120/s^6

Example 5.6. Find the Laplace transform of the functions cosωt and sinωt.

Solution. (a) The analytic solution.— Using Euler’s identity,

eiωt = cosωt + i sinωt, i =
√
−1,

and assuming that s > 0, we have

L
{
eiωt

}
(s) =

∫ ∞

0

e−st eiωt dt (s > 0)

=

∫ ∞

0

e−(s−iω)t dt

= − 1

s − iω

[
e−(s−iω)t

∣∣∣
∞

0

= − 1

s − iω

[
e−steiωt

∣∣∣
t→∞

− 1
]

=
1

s − iω
=

1

s − iω

s + iω

s + iω

=
s + iω

s2 + ω2
.

By the linearity of L, we have

L
{
eiωt

}
(s) = L{cosωt + i sinωt}

= L{cosωt} + iL{sinωt}

=
s

s2 + ω2
+ i

ω

s2 + ω2

Hence,

L{cosωt} =
s

s2 + ω2
, (5.3)

which is an even function of ω, and

L{sin ωt} =
ω

s2 + ω2
, (5.4)
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which is an odd function of ω.

(b) The Matlab symbolic solution.—

>> syms omega t;

>> f = cos(omega*t);

>> g = sin(omega*t);

>> F = laplace(f)

F = s/(s^2+omega^2)

>> G = laplace(g)

G = omega/(s^2+omega^2)

�

In the sequel, we shall implicitly assume that the Laplace transforms of the
functions considered in this chapter exist and can be differentiated and integrated
under additional conditions. The bases of these assumptions are found in the
following definition and theorem. The general formula for the inverse transform,
which is not introduced in this chapter, also requires the following results.

Definition 5.2. A function f(t) is said to be of exponential type of order γ
if there are constants γ, M > 0 and T > 0, such that

|f(t)| ≤ M eγt, for all t > T. (5.5)

The least upper bound γ0 of all values of γ for which (5.5) holds is called the
abscissa of convergence of f(t).

Theorem 5.2. If the function f(t) is piecewise continuous on the interval
[0,∞) and if γ0 is the abscissa of convergence of f(t), then the integral

∫ ∞

0

e−stf(t) dt

is absolutely and uniformly convergent for all s > γ0.

Proof. We prove only the absolute convergence:
∣∣∣∣
∫ ∞

0

e−stf(t) dt

∣∣∣∣ ≤
∫ ∞

0

M e−(s−γ0)t dt

= − M

s − γ0
e−(s−γ0)t

∣∣∣∣
∞

0

=
M

s − γ0
. �

The integral formula for the Inverse Laplace Transform f(t) = L−1{F (s)} is
a path integral over a complex variable and, as such, we will not use it. Rather,
we will find inverse transforms using tables (see Chapter 13 and the two pages of
formulas at the end of these Notes).

Example 5.7. Use tables to find the Laplace transform of the two given
functions.
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Solution.

(i) L{3t2 −
√

2 t + 2 e−4t} = 3L{t2} −
√

2L{t} + 2L{e−4t}

= 3

(
2

s3

)
−
√

2

(
1

s2

)
+ 2

(
1

s + 4

)

=
6

s3
+

√
2

s2
+

2

s + 4
.

(ii) L−1

{
2

s4
− 5

s2 + 9

}
= 2L−1

{
1

s4

}
− 5L−1

{
1

s2 + 9

}

=
2

6
L−1

{
6

s4

}
− 5

3
L−1

{
3

s2 + 9

}

=
1

3
t3 − 5

3
sin(3t). �

5.2. Transforms of Derivatives and Integrals

In view of applications to ordinary differential equations, one needs to know
how to transform the derivative of a function.

Theorem 5.3.

L{f ′}(s) = sL{f} − f(0), s > 0. (5.6)

Proof. Integrating by parts, we have

L{f ′}(s) =

∫ ∞

0

e−stf ′(t) dt

= e−stf(t)
∣∣∣
∞

0
− (−s)

∫ ∞

0

e−stf(t) dt

= sL{f}(s)− f(0)

since e−stf(t) → 0 as t → ∞ by assumption of the existence of L{f}. �

Remark 5.2. The following formulae are obtained by induction.

L{f ′′}(s) = s2L{f} − sf(0) − f ′(0), (5.7)

L{f ′′′}(s) = s3L{f} − s2f(0) − sf ′(0) − f ′′(0). (5.8)

In fact,

L{f ′′}(s) = sL{f ′}(s) − f ′(0)

= s[sL{f}(s) − f(0)] − f ′(0)

= s2L{f} − sf(0) − f ′(0)

and

L{f ′′′}(s) = sL{f ′′}(s) − f ′′(0)

= s[s2L{f} − sf(0) − f ′(0)] − f ′′(0)

= s3L{f} − s2f(0) − sf ′(0) − f ′′(0). �

The following general theorem follows by induction.
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Theorem 5.4. Let the functions f(t), f ′(t), . . . , f (n−1)(t) be continuous for
t ≥ 0 and f (n)(t) be transformable for s ≥ γ. Then

L
{

f (n)
}

(s) = snL{f} − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0). (5.9)

Proof. The proof is by induction as in Remark 5.2 for the cases n = 2 and
n = 3. �

Example 5.8. Use the Laplace transform to solve the following initial value
problem for a damped oscillator:

y′′ + 4y′ + 3y = 0, y(0) = 3, y′(0) = 1,

and plot the solution.

Solution. (a) The analytic solution.— Letting

L{y}(s) = Y (s),

we transform the differential equation,

L{y′′} + 4L{y′} + 3L{y} = s2Y (s) − sy(0) − y′(0) + 4[sY (s) − y(0)] + 3Y (s)

= L{0} = 0.

Then we have
(s2 + 4s + 3)Y (s) − (s + 4)y(0) − y′(0) = 0,

in which we replace y(0) and y′(0) by their values,

(s2 + 4s + 3)Y (s) = (s + 4)y(0) + y′(0)

= 3(s + 4) + 1

= 3s + 13.

We solve for the unknown Y (s) and expand the right-hand side in partial fractions,

Y (s) =
3s + 13

s2 + 4s + 3

=
3s + 13

(s + 1)(s + 3)

=
A

s + 1
+

B

s + 3
.

To compute A and B, we get rid of denominators by rewriting the last two
expressions in the form

3s + 13 = (s + 3)A + (s + 1)B

= (A + B)s + (3A + B).

We rewrite the first and third terms as a linear system,
[

1 1
3 1

] [
A
B

]
=

[
3

13

]
=⇒

[
A
B

]
=

[
5

−2

]
,

which one can solve. However, in this simple case, we can get the values of A and
B by first setting s = −1 and then s = −3 in the identity

3s + 13 = (s + 3)A + (s + 1)B.

Thus

−3 + 13 = 2A =⇒ A = 5, −9 + 13 = −2B =⇒ B = −2.
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t
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Plot of solution

Figure 5.1. Graph of solution of the differential equation in Example 5.8.

Therefore

Y (s) =
5

s + 1
− 2

s + 3
.

We find the original by means of the inverse Laplace transform given by formula
(5.2):

y(t) = L−1{Y } = 5L−1

{
1

s + 1

}
− 2L−1

{
1

s + 3

}

= 5 e−t − 2 e−3t.

(b) The Matlab symbolic solution.— Using the expression for Y (s), we have

>> syms s t

>> Y = (3*s+13)/(s^2+4*s+3);

>> y = ilaplace(Y,s,t)

y = -2*exp(-3*t)+5*exp(-t)

(c) The Matlab numeric solution.— The function M-file exp77.m is

function yprime = exp77(t,y);

yprime = [y(2); -3*y(1)-4*y(2)];

and numeric Matlab solver ode45 produces the solution.

>> tspan = [0 4];

>> y0 = [3;1];

>> [t,y] = ode45(’exp77’,tspan,y0);

>> subplot(2,2,1); plot(t,y(:,1));

>> xlabel(’t’); ylabel(’y’); title(’Plot of solution’)

The command subplot is used to produce Fig. 5.1 which, after reduction, still
has large enough lettering. �

Remark 5.3. We notice that the characteristic polynomial of the original
homogeneous differential equation multiplies the function Y (s) of the transformed
equation when the original equation has constant coefficients.
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Remark 5.4. Solving a differential equation by the Laplace transform in-
volves the initial values and, hence, we are solving for the unique solution directly,
that is, we do not have to find the general soution first and then plug in the initial
conditions. Also, if the equation is nonhomogeneous, we shall see that the method
will find the particular solution as well.

Since integration is the inverse of differentiation and the Laplace transform of
f ′(t) is essentially the transform of f(t) multiplied by s, one can foresee that the
transform of the indefinite integral of f(t) will be the transform of f(t) divided
by s since division is the inverse of multiplication.

Theorem 5.5. Let f(t) be transformable for s ≥ γ. Then

L
{∫ t

0

f(τ) dτ

}
=

1

s
L{f}, (5.10)

or, in terms of the inverse Laplace transform,

L−1

{
1

s
F (s)

}
=

∫ t

0

f(τ) dτ. (5.11)

Proof. Letting

g(t) =

∫ t

0

f(τ) dτ,

we have

L
{
f(t)

}
= L

{
g′(t)

}
= sL

{
g(t)

}
− g(0).

Since g(0) = 0, we have L{f} = sL{g}, whence (5.10). �

Example 5.9. Find f(t) if

L{f} =
1

s(s2 + ω2)
.

Solution. (a) The analytic solution.— Since

L−1

{
1

s2 + ω2

}
=

1

ω
sin ωt,

by (5.11) we have

L−1

{
1

s

(
1

s2 + ω2

)}
=

1

ω

∫ t

0

sin ωτ dτ =
1

ω2
(1 − cosωt).

(b) The Matlab symbolic solution.—

>> syms s omega t

>> F = 1/(s*(s^2+omega^2));

>> f = ilaplace(F)

f = 1/omega^2-1/omega^2*cos(omega*t)

Note that this example can also be done using partial fractions. �
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F(s)

s

F(s – a)

a
F

0

Figure 5.2. Function F (s) and shifted function F (s − a) for a > 0.

5.3. Shifts in s and in t

In the applications, we need the original of F (s − a) and the transform of
u(t − a)f(t − a) where u(t) is the Heaviside function, or unit step function,

u(t) =

{
0, if t < 0,

1, if t > 0.
(5.12)

Theorem 5.6 (The First Shifting Theorem). Let

L{f}(s) = F (s), s > γ.

Then

L
{
eatf(t)

}
(s) = F (s − a), s − a > γ. (5.13)

Proof. (See Fig. 5.2)

F (s − a) =

∫ ∞

0

e−(s−a)tf(t) dt

=

∫ ∞

0

e−st
[
eatf(t)

]
dt

= L
{
eatf(t)

}
(s). �

Example 5.10. Apply Theorem 5.6 to the three simple functions tn, cosωt
and sinωt.

Solution. (a) The analytic solution.— The results are obvious and are pre-
sented in the form of a table.

f(t) F (s) eatf(t) F (s − a)

tn
n!

sn+1
eattn

n!

(s − a)n+1

cosωt
s

s2 + ω2
eat cosωt

(s − a)

(s − a)2 + ω2

sin ωt
ω

s2 + ω2
eat sin ωt

ω

(s − a)2 + ω2

(b) The Matlab symbolic solution.— For the second and third functions,
Matlab gives:
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>> syms a t omega s;

>> f = exp(a*t)*cos(omega*t);

>> g = exp(a*t)*sin(omega*t);

>> F = laplace(f,t,s)

F = (s-a)/((s-a)^2+omega^2)

>> G = laplace(g,t,s)

G = omega/((s-a)^2+omega^2)

�

Example 5.11. Find the solution of the damped system:

y′′ + 2y′ + 5y = 0, y(0) = 2, y′(0) = −4,

by means of Laplace transform.

Solution. Setting

L{y}(s) = Y (s),

we have

s2Y (s) − sy(0) − y′(0) + 2[sY (s) − y(0)] + 5Y (s) = L{0} = 0.

We group the terms containing Y (s) on the left-hand side,

(s2 + 2s + 5)Y (s) = sy(0) + y′(0) + 2y(0)

= 2s − 4 + 4

= 2s.

We solve for Y (s) and rearrange the right-hand side,

Y (s) =
2s

s2 + 2s + 1 + 4

=
2(s + 1) − 2

(s + 1)2 + 22

=
2(s + 1)

(s + 1)2 + 22
− 2

(s + 1)2 + 22
.

Hence, the solution is

y(t) = 2 e−t cos 2t − e−t sin 2t. �

Definition 5.3. The translate ua(t) = u(t − a) of the Heaviside function
u(t), called a unit step function, is the function (see Fig. 5.3)

ua(t) := u(t − a) =

{
0, if t < a,

1, if t > a,
a ≥ 0. (5.14)

The notation α(t) or H(t) is also used for u(t). In symbolic Matlab, the
Maple Heaviside function is accessed by the commands

>> sym(’Heaviside(t)’)

>> u = sym(’Heaviside(t)’)

u = Heaviside(t)

Help to Maple functions is obtained by the command mhelp.
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t

u

0 t

u

0 a

11
u(t) u(t – a)

Figure 5.3. The Heaviside function u(t) and its translate u(t−
a), a > 0.

f(t)

t

f(t – a)

f

0

a

Figure 5.4. Shift f(t − a) of the function f(t) for a > 0.

Theorem 5.7 (The Second Shifting Theorem). Let

L{f}(s) = F (s).

Then

L−1
{
e−asF (s)

}
= u(t − a)f(t − a), (5.15)

that is,

L
{
u(t − a)f(t − a)

}
(s) = e−asF (s), (5.16)

or, equivalently,

L
{
u(t − a)f(t)

}
(s) = e−asL

{
f(t + a)

}
(s). (5.17)

Proof. (See Fig. 5.4)

e−asF (s) = e−as

∫ ∞

0

e−sτf(τ) dτ

=

∫ ∞

0

e−s(τ+a)f(τ) dτ

(setting τ + a = t, dτ = dt)

=

∫ ∞

a

e−stf(t − a) dt

=

∫ a

0

e−st0f(t − a) dt +

∫ ∞

a

e−st1f(t− a) dt

=

∫ ∞

0

e−stu(t − a)f(t − a) dt
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= L
{
u(t − a)f(t − a)

}
(s).

The equivalent formula (5.17) is obtained by a similar change of variable:

L
{
u(t − a)f(t)

}
(s) =

∫ ∞

0

e−stu(t − a)f(t) dt

=

∫ ∞

a

e−stf(t) dt

(setting t = τ + a, dτ = dt)

=

∫ ∞

0

e−s(τ+a)f(τ + a) dτ

= e−as

∫ ∞

0

e−stf(t + a) dt

= e−asL
{
f(t + a)

}
(s). �

The equivalent formula (5.17) may simplify computation as will be seen in
some of the following examples.

As a particular case, we see that

L
{
u(t − a)

}
=

e−as

s
, s > 0.

In this example, f(t− a) = f(t) = 1 and we know that L{1} = 1/s. This formula
is a direct consequence of the definition,

L
{
u(t − a)

}
=

∫ ∞

0

e−stu(t − a) dt

=

∫ a

0

e−st 0 dt +

∫ ∞

a

e−st 1 dt

= −1

s
e−st

∣∣∣
∞

a
=

e−as

s
.

The Heaviside function will allow us to write piecewise defined functions as
simple expressions. Since

u(t − a) =

{
0, if t < a,

1, if t > a,

we will have that

u(t − a)g(t) =

{
0, if t < a,

g(t), if t > a,

for any function g(t). See Fig. 5.5(a).
Also,

1 − u(t − a) =

{
1, if t < a,

0, if t > a,

shown in Fig. 5.5(b), and so

[1 − u(t − a)]g(t) =

{
g(t), if t < a,

0, if t > a.
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a

g(t)

a

1

a

bab

1

a

g(t)

(a) (b) (c)

(d) (e)

Figure 5.5. Figures involving the Heaviside function.

See Fig. 5.5(c). And, if a < b,

u(t − a) − u(t − b) =





0, if t < a,

1, if a < t < b,

0, if t > b,

shown in Fig. 5.5(d), and hence

[u(t − a) − u(t − b)]g(t) =





0, if t < a,

g(t), if a < t < b,

0, if t > b,

shown in Fig. 5.5(e).

Example 5.12. Find F (s) if

f(t) =





2, if 0 < t < π,

0, if π < t < 2π,

sin t, if 2π < t.

(See Fig. 5.6).

Solution. We rewrite f(t) using the Heaviside function and the 2π-periodicity
of sin t:

f(t) = 2 − 2u(t− π) + u(t − 2π) sin(t − 2π).

Then

F (s) = 2L{1} − 2L
{
u(t − π)1(t − π)

}
+ L

{
u(t − 2π) sin(t − 2π)

}

=
2

s
− e−πs 2

s
+ e−2πs 1

s2 + 1
. �
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t

f

0 π 2π
3π

4π

u(t – 2π) sin (t – 2π)

2
2 – 2 u(t – π)

Figure 5.6. The function f(t) of example 5.12.

t0 π

2π

Figure 5.7. The function f(t) of example 5.13.

Example 5.13. Find F (s) if

f(t) =

{
2t, if 0 < t < π,

2π, if π < t.

(See Fig. 5.7).

Solution. We rewrite f(t) using the Heaviside function:

f(t) = 2t− u(t − π)(2t) + u(t − π)2π

= 2t− 2u(t − π)(t − π).

Then, by (5.16)

F (s) =
2 × 1!

s2
− 2 e−πs 1

s2
. �

Example 5.14. Find F (s) if

f(t) =

{
0, if 0 ≤ t < 2,

t, if 2 < t.

(See Fig. 5.8).

Solution. We rewrite f(t) using the Heaviside function:

f(t) = u(t − 2)t

= u(t − 2)(t − 2) + u(t − 2)2.
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t0

2

2

f(t) = t

Figure 5.8. The function f(t) of example 5.14.

t0

4

2

f(t) = t 2

Figure 5.9. The function f(t) of example 5.15.

Then, by (5.16),

F (s) = e−2s 1!

s2
+ 2 e−2s 0!

s

= e−2s

[
1

s2
+

2

s

]
.

Equivalently, by (5.17),

L
{
u(t − 2)f(t)

}
(s) = e−2sL

{
f(t + 2)

}
(s)

= e−2sL
{
t + 2

)
}(s)

= e−2s

[
1

s2
+

2

s

]
. �

Example 5.15. Find F (s) if

f(t) =

{
0, if 0 ≤ t < 2,

t2, if 2 < t.

(See Fig. 5.9).

Solution. (a) The analytic solution.— We rewrite f(t) using the Heav-
iside function:

f(t) = u(t − 2)t2

= u(t − 2)
[
(t − 2) + 2

]2

= u(t − 2)
[
(t − 2)2 + 4(t − 2) + 4

]
.

Then, by (5.16),

F (s) = e−2s

[
2!

s3
+

4

s2
+

4

s

]
.
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t0

1

π 2π

Figure 5.10. The function f(t) of example 5.16.

Equivalently, by (5.17),

L
{
u(t − 2)f(t)

}
(s) = e−2sL

{
f(t + 2)

}
(s)

= e−2sL
{
(t + 2)2

}
(s)

= e−2sL
{
t2 + 4t + 4

}
(s)

= e−2s

[
2!

s3
+

4

s2
+

4

s

]
.

(b) The Matlab symbolic solution.—

syms s t

F = laplace(’Heaviside(t-2)’*((t-2)^2+4*(t-2)+4))

F = 4*exp(-2*s)/s+4*exp(-2*s)/s^2+2*exp(-2*s)/s^3

�

Example 5.16. Find f(t) if

F (s) = e−πs s

s2 + 4
.

Solution. (a) The analytic solution.— We see that

L−1
{
F (s)

}
(t) = u(t − π) cos

(
2(t − π)

)

=

{
0, if 0 ≤ t < π,

cos
(
2(t − π)

)
= cos 2t, if π < t.

We plot f(t) in figure 5.10.

(b) The Matlab symbolic solution.—

>> syms s;

>> F = exp(-pi*s)*s/(s^2+4);

>> f = ilaplace(F)

f = Heaviside(t-pi)*cos(2*t)

�

Example 5.17. Solve the following initial value problem:

y′′ + 4y = g(t) =

{
t, if 0 ≤ t < π/2,

π/2, if π/2 < t,

y(0) = 0, y′(0) = 0,
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t0 π /2

π /2

Figure 5.11. The function g(t) of example 5.17.

by means of Laplace transform.

Solution. Setting

L{y} = Y (s) and L{g} = G(s)

we have

L{y′′ + 4y} = s2Y (s) − sy(0) − y′(0) + 4Y (s)

= (s2 + 4)Y (s)

= G(s),

where we have used the given values of y(0) and y′(0). Thus

Y (s) =
G(s)

s2 + 4
.

Using the Heaviside function, we rewrite g(t), shown in Fig. 5.11, in the form

g(t) = t − u(t − π/2)t + u(t − π/2)
π

2
= t − u(t − π/2)(t − π/2),

Thus, the Laplace transform of g(t) is

G(s) =
1

s2
− e−(π/2)s 1

s2
=
[
1 − e−(π/2)s

] 1

s2
.

It follows that

Y (s) =
[
1 − e−(π/2)s

] 1

(s2 + 4)s2
.

We expand the second factor on the right-hand side in partial fractions,

1

(s2 + 4)s2
=

A

s
+

B

s2
+

Cs + D

s2 + 4
.

Partial fractions can be used when the polynnomial in the numerator in the
original expression has a degree smaller than the polynomial in the denominator
(which always happens with Laplace transform). When doing the partial fraction
expansion, we always take the numerators in the expansion to be one degree
smaller than their respective denominators.

Ignoring denominators,

1 = (s2 + 4)sA + (s2 + 4)B + s2(Cs + D)

= (A + C)s3 + (B + D)s2 + 4As + 4B.
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and identify coefficients,

4A = 0 =⇒ A = 0,

4B = 1 =⇒ B =
1

4
,

B + D = 0 =⇒ D = −1

4
,

A + C = 0 =⇒ C = 0,

whence
1

(s2 + 4)s2
=

1

4

1

s2
− 1

4

1

s2 + 4
.

Thus

Y (s) =
1

4

1

s2
− 1

8

2

s2 + 22
− 1

4
e−(π/2)s 1

s2
+

1

8
e−(π/2)s 2

s2 + 22

and, taking the inverse Laplace transform, we have

y(t) =
1

4
t− 1

8
sin 2t− 1

4
u(t−π/2)(t−π/2)+

1

8
u(t−π/2) sin

(
2[t−π/2]

)
. �

A second way of finding the inverse Laplace transform of the function

Y (s) =
1

2

[
1 − e−(π/2)s

] 2

(s2 + 4)s2

of previous example 5.17 is a double integration by means of formula (5.11) of
Theorem 5.5, that is,

L−1

{
1

s

2

s2 + 22

}
=

∫ t

0

sin 2τ dτ =
1

2
− 1

2
cos(2t),

L−1

{
1

s

[
1

s

2

s2 + 22

]}
=

1

2

∫ t

0

(1 − cos 2τ) dτ =
t

2
− 1

4
sin(2t).

The inverse Laplace transform y(t) is obtained by (5.15) of Theorem 5.7.

5.4. Dirac Delta Function

Consider the function, called a unit impulse,

fk(t; a) =

{
1/k, if a ≤ t ≤ a + k,

0, otherwise.
(5.18)

We see that the integral of fk(t; a) is equal to 1,

Ik =

∫ ∞

0

fk(t; a) dt =

∫ a+k

a

1

k
dt = 1. (5.19)

We denote by

δ(t − a)

the limit of fk(t; a) as k → 0 and call this limit Dirac’s delta function.
We can represent fk(t; a) by means of the difference of two Heaviside func-

tions,

fk(t; a) =
1

k
[u(t − a) − u(t − (a + k))].
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t0 1 2 3 4

0.1
0.2
0.3

y(t )

Figure 5.12. Solution y(t) of example 5.18.

From (5.17) we have

L
{
fk(t; a)

}
=

1

ks

[
e−as − e−(a+k)s

]
= e−as 1 − e−ks

ks
. (5.20)

The quotient in the last term tends to 1 as k → 0 as one can see by L’Hôpital’s
rule. Thus,

L
{
δ(t − a)

}
= e−as. (5.21)

Symbolic Matlab produces the Laplace transform of the symbolic function
δ(t) by the following commands.

>> syms t a

>> f = sym(’Dirac(t-a)’);

>> F = laplace(f)

F = [PIECEWISE(exp(-s*a), 0 <= a], [0, otherwise])

Example 5.18. Solve the damped system

y′′ + 3y′ + 2y = δ(t − a), y(0) = 0, y′(0) = 0,

at rest for 0 ≤ t < a and hit at time t = a.

Solution. By (5.21), the transform of the differential equation is

s2Y + 3sY + 2Y = e−as.

We solve for Y (s),

Y (s) = e−asF (s),

where

F (s) =
1

(s + 1)(s + 2)
=

1

s + 1
− 1

s + 2
.

Then

f(t) = L−1(F ) = e−t − e−2t.

Hence, by (5.15), we have

y(t) = L−1
{
e−asF (s)

}

= u(t − a)f(t − a)

=

{
0, if 0 ≤ t < a,

e−(t−a) − e−2(t−a), if t > a.

The solution for a = 1 is shown in figure 5.12. �
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5.5. Derivatives and Integrals of Transformed Functions

We derive the following formulae.

Theorem 5.8. If F (s) = L{f(t)}(s), then

L{tf(t)}(s) = −F ′(s), (5.22)

or, in terms of the inverse Laplace transform,

L−1{F ′(s)} = −tf(t). (5.23)

Moreover, if the limit

lim
t→0+

f(t)

t
exists, then

L
{

f(t)

t

}
(s) =

∫ ∞

s

F (s̃) ds̃, (5.24)

or, in terms of the inverse Laplace transform,

L−1

{∫ ∞

s

F (s̃) ds̃

}
=

1

t
f(t). (5.25)

Proof. Let

F (s) =

∫ ∞

0

e−stf(t) dt.

Then, by Theorem 5.2, (5.22) follows by differentiation,

F ′(s) = −
∫ ∞

0

e−st[tf(t)] dt

= −L{tf(t)}(s).
On the other hand, by Theorem 5.2, (5.24) follows by integration,

∫ ∞

s

F (s̃) ds̃ =

∫ ∞

s

∫ ∞

0

e−s̃tf(t) dt ds̃

=

∫ ∞

0

f(t)

[∫ ∞

s

e−s̃tds̃

]
dt

=

∫ ∞

0

f(t)

[
−1

t
e−s̃t

]∣∣∣∣
s̃=∞

s̃=s

dt

=

∫ ∞

0

e−st

[
1

t
f(t)

]
dt

= L
{

1

t
f(t)

}
. �

The following theorem generalizes formula (5.22).

Theorem 5.9. If tnf(t) is transformable, then

L{tnf(t)}(s) = (−1)nF (n)(s), (5.26)

or, in terms of the inverse Laplace transform,

L−1{F (n)(s)} = (−1)ntnf(t). (5.27)

Example 5.19. Use (5.23) to obtain the original of
1

(s + 1)2
.
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Solution. Setting

1

(s + 1)2
= − d

ds

(
1

s + 1

)
=: −F ′(s),

by (5.23) we have

L−1{−F ′(s)} = tf(t) = tL−1

{
1

s + 1

}

= t e−t. �

Example 5.20. Use (5.22) to find F (s) for the given functions f(t).

f(t) F (s)

1

2β3
[sin βt − βt cosβt]

1

(s2 + β2)2
, (5.28)

t

2β
sin βt

s

(s2 + β2)2
, (5.29)

1

2β
[sin βt + βt cosβt]

s2

(s2 + β2)2
. (5.30)

Solution. (a) The analytic solution.— We apply (5.22) to the first term of
(5.29),

L
{
t sin βt

}
(s) = − d

ds

[
β

s2 + β2

]

=
2βs

(s2 + β2)2
,

whence, after division by 2β, we obtain the second term of (5.29).
Similarly, using (5.22) we have

L
{
t cosβt

}
(s) = − d

ds

[
s

s2 + β2

]

= −s2 + β2 − 2s2

(s2 + β2)2

=
s2 − β2

(s2 + β2)2
.

Then

L
{

1

β
sin βt ± t cosβt

}
(s) =

1

s2 + β2
± s2 − β2

(s2 + β2)2

=
(s2 + β2) ± (s2 − β2)

(s2 + β2)2
.

Taking the + sign and dividing by two, we obtain (5.30). Taking the − sign and
dividing by 2β2, we obtain (5.28).

(b) The Matlab symbolic solution.—

>> syms t beta s

>> f = (sin(beta*t)-beta*t*cos(beta*t))/(2*beta^3);

>> F = laplace(f,t,s)

F = 1/2/beta^3*(beta/(s^2+beta^2)-beta*(-1/(s^2+beta^2)+2*s^2/(s^2+beta^2)^2))
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>> FF = simple(F)

FF = 1/(s^2+beta^2)^2

>> g = t*sin(beta*t)/(2*beta);

>> G = laplace(g,t,s)

G = 1/(s^2+beta^2)^2*s

>> h = (sin(beta*t)+beta*t*cos(beta*t))/(2*beta);

>> H = laplace(h,t,s)

H = 1/2/beta*(beta/(s^2+beta^2)+beta*(-1/(s^2+beta^2)+2*s^2/(s^2+beta^2)^2))

>> HH = simple(H)

HH = s^2/(s^2+beta^2)^2

�

Example 5.21. Find

L−1

{
ln

(
1 +

ω2

s2

)}
(t).

Solution. (a) The analytic solution.— We have

− d

ds
ln

(
1 +

ω2

s2

)
= − d

ds
ln

(
s2 + ω2

s2

)

= − s2

s2 + ω2

2s3 − 2s(s2 + ω2)

s4

=
2ω2

s(s2 + ω2)

= 2
(ω2 + s2) − s2

s(s2 + ω2)

=
2

s
− 2

s

s2 + ω2

=: F (s).

Thus

f(t) = L−1(F ) = 2 − 2 cosωt.

Since
f(t)

t
= 2ω

1 − cosωt

ωt
→ 0 as t → 0,

and using the fact that
∫ ∞

s

F (s̃) ds̃ = −
∫ ∞

s

d

ds̃
ln

(
1 +

ω2

s̃2

)
ds̃

= − ln

(
1 +

ω2

s̃2

) ∣∣∣∣
∞

s

= − ln 1 + ln

(
1 +

ω2

s̃2

)

= ln

(
1 +

ω2

s̃2

)
,
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by (5.25) we have

L−1

{
ln

(
1 +

ω2

s2

)}
= L−1

{∫ ∞

s

F (s̃) ds̃

}

=
1

t
f(t)

=
2

t
(1 − cosωt).

(b) Alternate solution.— As

G(s) = ln

(
1 +

ω2

s2

)
= ln

(
s2 + ω2

s2

)
= ln(s2 + ω2) − 2 ln s

then

G′(s) =
2s

s2 + ω2
− 2

s

and

L{G′(s)} = 2 cos(ωt) − 2;

but

L−1{G(s)} = −1

t
L−1{G′(s)}

= −1

t
(2 cos(ωt) − 2)

= −2

t
(cos(ωt) − 1).

(c) The Matlab symbolic solution.—

>> syms omega t s

>> F = log(1+(omega^2/s^2));

>> f = ilaplace(F,s,t)

f = 2/t-2/t*cos(omega*t)

�

5.6. Laguerre Differential Equation

We can solve differential equations with variable coefficients of the form at+b
by means of Laplace transform. In fact, by (5.22), (5.6) and (5.7), we have

L
{
ty′(t)

}
= − d

ds
[sY (s) − y(0)]

= −Y (s) − sY ′(s), (5.31)

L
{
ty′′(t)

}
= − d

ds
[s2Y (s) − sy(0) − y′(0)]

= −2sY (s) − s2Y ′(s) + y(0). (5.32)

Example 5.22. Find the polynomial solutions Ln(t) of the Laguerre equation

ty′′ + (1 − t)y′ + ny = 0, n = 0, 1, . . . . (5.33)
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Solution. The Laplace transform of equation (5.33) is

− 2sY (s) − s2Y ′(s) + y(0) + sY (s) − y(0) + Y (s) + sY ′(s) + nY (s)

= (s − s2)Y ′(s) + (n + 1 − s)Y (s) = 0.

This equation is separable:

dY

Y
=

n + 1 − s

(s − 1)s
ds

=

(
n

s − 1
− n + 1

s

)
ds,

whence its solution is

ln |Y (s)| = n ln |s − 1| − (n + 1) ln s

= ln

∣∣∣∣
(s − 1)n

sn+1

∣∣∣∣ ,

that is,

Y (s) =
(s − 1)n

sn+1
.

Note that an additive constant of integration in ln |Y (s)| would result in a multi-
plicative constant in Y (s) which would still be a solution since Laguerre equation
(5.33) is homogeneous. Set

Ln(t) = L−1{Y }(t),
where, exceptionally, capital L in Ln is a function of t. In fact, Ln(t) denotes the
Laguerre polynomial of degree n. We show that

L0(t) = 1, Ln(t) =
et

n!

dn

dtn
(
tn e−t

)
, n = 1, 2, . . . .

We see that Ln(t) is a polynomial of degree n since the exponential functions
cancel each other after differentiation. Since by Theorem 5.4,

L
{
f (n)

}
(s) = snF (s) − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0),

we have

L
{(

tn e−t
)(n)

}
(s) = sn n!

(s + 1)n+1
,

and, consequently,

L
{

et

n!

(
tn e−t

)(n)
}

=
n!

n!

(s − 1)n

sn+1

= Y (s)

= L{Ln} . �

The first four Laguerre polynomials are (see Fig. 5.13):

L0(x) = 1, L1(x) = 1 − x,

L2(x) = 1 − 2x +
1

2
x2, L3(x) = 1 − 3x +

3

2
x2 − 1

6
x3.

We can obtain Ln(x) by the recurrence formula

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x).
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Figure 5.13. The first four Laguerre polynomials.

The Laguerre polynomials satisfy the following orthogonality relations with
the weight p(x) = e−x:

∫ ∞

0

e−xLm(x)Ln(x) dx =

{
0, m 6= n,

1, m = n.

Symbolic Matlab obtains the Laguerre polynomials as follows.

>>L0 = dsolve(’t*D2y+(1-t)*Dy=0’,’y(0)=1’,’t’)

L0 = 1

>>L1 = dsolve(’t*D2y+(1-t)*Dy+y=0’,’y(0)=1’,’t’);

>> L1 = simple(L1)

L1 = 1-t

>> L2 = dsolve(’t*D2y+(1-t)*Dy+2*y=0’,’y(0)=1’,’t’);

>> L2 = simple(L2)

L2 = 1-2*t+1/2*t^2

and so on. The symbolic Matlab command simple has the mathematically un-
orthodox goal of finding a simplification of an expression that has the fewest
number of characters.

5.7. Convolution

The original of the product of two transforms is the convolution of the two
originals.

Definition 5.4. The convolution of f(t) with g(t), denoted by (f ∗ g)(t), is
the function

h(t) =

∫ t

0

f(τ)g(t − τ) dτ. (5.34)

We say “f(t) convolved with g(t)”.
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We verify that convolution is commutative:

(f ∗ g)(t) =

∫ t

0

f(τ)g(t − τ) dτ

(setting t − τ = σ, dτ = −dσ)

= −
∫ 0

t

f(t − σ)g(σ) dσ

=

∫ t

0

g(σ)f(t − σ) dσ

= (g ∗ f)(t).

Theorem 5.10. Let

F (s) = L{f}, G(s) = L{g}, H(s) = F (s)G(s), h(t) = {L}−1(H).

Then
h(t) = (f ∗ g)(t) = L−1

(
F (s)G(s)

)
. (5.35)

Proof. By definition and by (5.16), we have

e−sτG(s) = L
{
g(t − τ)u(t − τ)

}

=

∫ ∞

0

e−stg(t − τ)u(t − τ) dt

=

∫ ∞

τ

e−stg(t − τ) dt, s > 0.

Whence, by the definition of F (s) we have

F (s)G(s) =

∫ ∞

0

e−sτf(τ)G(s) dτ

=

∫ ∞

0

f(τ)

[∫ ∞

τ

e−stg(t − τ) dt

]
dτ, (s > γ)

=

∫ ∞

0

e−st

[∫ t

0

f(τ)g(t − τ) dτ

]
dt

= L
{
(f ∗ g)(t)

}
(s)

= L{h}(s).
Figure 5.14 shows the region of integration in the tτ -plane used in the proof of
Theorem 5.10. �

Example 5.23. Find (1 ∗ 1)(t).

Solution.

(1 ∗ 1)(t) =

∫ t

0

1 × 1 dτ = t. �

Example 5.24. Find et ∗ et.

Solution.

et ∗ et =

∫ t

0

eτ et−τ dτ

=

∫ t

0

et dτ = t et. �
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t0

τ τ = t 

Figure 5.14. Region of integration in the tτ -plane used in the
proof of Theorem 5.10.

Example 5.25. Find the original of

1

(s − a)(s − b)
, a 6= b,

by means of convolution.

Solution.

L−1

{
1

(s − a)(s − b)

}
= eat ∗ ebt

=

∫ t

0

eaτ eb(t−τ) dτ

= ebt

∫ t

0

e(a−b)τ dτ

= ebt 1

a − b
e(a−b)τ

∣∣∣
t

0

=
ebt

a − b

[
e(a−b)t − 1

]

=
eat − ebt

a − b
. �

Some integral equations can be solved by means of Laplace transform.

Example 5.26. Solve the integral equation

y(t) = t +

∫ t

0

y(τ) sin(t − τ) dτ. (5.36)

Solution. Since the last term of (5.36) is a convolution, then

y(t) = t + y ∗ sin t.

Hence

Y (s) =
1

s2
+ Y (s)

1

s2 + 1
,

whence

Y (s) =
s2 + 1

s4
=

1

s2
+

1

s4
.

Thus,

y(t) = t +
1

6
t3. �
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5.8. Partial Fractions

Expanding a rational function in partial fractions has been studied in elemen-
tary calculus.

We only mention that if p(λ) is the characteristic polynomial of a differential
equation, Ly = r(t) with constant coefficients, the factorization of p(λ) needed to
find the zeros of p and consequently the independent solutions of Ly = 0, is also
needed to expand 1/p(s) in partial fractions when one uses the Laplace transform.

Resonance corresponds to multiple zeros.
The extended symbolic toolbox of the professional Matlab gives access to the

complete Maple kernel. In this case, partial fractions can be obtained by using
the Maple convert command. This command is referenced by entering mhelp

convert[parfrac].

5.9. Transform of Periodic Functions

Definition 5.5. A function f(t) defined for all t > 0 is said to be periodic
of period p, p > 0, if

f(t + p) = f(t), for all t > 0. (5.37)

Theorem 5.11. Let f(t) be a periodic function of period p. Then

L{f}(s) =
1

1 − e−ps

∫ p

0

e−stf(t) dt, s > 0. (5.38)

Proof. To use the periodicity of f(t), we write

L{f}(s) =

∫ ∞

0

e−stf(t) dt

=

∫ p

0

e−stf(t) dt +

∫ 2p

p

e−stf(t) dt +

∫ 3p

2p

e−stf(t) dt + . . . .

Substituting

t = τ + p, t = τ + 2p, . . . ,

in the second, third integrals, etc., changing the limits of integration to 0 and p,
and using the periodicity of f(t), we have

L{f}(s) =

∫ p

0

e−stf(t) dt +

∫ p

0

e−s(t+p)f(t) dt +

∫ p

0

e−s(t+2p)f(t) dt + . . .

=
(
1 + e−sp + e−2sp + · · ·

) ∫ p

0

e−stf(t) dt

=
1

1 − e−ps

∫ p

0

e−stf(t) dt.

Note that the series 1 + e−sp + e−2sp + · · · in front of the integral in the second
last expression is a convergent geometric series with ratio e−ps. �

Example 5.27. Find the Laplace transform of the half-wave rectification of
the sine function

sin ωt

(see Fig. 5.15).
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t0

1

2π /ω 4π /ωπ /ω

Figure 5.15. Half-wave rectifier of example 5.27.

Solution. (a) The analytic solution.— The half-rectified wave of period
p = 2π/ω is

f(t) =

{
sin ωt, if 0 < t < π/ω,

0, if π/ω < t < 2π/ω,
f(t + 2π/ω) = f(t).

By (5.38),

L{f}(s) =
1

1 − e−2πs/ω

∫ π/ω

0

e−st sinωt dt.

Integrating by parts or, more simply, noting that the integral is the imaginary
part of the following integral, we have

∫ π/ω

0

e(−s+iω)t dt =
1

−s + iω
e(−s+iω)t

∣∣∣
π/ω

0
=

−s − iω

s2 + ω2

(
−e−sπ/ω − 1

)
.

Using the formula

1 − e−2πs/ω =
(
1 + e−πs/ω

)(
1 − e−πs/ω

)
,

we have

L{f}(s) =
ω
(
1 + e−πs/ω

)

(s2 + ω2)
(
1 − e−2πs/ω

) =
ω

(s2 + ω2)
(
1 − e−πs/ω

) .

(b) The Matlab symbolic solution.—

syms pi s t omega

G = int(exp(-s*t)*sin(omega*t),t,0,pi/omega)

G = omega*(exp(-pi/omega*s)+1)/(s^2+omega^2)

F = 1/(1-exp(-2*pi*s/omega))*G

F = 1/(1-exp(-2*pi/omega*s))*omega*(exp(-pi/omega*s)+1)/(s^2+omega^2)

�

Example 5.28. Find the Laplace transform of the full-wave rectification of

f(t) = sin ωt

(see Fig. 5.16).

Solution. The fully rectified wave of period p = 2π/ω is

f(t) = | sin ωt| =

{
sinωt, if 0 < t < πω,

− sinωt, if π < t < 2πω,
f(t + 2π/ω) = f(t).
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t0

1

2π /ω 4π /ω

Figure 5.16. Full-wave rectifier of example 5.28.

By the method used in example 5.27, we have

L{f}(s) =
ω

s2 + ω2
coth

πs

2ω
,

where coth is the hyperbolic cotangent. �





CHAPTER 6

Power Series Solutions

6.1. The Method

We illustrate the Power Series Method by a very simple example.

Example 6.1. Find a power series solution of the form

y(x) =
∞∑

m=0

amxm = a0 + a1x + a2x
2 + . . .

to the initial value problem

y′′ + 25y = 0, y(0) = 3, y′(0) = 13.

Solution. In this simple case, we already know the general solution,

y(x) = a cos 5x + b sin 5x,

of the ordinary differential equation. The arbitrary constants a and b are deter-
mined by the initial conditions,

y(0) = a = 3 =⇒ a = 3,

y′(0) = 5b = 13 =⇒ b =
13

5
.

We also know that

cos 5x =

∞∑

m=0

(−1)m (5x)2m

(2m)!
= 1 − (5x)2

2!
+

(5x)4

4!
− (5x)6

6!
+ − . . .

and

sin 5x =

∞∑

m=0

(−1)m (5x)2m+1

(2m + 1)!
= 5x − (5x)3

3!
+

(5x)5

5!
− (5x)7

7!
+ − . . .

To obtain the series solution, we substitute

y(x) =

∞∑

m=0

amxm = a0 + a1x + a2x
2 + a3x

3 + . . .

into the differential equation. If

y(x) =

∞∑

m=0

amxm = a0 + a1x + a2x
2 + a3x

3 + . . . ,

then

y′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + . . . =

∞∑

m=0

mamxm−1

129
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and

y′′(x) = 2a2 + 6a3x + 12a4x
2 + 20a5x

3 + . . .

=

∞∑

m=0

m(m − 1)amxm−2.

Substituting this into the differential equation, we have

y′′ + 25y =

∞∑

m=0

m(m − 1)amxm−2 + 25

∞∑

m=0

amxm−1 = 0.

Since the sum of two power series is another power series, we can combine the
terms into a single series. To ensure that we are combining the series correctly,
we insist that the range of the summation indices and the powers of x agree. In
our example, the powers of x are not the same, xm−2 and xm. But notice that

y′′(x) =

∞∑

m=0

m(m − 1)amxm−2 = 0 + 0 + 2a2 + 6a3x + 12a4x
2 + . . .

=
∞∑

m=2

m(m − 1)amxm−2 (since the first two terms are zero)

=

∞∑

m=0

(m + 1)(m + 2)am+2x
m (reset the index m → m + 2),

and so,

y′′(x) =

∞∑

m=0

(m + 1)(m + 2)am+2x
m + 25

∞∑

m=0

amxm

=

∞∑

m=0

[(m + 1)(m + 2)am+2 + 25am] xm

= 0, for all x.

The only way that a power series can be identically zero is if all of the coefficients
are zero. So it must be that

(m + 1)(m + 2)am+2 + 25am = 0, for all m,

or

am+2 = − 25am

(m + 1)(m + 2)
,

which is called the coefficient recurrence relation. Then

a2 = −25a0

1 · 2 , a4 = −25a2

3 · 4 =
(252)a6

1 · 2 · 3 · 4 =
54a0

4!
, a6 = −25a4

5 · 6 = −56a0

6!
,

and so on, that is,

a2k =
(−1)k52ka0

(2k)!
.

We also have

a3 = −25a1

2 · 3 = −52a1

3!
, a5 = −25a3

4 · 5 =
(254)a1

5!
,
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and so on, that is,

a2k+1 =
(−1)k52ka1

(2k + 1)!
=

1

5
(−1)k 52k+1a1

(2k + 1)!
.

Therefore, the general solution is

y(x) =

∞∑

m=0

amxm

=

∞∑

k=0

a2kx2k +

∞∑

k=0

a2k+1x
2k+1

=

∞∑

k=0

(−1)k52ka0x
2k

(2k)!
+

∞∑

k=0

1

5

(−1)k52k+1a1x
2k+1

(2k + 1)!

= a0

∞∑

k=0

(−1)k((5x)2k

(2k)!
+

a1

5

∞∑

k=0

(−1)k(5x)2k+1

(2k + 1)!

= a0 cos(5x) +
a1

5
sin(5x).

The parameter a0 is determined by the initial condition y(0) = 3,

a0 = 3.

To determine a1, we differentiate y(x),

y′(x) = −5a0 sin(5x) + a1 cos(5x),

and set x = 0. Thus, we have

y′(0) = a1 = 13

by the initial condition y′(0) = 13. �

6.2. Foundation of the Power Series Method

It will be convenient to consider power series in the complex plane. We recall
that a point z in the complex plane C admits the following representations:

• Cartesian or algebraic:

z = x + iy, i2 = −1,

• trigonometric:

z = r(cos θ + i sin θ),

• polar or exponential:

z = r eiθ,

where

r =
√

x2 + y2, θ = arg z = arctan
y

x
.

As usual, z̄ = x − iy denotes the complex conjugate of z and

|z| =
√

x2 + y2 =
√

zz̄ = r

denotes the modulus of z (see Fig. 6.1).
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0 x

y

z=x+iy = re

r

θ

i θ

Figure 6.1. A point z = x + iy = r eiθ in the complex plane C.

Example 6.2. Extend the function

f(x) =
1

1 − x
,

to the complex plane and expand it in power series with centres at z0 = 0,
z0 = −1, and z0 = i, respectively.

Solution. We extend the function

f(x) =
1

1 − x
, x ∈ R \ {1},

of a real variable to the complex plane

f(z) =
1

1 − z
, z = x + iy ∈ C.

This is a rational function with a simple pole at z = 1. We say that z = 1 is a
pole of f(z) since |f(z)| tends to +∞ as z → 1. Moreover, z = 1 is a simple pole
since 1 − z appears to the first power in the denominator.

We expand f(z) in a Taylor series around 0 (sometimes called a Maclaurin
series),

f(z) =
∞∑

m=0

1

m!
f (m)(0)zm = f(0) +

1

1!
f ′(0)z +

1

2!
f ′′(0)z2 + . . .

Since

f(z) =
1

(1 − z)
=⇒ f(0) = 1,

f ′(z) =
1!

(1 − z)2
=⇒ f ′(0) = 1!,

f ′′(z) =
2!

(1 − z)3
=⇒ f ′′(0) = 2!,

...

f (n)(z) =
n!

(1 − z)n+1
=⇒ f (n)(0) = n!,
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it follows that

f(z) =
1

1 − z

= 1 + z + z2 + z3 + . . .

=

∞∑

n=0

zn.

Note that the last series is a geometric series. The series converges absolutely for

|z| ≡
√

x2 + y2 < 1, that is,

∞∑

n=0

|z|n < ∞, for all |z| < 1,

and uniformly for |z| ≤ ρ < 1, that is, given ǫ > 0 there exists Nǫ such that
∣∣∣∣

∞∑

n=N

zn

∣∣∣∣ < ǫ, for all N > Nǫ and all |z| ≤ ρ < 1.

Thus, the radius of convergence R of the series
∑∞

n=0 zn is 1.
Now, we expand f(z) in a neighbourhood of z = −1,

f(z) =
1

1 − z
=

1

1 − (z + 1 − 1)

=
1

2 − (z + 1)
=

1

2

1

1 − ( z+1
2 )

=
1

2

{
1 +

z + 1

2
+

(
z + 1

2

)2

+

(
z + 1

2

)3

+

(
z + 1

2

)4

+ . . .

}
.

The series converges absolutely for
∣∣∣∣
z + 1

2

∣∣∣∣ < 1, that is |z + 1| < 2, or |z − (−1)| < 2.

The centre of the disk of convergence is z = −1 and the radius of convergence is
R = 2.

Finally, we expand f(z) in a neighbourhood of z = i,

f(z) =
1

1 − z
=

1

1 − (z − i + i)

=
1

(1 − i) − (z − i)
=

1

1 − i

1

1 − ( z−i
1−i)

=
1

1 − i

{
1 +

z − i

1 − i
+

(
z − i

1 − i

)2

+

(
z − i

1 − i

)3

+

(
z − i

1 − i

)4

+ . . .

}
.

The series converges absolutely for
∣∣∣∣
z − i

1 − i

∣∣∣∣ < 1, that is |z − i| < |1 − i| =
√

2.

We see that the centre of the disk of convergence is z = i and the radius of
convergence is R =

√
2 = |1 − i| (see Fig. 6.2). �
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y

x0

i

1

R=√2

Figure 6.2. Distance from the centre a = i to the pole z = 1.

y

x0

a

z

R

1

Figure 6.3. Distance R from the centre a to the nearest singu-
larity z1.

This example shows that the Taylor series expansion of a function f(z), with
centre z = a and radius of convergence R, stops being convergent as soon as
|z − a| ≥ R, that is, as soon as |z − a| is bigger than the distance from a to the
nearest singularity z1 of f(z) (see Fig. 6.3).

We shall use the following result.

Theorem 6.1 (Convergence Criteria). The reciprocal of the radius of con-
vergence R of a power series with centre z = a,

∞∑

m=0

am(z − a)m, (6.1)

is equal to the following limit superior,

1

R
= lim sup

m→∞
|am|1/m. (6.2)

The following criterion also holds,

1

R
= lim

m→∞

∣∣∣∣
am+1

am

∣∣∣∣, (6.3)

if this limit exists.
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Proof. The Root Test, also called Cauchy’s Criterion, states that the series

∞∑

m=0

cm

converges if

lim
m→∞

|cm|1/m < 1.

By the Root Test, the power series converges if

lim
m→∞

|am(z − a)m|1/m = lim
m→∞

|am|1/m|z − a| < 1.

Let R be maximum of |z − a| such that the equality

lim
m→∞

|am|1/mR = 1

is satisfied. If there are several limits, one must take the limit superior, that is
the largest limit. This establishes criterion (6.2).

The second criterion follows from the Ratio Test, also called d’Alembert’s
Criterion, which states that the series

∞∑

m=0

cm

converges if

lim
m→∞

|cm+1|
|cm| < 1.

By the Ratio Test, the power series converges if

lim
m→∞

|am+1(z − a)m+1|
|am(z − a)m| = lim

m→∞

|am+1|
|am| |z − a| < 1.

Let R be maximum of |z − a| such that the equality

lim
m→∞

|am+1|
|am| R = 1

is satisfied. This establishes criterion (6.3). �

Example 6.3. Find the radius of convergence of the series

∞∑

m=0

1

km
x3m

and of its first term-by-term derivative.

Solution. By the Root Test,

1

R
= lim sup

m→∞
|am|1/m = lim

m→∞

∣∣∣∣
1

km

∣∣∣∣
1/3m

=
1

|k|1/3
.

Hence the radius of convergence of the series is

R = |k|1/3.

To use the Ratio Test, we put

w = z3
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in the series, which becomes
∞∑

0

1

km
wm.

Then the radius of convergence, R1, of the new series is given by

1

R1
= lim

m→∞

∣∣∣∣
km

km+1

∣∣∣∣ =

∣∣∣∣
1

k

∣∣∣∣.

Therefore the original series converges for

|z3| = |w| < |k|, that is |z| < |k|1/3.

The radius of convergence R′ of the differentiated series,
∞∑

m=0

3m

km
x3m−1,

is obtained in a similar way:

1

R′
= lim

m→∞

∣∣∣∣
3m

km

∣∣∣∣
1/(3m−1)

= lim
m→∞

|3m|1/(3m−1) lim
m→∞

∣∣∣∣
1

km

∣∣∣∣
(1/m)(m/(3m−1)

= lim
m→∞

(
1

|k|

)1/(3−1/m)

=
1

|k|1/3
,

since
lim

m→∞
|3m|1/(3m−1) = 1. �

One sees by induction that all term-by-term derivatives of a given series have
the same radius of convergence R.

Definition 6.1. We say that a function f(z) is analytic inside a disk D(a, R),
of centre a and radius R > 0, if it has a power series with centre a,

f(z) =

∞∑

n=0

an(z − a)n,

which is uniformly convergent in every closed subdisk strictly contained inside
D(a, R).

The following theorem follows from the previous definition.

Theorem 6.2. A function f(z) analytic in D(a, R) admits the power series
representation

f(z) =

∞∑

n=0

f (n)(a)

n!
(z − a)n

uniformly and absolutely convergent in D(a, R). Moreover f(z) is infinitely often
differentiable, the series is termwise infinitely often differentiable, and

f (k)(z) =

∞∑

n=k

f (n)(a)

(n − k)!
(z − a)n−k, k = 0, 1, 2, . . . ,
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in D(a, R).

Proof. Since the radius of convergence of the termwise differentiated series
is still R, the result follows from the facts that the differentiated series converges
uniformly in every closed disk strictly contained inside D(a, R) and f(z) is differ-
entiable in D(a, R). �

The following general theorem holds for ordinary differential equations with
analytic coefficients.

Theorem 6.3 (Existence of Series Solutions). Consider the second-order or-
dinary differential equation in standard form

y′′ + f(x)y′ + g(x)y = r(x),

where f(z), g(z) and r(z) are analytic functions in a circular neighbourhood of
the point a. If R is equal to the minimum of the radii of convergence of the power
series expansions of f(z), g(z) and r(z) with centre z = a, then the differential
equation admits an analytic solution in a disk of centre a and radius of convergence
R. This general solution contains two undetermined coefficients.

Proof. The proof makes use of majorizing series in the complex plane C.
This method consists in finding a series with nonnegative coefficients which con-
verges absolutely in D(a, R),

∞∑

n=0

bn(x − a)n, bn ≥ 0,

and whose coefficients majorizes the absolute value of the coefficients of the solu-
tion,

y(x) =
∞∑

n=0

an(x − a)n,

that is,

|an| ≤ bn. �

We shall use Theorems 6.2 and 6.3 to obtain power series solutions of ordinary
differential equations. In the next two sections, we shall obtain the power series
solution of the Legendre equation and prove the orthogonality relation satisfied
by the Legendre polynomials Pn(x).

In closing this section, we revisit Examples 1.19 and 1.20.

Example 6.4. Use the power series method to solve the initial value problem

y′ − xy − 1 = 0, y(0) = 1.

Solution. Putting

y(x) =

∞∑

m=0

amxm and y′(x) =

∞∑

m=0

mamxm−1
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into the differential equation, we have

y′ − xy − 1 =
∞∑

m=0

mamxm−1 − x
∞∑

m=0

amxm − 1

=

∞∑

m=0

(m + 1)am+1x
m −

∞∑

m=0

amxm+1 − 1

= a1 − 1 +

∞∑

m=1

(m + 1)am+1x
m −

∞∑

m=0

amxm+1

= a1 − 1 +

∞∑

m=0

(m + 2)am+2x
m+1 −

∞∑

m=0

amxm+1

= a1 − 1 +

∞∑

m=0

[(m + 2)am+2 − am] xm+1

= 0 for all x.

This requires that a1 − 1 = 0 and

(m + 2)am+2 − am = 0 for all m.

So me must have a1 = 1 and am+2 = am/(m + 2), that is,

a2 =
a0

2
, a4 =

a2

4
=

a0

2 · 4 , a6 =
a4

6
=

a0

2 · 4 · 6 =
a0

23(1 · 2 · 3)

a8 =
a6

8
=

a0

24(1 · 2 · 3 · 4)
=

a0

244!
,

and so on, that is

a2k =
a0

2kk!
,

and

a3 =
a1

3
=

1

3
, a5 =

a3

5
=

1

5 · 5 , a7 =
a5

7
=

1

1 · 3 · 5 · 7
and so on, that is

a2k+1 =
1

1 · 3 · 5 · 7 · · · (2k + 1)

2 · 4 · 6 · 8 · · · (2k)

2 · 4 · 6 · 8 · · · (2k)
=

2kk!

(2k + 1)!
.

The general solution is

yg(x) =
∞∑

m=0

amxm

=

∞∑

k=0

a2kx2k +

∞∑

k=0

a2k+1x
2k+1

=
∞∑

k=0

a0

2kk!
x2k +

∞∑

k=0

x2k+1

(2k + 1)!

= a0

∞∑

k=0

x2k

2kk!
+

∞∑

k=0

x2k+1

(2k + 1)!
.
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But y(0) = 1 means that y(0) = a0 = 1, Thus, the unique solution is

y(x) =

∞∑

k=0

x2k

2kk!
+

∞∑

k=0

x2k+1

1 · 3 · 5 · 7 · · · (2k + 1)

= 1 +
x2

2
+

x4

8
+

x6

48
+ · · · + x +

x3

3
+

x5

15
+

x7

105
+ . . . ,

which coincides with the solutions of Examples 1.19 and 1.20. �

6.3. Legendre Equation and Legendre Polynomials

We look for the general solution of the Legendre equation:

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0, −1 < x < 1, (6.4)

in the form of a power series with centre a = 0. We rewrite the equation in
standard form y′′ + f(x)y′ + g(x)y = r(x),

y′′ − 2x

1 − x2
y′ +

n(n + 1)

1 − x2
y = 0.

Since the coefficients,

f(x) =
2x

(x − 1)(x + 1)
, g(x) = − n(n + 1)

(x − 1)(x + 1)
,

have simple poles at x = ±1, they have convergent power series with centre a = 0
and radius of convergence R = 1:

f(x) = − 2x

1 − x2
= −2x[1 + x2 + x4 + x6 + . . . ], −1 < x < 1,

g(x) =
n(n + 1)

1 − x2
= n(n + 1)[1 + x2 + x4 + x6 + . . . ], −1 < x < 1.

Moreover

r(x) = 0, −∞ < x < ∞.

Hence, we see that f(x) and g(x) are analytic for −1 < x < 1, and r(x) is
everywhere analytic.

By Theorem 6.3, we know that (6.4) has two linearly independent analytic
solutions for −1 < x < 1.

Set

y(x) =

∞∑

m=0

amxm (6.5)
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and substitute in (6.4) to get

(1 − x2)y′′ − 2xy′ + n(n + 1)y

= y′′ − x2y′′ − 2xy′ + n(n − 1)y

=
∞∑

m=0

(m)(m − 1)amxm−2 − x2
∞∑

m=0

m(m − 1)amxm−2

− 2x

∞∑

m=0

mamxm−1 + n(n + 1)

∞∑

m=0

amxm

=
∞∑

m=0

(m + 1)(m + 2)am+2x
m −

∞∑

m=0

m(m − 1)amxm

−
∞∑

m=0

2mamxm + n(n + 1)

∞∑

m=0

amxm

=

∞∑

m=0

{(m + 1)(m + 2)am+2 − [m(m − 1) + 2m − n(n − 1)]am}xm

=

∞∑

m=0

{(m + 1)(m + 2)am+2 − [m(m + 1) − n(n − 1)]am}xm

= 0, for all x,

and so

am+2 =
m(m + 1) − n(n + 1)

(m + 1)(m + 2)
am.

Therefore,

a2 = −n(n + 1)

2!
a0, a3 = − (n − 1)(n + 2)

3!
a1, (6.6)

a4 =
(n − 2)n(n + 1)(n + 3)

4!
a0, a5 =

(n − 3)(n − 1)(n + 2)(n + 4)

5!
a1, (6.7)

etc. The solution can be written in the form

y(x) = a0y1(x) + a1y2(x), (6.8)

where

y1(x) = 1 − n(n + 1)

2!
x2 +

(n − 2)n(n + 1)(n + 3)

4!
x4 − + . . . ,

y2(x) = x − (n − 1)(n + 2)

3!
x3 +

(n − 3)(n − 1)(n + 2)(n + 4)

5!
x5 − + . . .

Each series converges for |x| < R = 1. We remark that y1(x) is even and y2(x) is
odd. Since

y1(x)

y2(x)
6= const,

it follows that y1(x) and y2(x) are two independent solutions and (6.8) is the
general solution.

Corollary 6.1. For n even, y1(x) is an even polynomial,

y1(x) = knPn(x).
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Figure 6.4. The first five Legendre polynomials.

Similarly, for n odd, y2(x) is an odd polynomial,

y2(x) = knPn(x),

The polynomial Pn(x) is the Legendre polynomial of degree n, normalized such
that Pn(1) = 1.

The first six Legendre polynomials are:

P0(x) = 1, P1(x) = x,

P2(x) =
1

2

(
3x2 − 1

)
, P3(x) =

1

2

(
5x3 − 3x

)
,

P4(x) =
1

8

(
35x4 − 30x2 + 3

)
, P5(x) =

1

8

(
63x5 − 70x3 + 15x

)
.

The graphs of the first five Pn(x) are shown in Fig. 6.4.
We notice that the n zeros of the polynomial Pn(x), of degree n, lie in the

open interval ]− 1, 1[. These zeros are simple and interlace the n − 1 zeros of
Pn−1(x), two properties that are ordinarily possessed by the zeros of orthogonal
functions.

Remark 6.1. It can be shown that the series for y1(x) and y2(x) diverge at
x = ±1 if n 6= 0, 2, 4, . . . , and n 6= 1, 3, 5, . . . , respectively.

Symbolic Matlab can be used to obtain the Legendre polynomials if we use
the condition Pn(1) = 1 as follows.

>> dsolve(’(1-x^2)*D2y-2*x*Dy=0’,’y(1)=1’,’x’)

y = 1

>> dsolve(’(1-x^2)*D2y-2*x*Dy+2*y=0’,’y(1)=1’,’x’)

y = x

>> dsolve(’(1-x^2)*D2y-2*x*Dy+6*y=0’,’y(1)=1’,’x’)

y = -1/2+3/2*x^2
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and so on. With the Matlab extended symbolic toolbox, the Legendre polyno-
mials Pn(x) can be obtained from the full Maple kernel by using the command
orthopoly[P](n,x), which is referenced by the command mhelp orthopoly[P].

6.4. Orthogonality Relations for Pn(x)

Theorem 6.4. The Legendre polynomials Pn(x) satisfy the following orthog-
onality relation,

∫ 1

−1

Pm(x)Pn(x) dx =

{
0, m 6= n,

2
2n+1 , m = n.

(6.9)

Proof. We give below two proofs of the second part (m = n) of the or-
thogonality relation. The first part (m 6= n) follows simply from the Legendre
equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0,

rewritten in divergence form,

Lny := [(1 − x2)y′]′ + n(n + 1)y = 0.

Since Pm(x) and Pn(x) are solutions of Lmy = 0 and Lny = 0, respectively, we
have

Pn(x)Lm(Pm) = 0, Pm(x)Ln(Pn) = 0.

Integrating these two expressions from −1 to 1, we have
∫ 1

−1

Pn(x)[(1 − x2)P ′
m(x)]′ dx + m(m + 1)

∫ 1

−1

Pn(x)Pm(x) dx = 0,

∫ 1

−1

Pm(x)[(1 − x2)P ′
n(x)]′ dx + n(n + 1)

∫ 1

−1

Pm(x)Pn(x) dx = 0.

Now integrating by parts the first term of these expressions, we have

Pn(x)(1 − x2)P ′
m(x)

∣∣∣
1

−1
−
∫ 1

−1

P ′
n(x)(1 − x2)P ′

m(x) dx

+ m(m + 1)

∫ 1

−1

Pn(x)Pm(x) dx = 0,

Pm(x)(1 − x2)P ′
n(x)

∣∣∣
1

−1
−
∫ 1

−1

P ′
m(x)(1 − x2)P ′

n(x) dx

+ n(n + 1)

∫ 1

−1

Pm(x)Pn(x) dx = 0.

The integrated terms are zero and the next term is the same in both equations.
Hence, subtracting these equations, we obtain the orthogonality relation

[m(m + 1) − n(n + 1)]

∫ 1

−1

Pm(x)Pn(x) dx = 0

=⇒
∫ 1

−1

Pm(x)Pn(x) dx = 0 for m 6= n.

The second part (m = n) follows from Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn

[(
x2 − 1

)n]
. (6.10)
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In fact,

∫ 1

−1

P 2
n(x) dx =

1

2n
× 1

n!
× 1

2n
× 1

n!

∫ 1

−1

[
dn

dxn

(
x2 − 1

)n
] [

dn

dxn

(
x2 − 1

)n
]

dx

{and integrating by parts n times}

=
1

2n
× 1

n!
× 1

2n
× 1

n!

[
dn−1

dxn−1

(
x2 − 1

)n dn

dxn

(
x2 − 1

) ∣∣∣∣
1

−1

+ (−1)1
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n dn+1

dxn+1

(
x2 − 1

)n
dx

]

+ . . .

=
1

2n
× 1

n!
× 1

2n
× 1

n!
(−1)n

∫ 1

−1

(
x2 − 1

)n d2n

dx2n

(
x2 − 1

)n
dx

{and differentiating 2n times}

=
1

2n
× 1

n!
× 1

2n
× 1

n!
(−1)n(2n)!

∫ 1

−1

1 ×
(
x2 − 1

)n
dx

{and integrating by parts n times}

=
(−1)n(2n)!

2nn!2nn!

[
x

1

(
x2 − 1

)n ∣∣∣
1

−1
+

(−1)1

1!
2n

∫ 1

−1

x2
(
x2 − 1

)n−1
dx

]

+ . . .

=
(−1)n(2n)!

2nn!2nn!
(−1)n 2n2(n− 1)2(n − 2) · · · 2(n − (n − 1))

1 × 3 × 5 × · · · × (2n − 1)

∫ 1

−1

x2n dx

=
(−1)n(−1)n(2n)!

2nn!2nn!

2nn!

1 × 3 × 5 × · · · × (2n − 1)

1

(2n + 1)
x2n+1

∣∣∣∣
1

−1

=
2

2n + 1
. �

Remark 6.2. Rodrigues’ formula can be obtained by direct computation with
n = 0, 1, 2, 3, . . . , or otherwise. We compute P4(x) using Rodrigues’ formula with
the symbolic Matlab command diff.

>> syms x f p4

>> f = (x^2-1)^4

f = (x^2-1)^4

>> p4 = (1/(2^4*prod(1:4)))*diff(f,x,4)

p4 = x^4+3*(x^2-1)*x^2+3/8*(x^2-1)^2

>> p4 = expand(p4)

p4 = 3/8-15/4*x^2+35/8*x^4

We finally present a second proof of the formula for the norm of Pn,

‖Pn‖2 :=

∫ 1

−1

[Pn(x)]2 dx =
2

2n + 1
,
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by means of the generating function for Pn(x),

∞∑

k=0

Pk(x)tk =
1√

1 − 2xt + t2
. (6.11)

Proof. Squaring both sides of (6.11),

∞∑

k=0

P 2
k (x)t2k +

∑

j 6=k

Pj(x)Pk(x)tj+k =
1

1 − 2xt + t2
,

and integrating with respect to x from −1 to 1, we have

∞∑

k=0

[∫ 1

−1

P 2
k (x) dx

]
t2k +

∑

j 6=k

[∫ 1

−1

Pj(x)Pk(x) dx

]
tj+k =

∫ 1

−1

dx

1 − 2xt + t2
.

Since Pj(x) and Pk(x) are orthogonal for j 6= k, the second term on the left-hand
side is zero. Hence, after integration of the right-hand side, we obtain

∞∑

k=0

‖Pk‖2t2k = − 1

2t
ln
(
1 − 2xt + t2

)∣∣∣
x=1

x=−1

= −1

t

[
ln (1 − t) − ln (1 + t)

]
.

Multiplying by t,

∞∑

k=0

‖Pk‖2t2k+1 = − ln (1 − t) + ln (1 + t)

and differentiating with respect to t, we have

∞∑

k=0

(2k + 1)‖Pk‖2t2k =
1

1 − t
+

1

1 + t

=
2

1 − t2

= 2
(
1 + t2 + t4 + t6 + . . .

)
for all t, |t| < 1.

Since we have an identity in t, we can identify the coefficients of t2k on both sides,

(2k + 1)‖Pk‖2 = 2 =⇒ ‖Pk‖2 =
2

2k + 1
. �

Remark 6.3. The generating function (6.11) can be obtained by expanding
its right-hand side in a Taylor series in t, as is easily done with symbolic Matlab
by means of the command taylor.

>> syms t x; f = 1/(1-2*x*t+t^2)^(1/2);

>> g = taylor(f,3,t)

g = 1+t*x+(-1/2+3/2*x^2)*t^2

+(-3/2*x+5/2*x^3)*t^3+(3/8-15/4*x^2+35/8*x^4)*t^4
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6.5. Fourier–Legendre Series

The Fourier–Legendre series of f(x) on −1 < x < 1 is

f(x) =

∞∑

m=0

amPm(x), −1 < x < 1,

where the coefficients are given by

am =
2m + 1

2

∫ 1

−1

f(x)Pm(x) dx.

The value of am follows from the orthogonality relations (6.9) of the Pm(x) on
−1 < x < 1 :

∫ 1

−1

f(x)Pn(x) dx =

∞∑

m=0

am

∫ 1

−1

Pm(x)Pn(x) dx

= am

∫ 1

−1

Pm(x)Pm(x) dx =
2

2m + 1
am.

For polynomials p(x) of degree k, we obtain a finite expansion

f(x) =

k∑

m=0

amPm(x)

on −∞ < x < ∞, without integration, by the simple change of bases from xm to
Pm(x) for m = 1, 2, . . . , k .

Example 6.5. Expand the polynomial

p(x) = x3 − 2x2 + 4x + 1

over [−1, 1] in terms of the Legendre polynomials P0(x), P1(x),. . .

Solution. We express the powers of x in terms of the basis of Legendre
polynomials:

P0(x) = 1 =⇒ 1 = P0(x),

P1(x) = x =⇒ x = P1(x),

P2(x) =
1

2
(3x2 − 1) =⇒ x2 =

2

3
P2(x) +

1

3
P0(x),

P3(x) =
1

2
(5x3 − 3x) =⇒ x3 =

2

5
P3(x) +

3

5
P1(x).

This way, one avoids computing integrals. Thus

p(x) =
2

5
P3(x) +

3

5
P1(x) − 4

3
P2(x) − 2

3
P0(x) + 4P1(x) + P0(x)

=
2

5
P3(x) − 4

3
P2(x) +

23

5
P1(x) +

1

3
P0(x). �

.

Example 6.6. Expand the polynomial

p(x) = 2 + 3x + 5x2

over [3, 7] in terms of the Legendre polynomials P0(x), P1(x),. . .
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0 3 5 7

−1 0 1

x

s

Figure 6.5. Affine mapping of x ∈ [3, 7] onto s ∈ [−1, 1].

Solution. To map the segment x ∈ [3, 7] onto the segment s ∈ [−1, 1] (see
Fig. 6.5) we consider the affine transformation

s 7→ x = αs + β, such that − 1 7→ 3 = −α + β, 1 7→ 7 = α + β.

Solving for α and β, we have
x = 2s + 5. (6.12)

Then

p(x) = p(2s + 5)

= 2 + 3(2s + 5) + 5(2s + 5)2

= 142 + 106s + 20s2

= 142P0(s) + 106P1(s) + 20

[
2

3
P2(s) +

1

3
P0(s)

]
;

consequently, we have

p(x) =

(
142 +

20

3

)
P0

(
x − 5

2

)
+ 106P1

(
x − 5

2

)
+

40

3
P2

(
x − 5

2

)
. �

.

Example 6.7. Compute the first three terms of the Fourier–Legendre expan-
sion of the function

f(x) =

{
0, −1 < x < 0,

x, 0 < x < 1.

Solution. Putting

f(x) =

∞∑

m=0

amPm(x), −1 < x < 1,

we have

am =
2m + 1

2

∫ 1

−1

f(x)Pm(x) dx.

Hence

a0 =
1

2

∫ 1

−1

f(x)P0(x) dx =
1

2

∫ 1

0

xdx =
1

4
,

a1 =
3

2

∫ 1

−1

f(x)P1(x) dx =
3

2

∫ 1

0

x2 dx =
1

2
,

a2 =
5

2

∫ 1

−1

f(x)P2(x) dx =
5

2

∫ 1

0

x
1

2
(3x2 − 1) dx =

5

16
.



6.5. FOURIER–LEGENDRE SERIES 147

Thus we have the approximation

f(x) ≈ 1

4
P0(x) +

1

2
P1(x) +

5

16
P2(x). �

Example 6.8. Compute the first three terms of the Fourier–Legendre expan-
sion of the function

f(x) = ex, 0 ≤ x ≤ 1.

Solution. To use the orthogonality of the Legendre polynomials, we trans-
form the domain of f(x) from [0, 1] to [−1, 1] by the substitution

s = 2

(
x − 1

2

)
, that is x =

s

2
+

1

2
.

Then

f(x) = ex = e(1+s)/2 =

∞∑

m=0

amPm(s), −1 ≤ s ≤ 1,

where

am =
2m + 1

2

∫ 1

−1

e(1+s)/2Pm(s) ds.

We first compute the following three integrals by recurrence:

I0 =

∫ 1

−1

es/2 ds = 2
(
e1/2 − e−1/2

)
,

I1 =

∫ 1

−1

s es/2 ds = 2s es/2

∣∣∣∣
1

−1

− 2

∫ 1

−1

es/2 ds

= 2
(
e1/2 + e−1/2

)
− 2I0

= −2 e1/2 + 6 e−1/2,

I2 =

∫ 1

−1

s2 es/2 ds = 2s2 es/2

∣∣∣∣
1

−1

− 4

∫ 1

−1

s es/2 ds

= 2
(
e1/2 − e−1/2

)
− 4I1

= 10 e1/2 − 26 e−1/2.

Thus

a0 =
1

2
e1/2I0 = e − 1 ≈ 1.7183,

a1 =
3

2
e1/2I1 = −3 e + 9 ≈ 0.8452,

a2 =
5

2
e1/2 1

2
(3I2 − I0) = 35 e − 95 ≈ 0.1399.

We finally have the approximation

f(x) ≈ 1.7183P0(2x − 1) + 0.8452P1(2x − 1) + 0.1399P2(2x − 1). �
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6.6. Derivation of Gaussian Quadratures

We easily obtain the n-point Gaussian Quadrature formula by means of the
Legendre polynomials. We restrict ourselves to the cases n = 2 and n = 3. We
immediately remark that the number of points n refers to the n points at which we
need to evaluate the integrand over the interval [−1, 1], and not to the numbers of
subintervals into which one usually breaks the whole interval of integration [a, b]
in order to have a smaller error in the numerical value of the integral.

Example 6.9. Determine the four parameters of the two-point Gaussian
Quadrature formula,

∫ 1

−1

f(x) dx = af(x1) + bf(x2).

Solution. By symmetry, it is expected that the nodes will be negative to
each other, x1 = −x2, and the weights will be equal, a = b. Since there are four
free parameters, the formula will be exact for polynomials of degree three or less.
By Example 6.5, it suffices to consider the polynomials P0(x), . . . , P3(x). Since
P0(x) = 1 is orthogonal to Pn(x), n = 1, 2, . . . , we have

2 =

∫ 1

−1

P0(x) dx = aP0(x1) + bP0(x2) = a + b, (6.13)

0 =

∫ 1

−1

1 × P1(x) dx = aP1(x1) + bP1(x2) = ax1 + bx2, (6.14)

0 =

∫ 1

−1

1 × P2(x) dx = aP2(x1) + bP2(x2), (6.15)

0 =

∫ 1

−1

1 × P3(x) dx = aP3(x1) + bP3(x2), (6.16)

To satisfy (6.15) we choose x1 and x2 such that

P2(x1) = P2(x2) = 0,

that is,

P2(x) =
1

2
(3x2 − 1) = 0 ⇒ −x1 = x2 =

1√
3

= 0.577 350 27.

Hence, by (6.14), we have

a = b.

Moreover, (6.16) is automatically satisfied since P3(x) is odd. Finally, by (6.13),
we have

a = b = 1.

Thus, the two-point Gaussian Quadrature formula is
∫ 1

−1

f(x) dx = f

(
− 1√

3

)
+ f

(
1√
3

)
. � (6.17)

Example 6.10. Determine the six parameters of the three-point Gaussian
Quadrature formula,

∫ 1

−1

f(x) dx = af(x1) + bf(x2) + cf(x3).
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Solution. By symmetry, it is expected that the two extremal nodes are
negative to each other, x1 = −x3, and the middle node is at the origin, x2 = 0,
Moreover, the extremal weights should be equal, a = c, and the central one be
larger that the other two, b > a = c. Since there are six free parameters, the
formula will be exact for polynomials of degree five or less. By Example 6.5, it
suffices to consider the basis P0(x), . . . , P5(x). Thus,

2 =

∫ 1

−1

P0(x) dx = aP0(x1) + bP0(x2) + cP0(x3), (6.18)

0 =

∫ 1

−1

P1(x) dx = aP1(x1) + bP1(x2) + cP1(x3), (6.19)

0 =

∫ 1

−1

P2(x) dx = aP2(x1) + bP2(x2) + cP2(x3), (6.20)

0 =

∫ 1

−1

P3(x) dx = aP3(x1) + bP3(x2) + cP3(x3), (6.21)

0 =

∫ 1

−1

P4(x) dx = aP4(x1) + bP4(x2) + cP4(x3), (6.22)

0 =

∫ 1

−1

P5(x) dx = aP5(x1) + bP5(x2) + cP5(x3). (6.23)

To satisfy (6.21), we let x1, x2, x3 be the three zeros of

P3(x) =
1

2
(5x3 − 3x) =

1

2
x(5x2 − 3)

that is,

−x1 = x3 =

√
3

5
= 0.774 596 7, x2 = 0.

Hence (6.19) implies

−
√

3

5
a +

√
3

5
c = 0 ⇒ a = c.

We immediately see that (6.23) is satisfied since P5(x) is odd. Moreover, by
substituting a = c in (6.20), we have

a
1

2

(
3 × 3

5
− 1

)
+ b

(
−1

2

)
+ a

1

2

(
3 × 3

5
− 1

)
= 0,

that is,

4a − 5b + 4a = 0 or 8a − 5b = 0. (6.24)

Now, it follows from (6.18) that

2a + b = 2 or 10a + 5b = 10. (6.25)

Adding the second expressions in (6.24) and (6.25), we have

a =
10

18
=

5

9
= 0.555.

Thus

b = 2 − 10

9
=

8

9
= 0.888.
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Finally, we verify that (6.22) is satisfied. Since

P4(x) =
1

8
(35x4 − 30x2 + 3),

we have

2 × 5 × 1

9 × 8

(
35 × 9

25
− 30 × 3

5
+ 3

)
+

8

9
× 3

8
=

2 × 5

9 × 8

(
315 − 450 + 75

25

)
+

8

9
× 3

8

=
2 × 5

9 × 8
× (−60)

25
+

8 × 3

9 × 8

=
−24 + 24

9 × 8
= 0.

Therefore, the three-point Gaussian Quadrature formula is

∫ 1

−1

f(x) dx =
5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)
. � (6.26)

Remark 6.4. The interval of integration in the Gaussian Quadrature formu-
las is normalized to [−1, 1]. To integrate over the interval [a, b] we use the change
of independent variable from x ∈ [a, b] to t ∈ [−1, 1] (see Example 6.8):

t 7→ x = αt + β, such that − 1 7→ a = −α + β, 1 7→ b = α + β.

Solving for α and β, we have

x =
(b − a)t + b + a

2
, dx =

(
b − a

2

)
dt.

Thus, the integral becomes

∫ b

a

f(x) dx =
b − a

2

∫ 1

−1

f

(
(b − a)t + b + a

2

)
dt.

Example 6.11. Evaluate

I =

∫ π/2

0

sinxdx

by applying the two-point Gaussian Quadrature formula once over the interval
[0, π/2] and over the half-intervals [0, π/4] and [π/4, π/2].

Solution. Let

x =
(π/2)t + π/2

2
, dx =

π

4
dt.

At t = −1, x = 0 and, at t = 1, x = π/2. Hence

I =
π

4

∫ 1

−1

sin

(
πt + π

4

)
dt

≈ π

4
[1.0 × sin (0.105 66π) + 1.0 × sin (0.394 34π)]

= 0.998 47.
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The error is 1.53 × 10−3. Over the half-intervals, we have

I =
π

8

∫ 1

−1

sin

(
πt + π

8

)
dt +

π

8

∫ 1

−1

sin

(
πt + 3π

8

)
dt

≈ π

8

[
sin

π

8

(
− 1√

3
+ 1

)
+ sin

π

8

(
1√
3

+ 1

)

+ sin
π

8

(
− 1√

3
+ 3

)
+ sin

π

8

(
1√
3

+ 3

)]

= 0.999 910 166 769 89.

The error is 8.983× 10−5. The Matlab solution is as follows. For generality, it is
convenient to set up a function M-file exp5_10.m,

function f=exp5_10(t)

f=sin(t); % evaluate the function f(t)

The two-point Gaussian Quadrature is programmed as follows.

>> clear

>> a = 0; b = pi/2; c = (b-a)/2; d= (a+b)/2;

>> weight = [1 1]; node = [-1/sqrt(3) 1/sqrt(3)];

>> syms x t

>> x = c*node+d;

>> nv1 = c*weight*exp5_10(x)’ % numerical value of integral

nv1 = 0.9985

>> error1 = 1 - nv1 % error in solution

error1 = 0.0015

The other part is done in a similar way. �

We evaluate the integral of Example 6.11 by Matlab’s adapted Simpson’s rule
(quad) and adapted 8-panel Newton–Cotes’ method (quad8).

>> v1 = quad(’sin’,0,pi/2)

v1 = 1.00000829552397

>> v2 = quad8(’sin’,0,pi/2)

v2 = 1.00000000000000

respectively, within a relative error of 10−3.

Remark 6.5. The Gaussian Quadrature formulae are the most accurate in-
tegration formulae for a given number of nodes. The error in the n-point formula
is

En(f) =
2

(2n + 1)!

[
2n(n!)2

(2n)!

]2
f (2n)(ξ), −1 < ξ < 1.

This formula is therefore exact for polynomials of degree 2n − 1 or less.

The nodes of the four- and five-point Gaussian Quadratures can be expressed
in terms of radicals. See Exercises 6.35 and 6.37.
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Numerical Methods





CHAPTER 7

Solutions of Nonlinear Equations

7.1. Computer Arithmetic

7.1.1. Definitions. The following notation and terminology will be used.

(1) If a is the exact value of a computation and ã is an approximate value
for the same computation, then

ǫ = ã − a

is the error in ã and |ǫ| is the absolute error . If a 6= 0,

ǫr =
ã − a

a
=

ǫ

a

is the relative error in ã.
(2) Upper bounds for the absolute and relative errors in ã are numbers Ba

and Br such that

|ǫ| = |ã − a| < Ba, |ǫr| =

∣∣∣∣
ã − a

a

∣∣∣∣ < Br,

respectively.
(3) A roundoff error occurs when a computer approximates a real number

by a number with only a finite number of digits to the right of the
decimal point (see Subsection 7.1.2).

(4) In scientific computation, the floating point representation of a number
c of length d in the base β is

c = ±0.b1b2 · · · bd × βN ,

where b1 6= 0, 0 ≤ bi < β. We call b1b2 · · · bd the mantissa or decimal
part and N the exponent of c. For instance, with d = 5 and β = 10,

0.27120× 102, −0.31224× 103.

(5) The number of significant digits of a floating point number is the number
of digits counted from the first to the last nonzero digits. For example,
with d = 4 and β = 10, the number of significant digits of the three
numbers:

0.1203× 102, 0.1230 × 10−2, 0.1000× 103,

is 4, 3, and 1, respectively.
(6) The term truncation error is used for the error committed when an

infinite series is truncated after a finite number of terms.

155
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Remark 7.1. For simplicity, we shall often write floating point numbers
without exponent and with zeros immediately to the right of the decimal point
or with nonzero numbers to the left of the decimal point:

0.001203, 12300.04

7.1.2. Rounding and chopping numbers. Real numbers are rounded
away from the origin. The floating-point number, say in base 10,

c = ±0.b1b2 . . . bd × 10N

is rounded to k digits as follows:

(i) If 0.bk+1bk+2 . . . bm ≥ 0.5, round c to

(0.b1b2 . . . bk−1bk + 0.1 × 10−k+1) × 10N .

(ii) If 0.bk+1bk+2 . . . bm < 0.5, round c to

0.b1b2 . . . bk−1bk × 10N .

Example 7.1. Numbers rounded to three digits:

1.9234542 ≈ 1.92

2.5952100 ≈ 2.60

1.9950000 ≈ 2.00

−4.9850000 ≈ −4.99

Floating-point numbers are chopped to k digits by replacing the digits to the
right of the kth digit by zeros.

7.1.3. Cancellation in computations. Cancellation due to the subtrac-
tion of two almost equal numbers leads to a loss of significant digits. It is better
to avoid cancellation than to try to estimate the error due to cancellation. Ex-
ample 7.2 illustrates these points.

Example 7.2. Use 10-digit rounded arithmetic to solve the quadratic equa-
tion

x2 − 1634x + 2 = 0.

Solution. The usual formula yields

x = 817 ±
√

2 669 948.

Thus,

x1 = 817 + 816.998 776 0 = 1.633 998 776× 103,

x2 = 817 − 816.998 776 0 = 1.224 000 000× 10−3.

Four of the six zeros at the end of the fractional part of x2 are the result of
cancellation and thus are meaningless. A more accurate result for x2 can be
obtained if we use the relation

x1x2 = 2.

In this case

x2 = 1.223 991 125× 10−3,

where all digits are significant. �
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From Example 7.2, it is seen that a numerically stable formula for solving the
quadratic equation

ax2 + bx + c = 0, a 6= 0,

is

x1 =
1

2a

[
−b − sign (b)

√
b2 − 4ac

]
, x2 =

c

ax1
,

where the signum function is

sign (x) =

{
+1, if x ≥ 0,

−1, if x < 0.

Example 7.3. If the value of x rounded to three digits is 4.81 and the value
of y rounded to five digits is 12.752, find the smallest interval which contains the
exact value of x − y.

Solution. Since

4.805 ≤ x < 4.815 and 12.7515 ≤ y < 12.7525,

then

4.805 − 12.7525 < x − y < 4.815 − 12.7515 ⇔ −7.9475 < x − y < −7.9365. �

Example 7.4. Find the error and the relative error in the commonly used
rational approximations 22/7 and 355/113 to the transcendental number π and
express your answer in three-digit floating point numbers.

Solution. The error and the relative error in 22/7 are

ǫ = 22/7 − π, ǫr = ǫ/π,

which Matlab evaluates as

pp = pi

pp = 3.14159265358979

r1 = 22/7.

r1 = 3.14285714285714

abserr1 = r1 -pi

abserr1 = 0.00126448926735

relerr1 = abserr1/pi

relerr1 = 4.024994347707008e-04

Hence, the error and the relative error in 22/7 rounded to three digits are

ǫ = 0.126× 10−2 and ǫr = 0.402 × 10−3,

respectively. Similarly, Matlab computes the error and relative error in 355/113
as

r2 = 355/113.

r2 = 3.14159292035398

abserr2 = r2 - pi

abserr2 = 2.667641894049666e-07

relerr2 = abserr2/pi

relerr2 = 8.491367876740610e-08
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Hence, the error and the relative error in 355/113 rounded to three digits are

ǫ = 0.267× 10−6 and ǫr = 0.849 × 10−7. �

7.2. Review of Calculus

The following results from elementary calculus are needed to justify the meth-
ods of solution presented here.

Theorem 7.1 (Intermediate Value Theorem). Let a < b and f(x) be a con-
tinuous function on [a, b]. If w is a number strictly between f(a) and f(b), then
there exists a number c such that a < c < b and f(c) = w.

Corollary 7.1. Let a < b and f(x) be a continuous function on [a, b]. If
f(a)f(b) < 0, then there exists a zero of f(x) in the open interval ]a, b[.

Proof. Since f(a) and f(b) have opposite signs, 0 lies between f(a) and
f(b). The result follows from the intermediate value theorem with w = 0. �

Theorem 7.2 (Extreme Value Theorem). Let a < b and f(x) be a continuous
function on [a, b]. Then there exist numbers α ∈ [a, b] and β ∈ [a, b] such that, for
all x ∈ [a, b], we have

f(α) ≤ f(x) ≤ f(β).

Theorem 7.3 (Mean Value Theorem). Let a < b and f(x) be a continuous
function on [a, b] which is differentiable on ]a, b[. Then there exists a number c
such that a < c < b and

f ′(c) =
f(b) − f(a)

b − a
.

Theorem 7.4 (Mean Value Theorem for Integrals). Let a < b and f(x) be a
continuous function on [a, b]. If g(x) is an integrable function on [a, b] which does
not change sign on [a, b], then there exists a number c such that a < c < b and

∫ b

a

f(x) g(x) dx = f(c)

∫ b

a

g(x) dx.

A similar theorem holds for sums.

Theorem 7.5 (Mean Value Theorem for Sums). Let {wi}, i = 1, 2, . . . , n, be a
set of n distinct real numbers and let f(x) be a continuous function on an interval
[a, b]. If the numbers wi all have the same sign and all the points xi ∈ [a, b], then
there exists a number c ∈ [a, b] such that

n∑

i=1

wif(xi) = f(c)

n∑

i=1

wi.

7.3. The Bisection Method

The bisection method constructs a sequence of intervals of decreasing length
which contain a root p of f(x) = 0. If

f(a) f(b) < 0 and f is continuous on [a, b],

then, by Corollary 7.1, f(x) = 0 has a root between a and b. The root is either
between

a and
a + b

2
, if f(a) f

(
a + b

2

)
< 0,
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Figure 7.1. The nth step of the bisection method.

or between
a + b

2
and b, if f

(
a + b

2

)
f(b) < 0,

or exactly at
a + b

2
, if f

(
a + b

2

)
= 0.

The nth step of the bisection method is shown in Fig. 7.1.
The algorithm of the bisection method is as follows.

Algorithm 7.1 (Bisection Method). Given that f(x) is continuous on [a, b]
and f(a) f(b) < 0:

(1) Choose a0 = a, b0 = b; tolerance TOL; maximum number of iteration
N0.

(2) For n = 0, 1, 2, . . . , N0, compute

xn+1 =
an + bn

2
.

(3) If f(xn+1) = 0 or (bn−an)/2 < TOL, then output p (= xn+1) and stop.
(4) Else if f(xn+1) and f(an) have opposite signs, set an+1 = an and bn+1 =

xn+1.
(5) Else set an+1 = xn+1 and bn+1 = bn.
(6) Repeat (2), (3), (4) and (5).
(7) Ouput ’Method failed after N0 iterations’ and stop.

Other stopping criteria are described in Subsection 7.4.1. The rate of conver-
gence of the bisection method is low but the method always converges.

The bisection method is programmed in the following Matlab function M-file
which is found in ftp://ftp.cs.cornell.edu/pub/cv.

function root = Bisection(fname,a,b,delta)

%

% Pre:

% fname string that names a continuous function f(x) of

% a single variable.

%

% a,b define an interval [a,b]

% f is continuous, f(a)f(b) < 0
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%

% delta non-negative real number.

%

% Post:

% root the midpoint of an interval [alpha,beta]

% with the property that f(alpha)f(beta)<=0 and

% |beta-alpha| <= delta+eps*max(|alpha|,|beta|)

%

fa = feval(fname,a);

fb = feval(fname,b);

if fa*fb > 0

disp(’Initial interval is not bracketing.’)

return

end

if nargin==3

delta = 0;

end

while abs(a-b) > delta+eps*max(abs(a),abs(b))

mid = (a+b)/2;

fmid = feval(fname,mid);

if fa*fmid<=0

% There is a root in [a,mid].

b = mid;

fb = fmid;

else

% There is a root in [mid,b].

a = mid;

fa = fmid;

end

end

root = (a+b)/2;

Example 7.5. Find an approximation to
√

2 using the bisection method.
Stop iterating when |xn+1 − xn| < 10−2.

Solution. We need to find a root of f(x) = x2 − 2 = 0. Choose a0 = 1 and
b0 = 2, and obtain recursively

xn+1 =
an + bn

2

by the bisection method. The results are listed in Table 7.1. The answer is√
2 ≈ 1.414063 with an accuracy of 10−2. Note that a root lies in the interval

[1.414063, 1.421875]. �

Example 7.6. Show that the function f(x) = x3+4 x2−10 has a unique root
in the interval [1, 2] and give an approximation to this root using eight iterations
of the bisection method. Give a bound for the absolute error.

Solution. Since

f(1) = −5 < 0 and f(2) = 14 > 0,
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Table 7.1. Results of Example 7.5.

n xn an bn |xn−1 − xn| f(xn) f(an)
0 1 2 −
1 1.500000 1 1.500000 .500000 + −
2 1.250000 1.250000 1.500000 .250000 − −
3 1.375000 1.375000 1.500000 .125000 − −
4 1.437500 1.375000 1.437500 .062500 + −
5 1.406250 1.406250 1.437500 .031250 − −
6 1.421875 1.406250 1.421875 .015625 + −
7 1.414063 1.414063 1.421875 .007812 − −

Table 7.2. Results of Example 7.6.

n xn an bn f(xn) f(an)
0 1 2 −
1 1.500000000 1 1.500000000 + −
2 1.250000000 1.250000000 1.500000000 − −
3 1.375000000 1.250000000 1.375000000 + −
4 1.312500000 1.312500000 1.375000000 − −
5 1.343750000 1.343750000 1.375000000 − −
6 1.359375000 1.359375000 1.375000000 − −
7 1.367187500 1.359375000 1.367187500 + −
8 1.363281250 1.363281250 1.367187500 − −

then f(x) has a root, p, in [1, 2]. This root is unique since f(x) is strictly increasing
on [1, 2]; in fact

f ′(x) = 3 x2 + 4 x > 0 for all x between 1 and 2.

The results are listed in Table 7.2.
After eight iterations, we find that p lies between 1.363281250 and 1.367187500.

Therefore, the absolute error in p is bounded by

1.367187500− 1.363281250 = 0.00390625. �

Example 7.7. Find the number of iterations needed in Example 7.6 to have
an absolute error less than 10−4.

Solution. Since the root, p, lies in each interval [an, bn], after n iterations
the error is at most bn − an. Thus, we want to find n such that bn − an < 10−4.
Since, at each iteration, the length of the interval is halved, it is easy to see that

bn − an = (2 − 1)/2n.

Therefore, n satisfies the inequality

2−n < 10−4,

that is,

ln 2−n < ln 10−4, or − n ln 2 < −4 ln 10.
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Thus,
n > 4 ln 10/ln 2 = 13.28771238 =⇒ n = 14.

Hence, we need 14 iterations. �

7.4. Fixed Point Iteration

Let f(x) be a real-valued function of a real variable x. In this section, we
present iterative methods for solving equations of the form

f(x) = 0. (7.1)

A root of the equation f(x) = 0, or a zero of f(x), is a number p such that
f(p) = 0.

To find a root of equation (7.1), we rewrite this equation in an equivalent
form

x = g(x), (7.2)

for instance, g(x) = x − f(x). Hence, we say that p is a fixed point of g.
We say that (7.1) and (7.2) are equivalent (on a given interval) if any root of

(7.1) is a fixed point for (7.2) and vice-versa.
Conversely, if, for a given initial value x0, the sequence x0, x1, . . . , defined

by the recurrence
xn+1 = g(xn), n = 0, 1, . . . , (7.3)

converges to a number p, we say that the fixed point method converges. If g(x)
is continuous, then p = g(p). This is seen by taking the limit in equation (7.3) as
n → ∞. The number p is called a fixed point for the function g(x) of the fixed
point iteration (7.2).

It is easily seen that the two equations

x3 + 9 x − 9 = 0, x = (9 − x3)/9

are equivalent. The problem is to choose a suitable function g(x) and a suitable
initial value x0 to have convergence. To treat this question we need to define the
different types of fixed points.

Definition 7.1. A fixed point, p = g(p), of an iterative scheme

xn+1 = g(xn),

is said to be attractive, repulsive or indifferent if the multiplier, g′(p), of g(x) at
p satisfies

|g′(p)| < 1, |g′(p)| > 1, or |g′(p)| = 1,

respectively.

Theorem 7.6 (Fixed Point Theorem). Let g(x) be a real-valued function
satisfying the following conditions:

(1) g(x) ∈ [a, b] for all x ∈ [a, b].
(2) g(x) is differentiable on [a, b].
(3) There exists a number K, 0 < K < 1, such that |g′(x)| ≤ K for all

x ∈]a, b[.

Then g(x) has a unique attractive fixed point p ∈ [a, b]. Moreover, for arbitrary
x0 ∈ [a, b], the sequence x0, x1, x2, . . . defined by

xn+1 = g(xn), n = 0, 1, 2, . . . ,

converges to p.
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Proof. If g(a) = a or g(b) = b, the existence of an attractive fixed point
is obvious. Suppose not, then it follows that g(a) > a and g(b) < b. Define the
auxiliary function

h(x) = g(x) − x.

Then h is continuous on [a, b] and

h(a) = g(a) − a > 0, h(b) = g(b) − b < 0.

By Corollary 7.1, there exists a number p ∈]a, b[ such that h(p) = 0, that is,
g(p) = p and p is a fixed point for g(x).

To prove uniqueness, suppose that p and q are distinct fixed points for g(x)
in [a, b]. By the Mean Value Theorem 7.3, there exists a number c between p and
q (and hence in [a, b]) such that

|p − q| = |g(p) − g(q)| = |g′(c)| |p − q| ≤ K|p − q| < |p − q|,
which is a contradiction. Thus p = q and the attractive fixed point in [a, b] is
unique.

We now prove convergence. By the Mean Value Theorem 7.3, for each pair
of numbers x and y in [a, b], there exists a number c between x and y such that

g(x) − g(y) = g′(c)(x − y).

Hence,

|g(x) − g(y)| ≤ K|x − y|.
In particular,

|xn+1 − p| = |g(xn) − g(p)| ≤ K|xn − p|.
Repeating this procedure n + 1 times, we have

|xn+1 − p| ≤ Kn+1|x0 − p| → 0, as n → ∞,

since 0 < K < 1. Thus the sequence {xn} converges to p. �

Example 7.8. Find a root of the equation

f(x) = x3 + 9x − 9 = 0

in the interval [0, 1] by a fixed point iterative scheme.

Solution. Solving this equation is equivalent to finding a fixed point for

g(x) = (9 − x3)/9.

Since

f(0)f(1) = −9 < 0,

Corollary 7.1 implies that f(x) has a root, p, between 0 and 1. Condition (3) of
Theorem 7.6 is satisfied with K = 1/3 since

|g′(x)| = | − x2/3| ≤ 1/3

for all x between 0 and 1. The other conditions are also satisfied.
Five iterations are performed with Matlab starting with x0 = 0.5. The func-

tion M-file exp8_8.m is

function x1 = exp8_8(x0); % Example 8.8.

x1 = (9-x0^3)/9;
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Table 7.3. Results of Example 7.8.

n xn error ǫn ǫn/ǫn−1

0 0.50000000000000 −0.41490784153366 1.00000000000000
1 0.98611111111111 0.07120326957745 −0.17161225325185
2 0.89345451579409 −0.02145332573957 −0.30129691890395
3 0.92075445888550 0.00584661735184 −0.27252731920515
4 0.91326607850598 −0.00164176302768 −0.28080562295762
5 0.91536510274262 0.00045726120896 −0.27851839836463

The exact solution

0.914 907 841 533 66

is obtained by means of some 30 iterations by the following iterative procedure.

xexact = 0.91490784153366;

N = 5; x=zeros(N+1,4);

x0 = 0.5; x(1,:) = [0 x0 (x0-xexact), 1];

for i = 1:N

xt=exp8_8(x(i,2));

x(i+1,:) = [i xt (xt-xexact), (xt-xexact)/x(i,3)];

end

The iterates, their errors and the ratios of successive errors are listed in Table 7.3.
One sees that the ratios of successive errors are nearly constant; therefore the
order of convergence, defined in Subsection 7.4.2, is one. �

In Example 7.9 below, we shall show that the convergence of an iterative
scheme xn+1 = g(xn) to an attractive fixed point depends upon a judicious re-
arrangement of the equation f(x) = 0 to be solved.

Besides fixed points, an iterative scheme may have cycles which are defined
in Definition 7.2, where g2(x) = g(g(x)), g3(x) = g(g2(x)), etc.

Definition 7.2. Given an iterative scheme

xn+1 = g(xn),

a k-cycle of g(x) is a set of k distinct points,

x0, x1, x2, . . . , xk−1,

satisfying the relations

x1 = g(x0), x2 = g2(x0), . . . , xk−1 = gk−1(x0), x0 = gk(x0).

The multiplier of a k cycle is

(gk)′(xj) = g′(xk−1) · · · g′(x0), j = 0, 1, . . . , k − 1.

A k-cycle is attractive, repulsive, or indifferent as

|(gk)′(xj)| < 1, > 1, = 1.

A fixed point is a 1-cycle.

The multiplier of a cycle is seen to be the same at every point of the cycle.
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Example 7.9. Find a root of the equation

f(x) = x3 + 4 x2 − 10 = 0

in the interval [1, 2] by fixed point iterative schemes and study their convergence
properties.

Solution. Since f(1)f(2) = −70 < 0, the equation f(x) = 0 has a root in
the interval [1, 2]. The exact roots are given by the Matlab command roots

p=[1 4 0 -10]; % the polynomial f(x)

r =roots(p)

r =

-2.68261500670705 + 0.35825935992404i

-2.68261500670705 - 0.35825935992404i

1.36523001341410

There is one real root, which we denote by x∞, in the interval [1, 2], and a pair
of complex conjugate roots.

Six iterations are performed with the following five rearrangements x = gj(x),
j = 1, 2, 3, 4, 5, of the given equation f(x) = 0. The derivative of g′j(x) is evaluated
at the real root x∞ ≈ 1.365.

x = g1(x) =: 10 + x − 4x2 − x3, g′1(x∞) ≈ −15.51,

x = g2(x) =:
√

(10/x) − 4x, g′2(x∞) ≈ −3.42,

x = g3(x) =:
1

2

√
10 − x3, g′3(x∞) ≈ −0.51,

x = g4(x) =:
√

10/(4 + x), g′4(x∞) ≈ −0.13

x = g5(x) =: x − x3 + 4x2 − 10

3x2 + 8x
, g′5(x∞) = 0.

The Matlab function M-file exp1_9.m is

function y = exp1_9(x); % Example 1.9.

y = [10+x(1)-4*x(1)^2-x(1)^3; sqrt((10/x(2))-4*x(2));

sqrt(10-x(3)^3)/2; sqrt(10/(4+x(4)));

x(5)-(x(5)^3+4*x(5)^2-10)/(3*x(5)^2+8*x(5))]’;

The following iterative procedure is used.

N = 6; x=zeros(N+1,5);

x0 = 1.5; x(1,:) = [0 x0 x0 x0 x0];

for i = 1:N

xt=exp1_9(x(i,2:5));

x(i+1,:) = [i xt];

end

The results are summarized in Table 7.4. We see from the table that x∞ is an
attractive fixed point of g3(x), g4(x) and g5(x). Moreover, g4(xn) converges more
quickly to the root 1.365 230 013 than g3(xn), and g5(x) converges even faster. In
fact, these three fixed point methods need 30, 15 and 4 iterations, respectively,
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Table 7.4. Results of Example 7.9.

g1(x) g2(x) g3(x) g4(x) g5(x)

n 10 + x − 4x2 − x3
√

(10/x) − 4x 0.5
√

10 − x3
√

10/(4 + x) x − x3+4x2−10
2x2+8x

0 1.5 1.5 1.5 1.5 1.5
1 −0.8750 0.816 1.286953 1.348399 1.373333333
2 6.732421875 2.996 1.402540 1.367376 1.365262015
3 −4.6972001× 102 0.00 − 2.94 i 1.345458 1.364957 1.365230014
4 1.0275× 108 2.75 − 2.75 i 1.375170 1.365264 1.365230013
5 −1.08 × 1024 1.81 − 3.53 i 1.360094 1.365225
6 1.3 × 1072 2.38 − 3.43 i 1.367846 1.365230

to produce a 10-digit correct answer. On the other hand, the sequence g2(xn) is
trapped in an attractive two-cycle,

z± = 2.27475487839820± 3.60881272309733 i,

with multiplier
g′2(z+)g′2(z−) = 0.19790433047378

which is smaller than one in absolute value. Once in an attractive cycle, an
iteration cannot converge to a fixed point. Finally x∞ is a repulsive fixed point
of g1(x) and xn+1 = g(xn) diverges to −∞. �

Remark 7.2. An iteration started in the basin of attraction of an attractive
fixed point (or cycle) will converge to that fixed point (or cycle). An iteration
started near a repulsive fixed point (or cycle) will not converge to that fixed point
(or cycle). Convergence to an indifferent fixed point is very slow, but can be
accelerated by different acceleration processes.

7.4.1. Stopping criteria. Three usual criteria that are used to decide when
to stop an iteration procedure to find a zero of f(x) are:

(1) Stop after N iterations (for a given N).
(2) Stop when |xn+1 − xn| < ǫ (for a given ǫ).
(3) Stop when |f(xn)| < η (for a given η).

The usefulness of any of these criteria is problem dependent.

7.4.2. Order and rate of convergence of an iterative method. We are
often interested in the rate of convergence of an iterative scheme. Suppose that
the function g(x) for the iterative method

xn+1 = g(xn)

has a Taylor expansion about the fixed point p (p = g(p)) and let

ǫn = xn − p.

Then, we have

xn+1 = g(xn) = g(p + ǫn) = g(p) + g′(p)ǫn +
g′′(p)

2!
ǫ2n + . . .

= p + g′(p)ǫn +
g′′(p)

2!
ǫ2n + . . . .
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Figure 7.2. The nth step of Newton’s method.

Hence,

ǫn+1 = xn+1 − p = g′(p)ǫn +
g′′(p)

2!
ǫ2n + . . . . (7.4)

Definition 7.3. The order of convergence of an iterative method xn+1 =
g(xn) is the order of the first non-zero derivative of g(x) at p. A method of order
p is said to have a rate of convergence p.

In Example 7.9, the iterative schemes g3(x) and g4(x) converge to first order,
while g5(x) converges to second order.

Note that, for a second-order iterative scheme, we have

ǫn+1

ǫ2n
≈ g′′(p)

2
= constant.

7.5. Newton’s, Secant, and False Position Methods

7.5.1. Newton’s method. Let xn be an approximation to a root, p, of
f(x) = 0. Draw the tangent line

y = f(xn) + f ′(xn)(x − xn)

to the curve y = f(x) at the point (xn, f(xn)) as shown in Fig. 7.2. Then xn+1

is determined by the point of intersection, (xn+1, 0), of this line with the x-axis,

0 = f(xn) + f ′(xn) (xn+1 − xn).

If f ′(xn) 6= 0, solving this equation for xn+1 we obtain Newton’s method , also
called the Newton–Raphson method ,

xn+1 = xn − f(xn)

f ′(xn)
. (7.5)

Note that Newton’s method is a fixed point method since it can be rewritten in
the form

xn+1 = g(xn), where g(x) = x − f(x)

f ′(x)
.

Example 7.10. Approximate
√

2 by Newton’s method. Stop when |xn+1 −
xn| < 10−4.

Solution. We wish to find a root to the equation

f(x) = x2 − 2 = 0.
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Table 7.5. Results of Example 7.10.

n xn |xn − xn−1|
0 2
1 1.5 0.5
2 1.416667 0.083333
3 1.414216 0.002451
4 1.414214 0.000002

Table 7.6. Results of Example 7.11.

n xn |xn − xn−1|
0 1.5
1 1.37333333333333 0.126667
2 1.36526201487463 0.00807132
3 1.36523001391615 0.000032001
4 1.3652300134141 5.0205× 10−10

5 1.3652300134141 2.22045× 10−16

6 1.3652300134141 2.22045× 10−16

In this case, Newton’s method becomes

xn+1 = xn − f(xn)

f ′(xn)
= xn − x2

n − 2

2 xn
=

x2
n + 2

2xn
.

With x0 = 2, we obtain the results listed in Table 7.5. Therefore,
√

2 ≈ 1.414214.

Note that the number of zeros in the errors roughly doubles as it is the case with
methods of second order. �

Example 7.11. Use six iterations of Newton’s method to approximate a root
p ∈ [1, 2] of the polynomial

f(x) = x3 + 4 x2 − 10 = 0

given in Example 7.9.

Solution. In this case, Newton’s method becomes

xn+1 = xn − f(xn)

f ′(xn)
= xn − x3

n + 4x2
n − 10

3x2
n + 8xn

=
2(x3

n + 2x2
n + 5)

3x2
n + 8xn

.

We take x0 = 1.5. The results are listed in Table 7.6. �

Example 7.12. Use Newton’s method to approximate the solution of

lnx = cosx

to six decimal places.

Solution. Let f(x) = lnx − cosx; thus f(x) = 0 when lnx = cosx. From
the graph, it is easy to see that the solution is between x = 1 and x = π/2, so we
will use x0 = 1.
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Figure 7.3. Graph of lnx − cosx for Example 7.12

We have

xn+1 = xn − f(xn)

f ′(xn)
= xn − lnxn − cosxn

(1/xn) + sin xn
.

Hence,

x0 = 1,

x1 = 1 − ln 1 − cos 1

(1/1) + sin 1
= 1.293 408.

x2 = 1.302 956

x3 = 1.302 964,

x4 = 1.302 964,

stop

We can easily verify that the answer is correct:

ln 1.302 964 ≈ 0.264 641 6,

cos 1.302 964 ≈ 0.264 641 6.

Therefore the solution, to six decimal places, is 1.302 964. �

Theorem 7.7. Let p be a simple root of f(x) = 0, that is, f(p) = 0 and
f ′(p) 6= 0. If f ′′(p) exists, then Newton’s method is at least of second order near
p.

Proof. Differentiating the function

g(x) = x − f(x)

f ′(x)

we have

g′(x) = 1 − (f ′(x))2 − f(x) f ′′(x)

(f ′(x))2

=
f(x) f ′′(x)

(f ′(x))2
.

Since f(p) = 0, we have

g′(p) = 0.



170 7. SOLUTIONS OF NONLINEAR EQUATIONS

Table 7.7. Results of Example 7.13.

Newton′s Method ModifiedNewton
n xn ǫn+1/ǫn xn ǫn+1/ǫ2n
0 0.000 0.00000000000000
1 0.400 0.600 0.80000000000000 −0.2000
2 0.652 2.245 0.98461538461538 −0.3846
3 0.806 0.143 0.99988432620012 −0.4887
4 0.895 0.537 0.99999999331095 −0.4999
5 0.945 0.522 1
6 0.972 0.512 1

Therefore, Newton’s method is of order two near a simple zero of f . �

Remark 7.3. Taking the second derivative of g(x) in Newton’s method, we
have

g′′(x) =
(f ′(x))2f ′′(x) + f(x)f ′(x)f ′′′(x) − 2f(x)(f ′′(x))2

(f ′(x))3
.

If f ′′′(p) exists, we obtain

g′′(p) = −f ′′(p)

f ′(p)
.

Thus, by (7.4), the successive errors satisfy the approximate relation

ǫn+1 ≈ −1

2

f ′′(p)

f ′(p)
ǫ2n,

which explains the doubling of the number of leading zeros in the error of Newton’s
method near a simple root of f(x) = 0.

Example 7.13. Use six iterations of the ordinary and modified Newton’s
methods

xn+1 = xn − f(xn)

f ′(xn)
, xn+1 = xn − 2

f(xn)

f ′(xn)

to approximate the double root, x = 1, of the polynomial

f(x) = (x − 1)2(x − 2).

Solution. The two methods have iteration functions

g1(x) = x − (x − 1)(x − 2)

2(x − 2) + (x − 1)
, g2(x) = x − (x − 1)(x − 2)

(x − 2) + (x − 1)
,

respectively. We take x0 = 0. The results are listed in Table 7.7. One sees that
Newton’s method has first-order convergence near a double zero of f(x), but one
can verify that the modified Newton method has second-order convergence. In
fact, near a root of multiplicity m the modified Newton method

xn+1 = xn − m
f(xn)

f ′(xn)

has second-order convergence. �
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Figure 7.4. The nth step of the secant method.

In general, Newton’s method may converge to the desired root, to another
root, or to an attractive cycle, especially in the complex plane. The location of
our initial guess x0 relative to the root p, other roots and local extrema can affect
the outcome.

7.5.2. The secant method. Let xn−1 and xn be two approximations to a
root, p, of f(x) = 0. Draw the secant to the curve y = f(x) through the points
(xn−1, f(xn−1)) and (xn, f(xn)). The equation of this secant is

y = f(xn) +
f(xn) − f(xn−1)

xn − xn−1
(x − xn).

The (n + 1)st iterate xn+1 is determined by the point of intersection (xn+1, 0) of
the secant with the x-axis as shown in Fig. 7.4,

0 = f(xn) +
f(xn) − f(xn−1)

xn − xn−1
(xn+1 − xn).

Solving for xn+1, we obtain the secant method :

xn+1 = xn − xn − xn−1

f(xn) − f(xn−1)
f(xn). (7.6)

The algorithm for the secant method is as follows.

Algorithm 7.2 (Secant Method). Given that f(x) is continuous on [a, b]
and has a root in [a, b].

(1) Choose x0 and x1 near the root p that is sought.
(2) Given xn−1 and xn, xn+1 is obtained by the formula

xn+1 = xn − xn − xn−1

f(xn) − f(xn−1)
f(xn),

provided that f(xn) − f(xn−1) 6= 0. If f(xn) − f(xn−1) = 0, try other
starting values x0 and x1.

(3) Repeat (2) until the selected stopping criterion is satisfied (see Subsec-
tion 7.4.1).

This method converges to a simple root to order 1.618 and may not converge
to a multiple root. Thus it is generally slower than Newton’s method. However,
it does not require the derivative of f(x). In general applications of Newton’s
method, the derivative of the function f(x) is approximated numerically by the
slope of a secant to the curve.
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Figure 7.5. The nth step of the method of false position.

7.5.3. The method of false position. The method of false position, also
called regula falsi , is similar to the secant method, but with the additional con-
dition that, for each n = 0, 1, 2, . . ., the pair of approximate values, an and bn,
to the root, p, of f(x) = 0 be such that f(an) f(bn) < 0. The next iterate,
xn+1, is determined by the intersection of the secant passing through the points
(an, f(an)) and (bn, f(bn)) with the x-axis.

The equation for the secant through (an, f(an)) and (bn, f(bn)), shown in
Fig. 7.5, is

y = f(an) +
f(bn) − f(an)

bn − an
(x − an).

Hence, xn+1 satisfies the equation

0 = f(an) +
f(bn) − f(an)

bn − an
(xn+1 − an),

which leads to the method of false position:

xn+1 =
an f(bn) − bn f(an)

f(bn) − f(an)
. (7.7)

The algorithm for the method of false position is as follows.

Algorithm 7.3 (False Position Method). Given that f(x) is continuous on
[a, b] and that f(a) f(b) < 0.

(1) Pick a0 = a and b0 = b.
(2) Given an and bn such that f(an)f(bn) < 0, compute

xn+1 =
an f(bn) − bn f(an)

f(bn) − f(an)
.

(3) If f(xn+1) = 0, stop.
(4) Else if f(xn+1) and f(an) have opposite signs, set an+1 = an and bn+1 =

xn+1;
(5) Else set an+1 = xn+1 and bn+1 = bn.
(6) Repeat (2)–(5) until the selected stopping criterion is satisfied (see Sub-

section 7.4.1).

This method is generally slower than Newton’s method, but it does not require
the derivative of f(x) and it always converges to a nested root. If the approach
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Table 7.8. Results of Example 7.14.

n xn an bn |xn−1 − xn| f(xn) f(an)
0 1 2 −
1 1.333333 1.333333 2 − −
2 1.400000 1.400000 2 0.066667 − −
3 1.411765 1.411765 2 0.011765 − −
4 1.413793 1.413793 2 0.002028 − −
5 1.414141 1.414141 2 0.000348 − −

to the root is one-sided, convergence can be accelerated by replacing the value of
f(x) at the stagnant end position with f(x)/2.

Example 7.14. Approximate
√

2 by the method of false position. Stop iter-
ating when |xn+1 − xn| < 10−3.

Solution. This problem is equivalent to the problem of finding a root of the
equation

f(x) = x2 − 2 = 0.

We have

xn+1 =
an (b2

n − 2) − bn (a2
n − 2)

(b2
n − 2) − (a2

n − 2)
=

an bn + 2

an + bn
.

Choose a0 = 1 and b0 = 2. Notice that f(1) < 0 and f(2) > 0. The results are

listed in Table 7.8. Therefore,
√

2 ≈ 1.414141. �

7.5.4. A global Newton-bisection method. The many difficulties that
can occur with Newton’s method can be handled with success by combining the
Newton and bisection ideas in a way that captures the best features of each
framework. At the beginning, it is assumed that we have a bracketing interval
[a, b] for f(x), that is, f(a)f(b) < 0, and that the initial value xc is one of the
endpoints. If

x+ = xc −
f(xc)

f ′(xc)
∈ [a, b],

we proceed with either [a, x+] or [x+, b], whichever is bracketing. The new xc

equals x+. If the Newton step falls out of [a, b], we take a bisection step setting
the new xc to (a + b)/2. In a typical situation, a number of bisection steps are
taken before the Newton iteration takes over. This globalization of the Newton
iteration is programmed in the following Matlab function M-file which is found
in ftp://ftp.cs.cornell.edu/pub/cv.

function [x,fx,nEvals,aF,bF] = ...

GlobalNewton(fName,fpName,a,b,tolx,tolf,nEvalsMax)

% Pre:

% fName string that names a function f(x).

% fpName string that names the derivative function f’(x).

% a,b A root of f(x) is sought in the interval [a,b]

% and f(a)*f(b)<=0.

% tolx,tolf Nonnegative termination criteria.

% nEvalsMax Maximum number of derivative evaluations.
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%

% Post:

% x An approximate zero of f.

% fx The value of f at x.

% nEvals The number of derivative evaluations required.

% aF,bF The final bracketing interval is [aF,bF].

%

% Comments:

% Iteration terminates as soon as x is within tolx of a true zero

% or if |f(x)|<= tolf or after nEvalMax f-evaluations

fa = feval(fName,a);

fb = feval(fName,b);

if fa*fb>0

disp(’Initial interval not bracketing.’)

return

end

x = a;

fx = feval(fName,x);

fpx = feval(fpName,x);

disp(sprintf(’%20.15f %20.15f %20.15f’,a,x,b))

nEvals = 1;

while (abs(a-b) > tolx ) & (abs(fx) > tolf) &

((nEvals<nEvalsMax) | (nEvals==1))

%[a,b] brackets a root and x = a or x = b.

if StepIsIn(x,fx,fpx,a,b)

%Take Newton Step

disp(’Newton’)

x = x-fx/fpx;

else

%Take a Bisection Step:

disp(’Bisection’)

x = (a+b)/2;

end

fx = feval(fName,x);

fpx = feval(fpName,x);

nEvals = nEvals+1;

if fa*fx<=0

% There is a root in [a,x]. Bring in right endpoint.

b = x;

fb = fx;

else

% There is a root in [x,b]. Bring in left endpoint.

a = x;

fa = fx;

end

disp(sprintf(’%20.15f %20.15f %20.15f’,a,x,b))
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end

aF = a;

bF = b;

7.5.5. The Matlab fzero function. The Matlab fzero function is a
general-purpose root finder that does not require derivatives. A simple call in-
volves only the name of the function and a starting value x0. For example

aroot = fzero(’function_name’, x0)

The value returned is near a point where the function changes sign, or NaN if the
search fails. Other options are described in help fzero.

7.6. Aitken–Steffensen Accelerated Convergence

The linear convergence of an iterative method, xn+1 = g(xn), can be accel-
erated by Aitken’s process. Suppose that the sequence {xn} converges to a fixed
point p to first order. Then the following ratios are approximately equal:

xn+1 − p

xn − p
≈ xn+2 − p

xn+1 − p
.

We make this an equality by substituting an for p,

xn+1 − an

xn − an
=

xn+2 − an

xn+1 − an

and solve for an which, after some algebraic manipulation, becomes

an = xn − (xn+1 − xn)2

xn+2 − 2xn+1 + xn
.

This is Aitken’s process which accelerates convergence in the sense that

lim
n→∞

an − p

xn − p
= 0.

If we introduce the first- and second-order forward differences:

∆xn = xn+1 − xn, ∆2xn = ∆(∆xn) = xn+2 − 2xn+1 + xn,

then Aitken’s process becomes

an = xn − (∆xn)2

∆2xn
. (7.8)

Steffensen’s process assumes that s1 = a0 is a better value than x2. Thus
s0 = x0, z1 = g(s0) and z2 = g(z1) are used to produce s1. Next, s1, z1 = g(s1)
and z2 = g(z2) are used to produce s2. And so on. The algorithm is as follows.

Algorithm 7.4 (Steffensen’s Algorithm). Set

s0 = x0,

and, for n = 0, 1, 2, . . .,

z1 = g(sn),

z2 = g(z1),

sn+1 = sn − (z1 − sn)2

z2 − 2z1 + sn
.

Steffensen’s process applied to a first-order fixed point method produces a
second-order method.
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Figure 7.6. The three real roots of x = 2 sinx in Example 7.15.

Table 7.9. Results of Example 7.15.

n xn an sn ǫn+1/ǫ2n
0 1.00000000000000 2.23242945471637 1.00000000000000 −0.2620
1 1.68294196961579 1.88318435428750 2.23242945471637 0.3770
2 1.98743653027215 1.89201364327283 1.83453173271065 0.3560
3 1.82890755262358 1.89399129067379 1.89422502453561 0.3689
4 1.93374764234016 1.89492839486397 1.89549367325365 0.3691
5 1.86970615363078 1.89525656226218 1.89549426703385
6 1.91131617912526 1.89549426703398
7 1.88516234821223 NaN

Example 7.15. Consider the fixed point iteration xn+1 = g(xn):

xn+1 = 2 sin xn, x0 = 1.

Do seven iterations and perform Aitken’s and Steffensen’s accelerations.

Solution. The three real roots of x = 2 sinx can be seen in Fig. 7.6. The
Matlab function fzero produces the fixed point near x = 1:

p = fzero(’x-2*sin(x)’,1.)

p = 1.89549426703398

The convergence is linear since

g′(p) = −0.63804504828524 6= 0.

The following Matlab M function and script produce the results listed in Ta-
ble 7.9. The second, third, and fourth columns are the iterates xn, Aitken’s
and Steffensen’s accelerated sequences an and sn, respectively. The fifth column,
which lists ǫn+1/ǫ2n = (sn+2−sn+1)/(sn+1−sn)2 tending to a constant, indicates
that the Steffensen sequence sn converges to second order.
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The M function function is:

function f = twosine(x);

f = 2*sin(x);

The M script function is:

n = 7;

x = ones(1,n+1);

x(1) = 1.0;

for k = 1:n

x(k+1)=twosine(x(k)); % iterating x(k+1) = 2*sin(x(k))

end

a = ones(1,n-1);

for k = 1:n-1

a(k) = x(k) - (x(k+1)-x(k))^2/(x(k+2)-2*x(k+1)+x(k)); % Aitken

end

s = ones(1,n+1);

s(1) = 1.0;

for k = 1:n

z1=twosine(s(k));

z2=twosine(z1);

s(k+1) = s(k) - (z1-s(k))^2/(z2-2*z1+s(k)); % Steffensen

end

d = ones(1,n-2);

for k = 1:n-2

d(k) = (s(k+2)-s(k+1))/(s(k+1)-s(k))^2; % 2nd order convergence

end

Note that the Matlab program produced NaN (not a number) for s7 because
of a division by zero. �

7.7. Horner’s Method and the Synthetic Division

7.7.1. Horner’s method. To reduce the number of products in the evalu-
ation of polynomials, these should be expressed in nested form. For instance,

p(x) = a3x
3 + a2x

2 + a1x + a0

=
(
(a3x + a2)x + a1

)
x + a0.

In this simple case, the reduction is from 8 to 3 products.
The Matlab command horner transforms a symbolic polynomial into its

Horner, or nested, representation.

syms x

p = x^3-6*x^2+11*x-6

p = x^3-6*x^2+11*x-6

hp = horner(p)

hp = -6+(11+(-6+x)*x)*x

Horner’s method incorporates this nesting technique.
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Theorem 7.8 (Horner’s Method). Let

p(x) = anxn + an−1x
n−1 + · · · + a1x + a0.

If bn = an and

bk = ak + bk+1x0, for k = n − 1, n− 2, . . . , 1, 0,

then

b0 = p(x0).

Moreover, if

q(x) = bnxn−1 + bn−1x
n−2 + · · · + b2x + b1,

then

p(x) = (x − x0)q(x) + b0.

Proof. By the definition of q(x),

(x − x0)q(x) + b0 = (x − x0)(bnxn−1 + bn−1x
n−2 + · · · + b2x + b1) + b0

= (bnxn + bn−1x
n−1 + · · · + b2x

2 + b1x)

− (bnx0x
n−1 + bn−1x0x

n−2 + · · · + b2x0x + b1x0) + b0

= bnxn + (bn−1 − bnx0)x
n−1 + · · · + (b1 − b2x0)x + (b0 − b1x0)

= anxn + an−1x
n−1 + · · · + a1x + a0

= p(x)

and

b0 = p(x0). �

7.7.2. Synthetic division. Evaluating a polynomial at x = x0 by Horner’s
method is equivalent to applying the synthetic division as shown in Example 7.16.

Example 7.16. Find the value of the polynomial

p(x) = 2x4 − 3x2 + 3x − 4

at x0 = −2 by Horner’s method.

Solution. By successively multiplying the elements of the third line of the
following tableau by x0 = −2 and adding to the first line, one gets the value of
p(−2).

a4 = 2 a3 = 0 a2 = −3 a1 = 3 a0 = −4
−4 8 −10 14

ր ր ր ր
b4 = 2 b3 = −4 b2 = 5 b1 = −7 b0 = 10

Thus

p(x) = (x + 2)(2x3 − 4x2 + 5x − 7) + 10

and

p(−2) = 10. �
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Horner’s method can be used efficiently with Newton’s method to find zeros
of a polynomial p(x). Differentiating

p(x) = (x − x0)q(x) + b0

we obtain
p′(x) = (x − x0)q

′(x) + q(x).

Hence
p′(x0) = q(x0).

Putting this in Newton’s method we have

xn = xn−1 −
p(xn−1)

p′(xn−1)

= xn−1 −
p(xn−1)

q(xn−1)
.

This procedure is shown in Example 7.17.

Example 7.17. Compute the value of the polynomial

p(x) = 2x4 = 3x3 + 3x − 4

and of its derivative p′(x) at x0 = −2 by Horner’s method and apply the results
to Newton’s method to find the first iterate x1.

Solution. By successively multiplying the elements of the third line of the
following tableau by x0 = −2 and adding to the first line, one gets the value
of p(−2). Then by successively multiplying the elements of the fifth line of the
tableau by x0 = −2 and adding to the third line, one gets the value of p′(−2).

2 0 −3 = 3 −4
−4 8 −10 14

ր ր ր ր
2 −4 5 −7 10 = p(−2)

−4 16 −42
ր ր ր

2 −8 21 −49 = p′(−2)

Thus
p(−2) = 10, p′(−2) = −49,

and

x1 = −2 − 10

−49
≈ −1.7959. �

7.8. Müller’s Method

Müller’s, or the parabola, method finds the real or complex roots of an equa-
tion

f(x) = 0.

This method uses three initial approximations, x0, x1, and x2, to construct a
parabola,

p(x) = a(x − x2)
2 + b(x − x2) + c,

through the three points (x0, f(x0)), (x1, f(x1)), and (x2, f(x2)) on the curve
f(x) and determines the next approximation x3 as the point of intersection of the
parabola with the real axis closer to x2.
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The coefficients a, b and c defining the parabola are obtained by solving the
linear system

f(x0) = a(x0 − x2)
2 + b(x0 − x2) + c,

f(x1) = a(x1 − x2)
2 + b(x1 − x2) + c,

f(x2) = c.

We immediately have

c = f(x2)

and obtain a and b from the linear system
[

(x0 − x2)
2 (x0 − x2)

(x1 − x2)
2 (x1 − x2)

] [
a
b

]
=

[
f(x0) − f(x2)
f(x1) − f(x2)

]
.

Then, we set

p(x3) = a(x3 − x2)
2 + b(x3 − x2) + c = 0

and solve for x3 − x2:

x3 − x2 =
−b ±

√
b2 − 4ac

2a

=
−b ±

√
b2 − 4ac

2a
× −b ∓

√
b2 − 4ac

−b ∓
√

b2 − 4ac

=
−2c

b ±
√

b2 − 4ac
.

To find x3 closer to x2, we maximize the denominator:

x3 = x2 −
2c

b + sign(b)
√

b2 − 4ac
.

Müller’s method converges approximately to order 1.839 to a simple or double
root. It may not converge to a triple root.

Example 7.18. Find the four zeros of the polynomial

16x4 − 40x3 + 5x2 + 20x + 6,

whose graph is shown in Fig. 7.7, by means of Müller’s method.

Solution. The following Matlab commands do one iteration of Müller’s
method on the given polynomial which is transformed into its nested form:

syms x

pp = 16*x^4-40*x^3+5*x^2+20*x+6

pp = 16*x^4-40*x^3+5*x^2+20*x+6

pp = horner(pp)

pp = 6+(20+(5+(-40+16*x)*x)*x)*x

The polynomial is evaluated by the Matlab M function:

function pp = mullerpol(x);

pp = 6+(20+(5+(-40+16*x)*x)*x)*x;

Müller’s method obtains x3 with the given three starting values:
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Figure 7.7. The graph of the polynomial 16x4 − 40x3 + 5x2 +
20x + 6 for Example 7.18.

x0 = 0.5; x1 = -0.5; x2 = 0; % starting values

m = [(x0-x2)^2 x0-x2; (x1-x2)^2 x1-x2];

rhs = [mullerpol(x0)-mullerpol(x2); mullerpol(x1)- mullerpol(x2)];

ab = m\rhs; a = ab(1); b = ab(2); % coefficients a and b

c = mullerpol(x2); % coefficient c

x3 = x2 -(2*c)/(b+sign(b)*sqrt(b^2-4*a*c))

x3 = -0.5556 + 0.5984i

The method is iterated until convergence. The four roots of this polynomial
are

rr = roots([16 -40 5 20 6])’

rr = 1.9704 1.2417 -0.3561 - 0.1628i -0.3561 + 0.1628i

The two real roots can be obtained by Müller’s method with starting values
[0.5, 1.0, 1.5] and [2.5, 2.0, 2.25], respectively. �





CHAPTER 8

Interpolation and Extrapolation

Quite often, experimental results provide only a few values of an unknown
function f(x), say,

(x0, f0), (x1, f1), (x2, f2), . . . , (xn, fn), (8.1)

where fi is the observed value for f(xi). We would like to use these data to
approximate f(x) at an arbitrary point x 6= xi.

When we want to estimate f(x) for x between two of the xi’s, we talk about
interpolation of f(x) at x. When x is not between two of the xi’s, we talk about
extrapolation of f(x) at x.

The idea is to construct an interpolating polynomial, pn(x), of degree n whose
graph passes through the n + 1 points listed in (8.1). This polynomial will be
used to estimate f(x).

We will make use of an important fact. If we have a set of n + 1 data points
(8.1), where the nodes, xi, are distinct, there is a unique polynomial of degree less
than or equal to n, pn(x), that passes through the points, that is, pn(xj) = fj for
all j. For, suppose pn(x) and qn(x) of degree n both interpolate f(x) at n + 1
distinct points, then

pn(x) − qn(x)

is a polynomial of degree n which admits n+1 distinct zeros, hence it is identically
zero.

8.1. Lagrange Interpolating Polynomial

The Lagrange interpolating polynomial, pn(x), of degree n through the n + 1
points

(
xk, f(xk)

)
, k = 0, 1, . . . , n, is expressed in terms of the following Lagrange

basis:

Lk(x) =
(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

Clearly, Lk(x) is a polynomial of degree n and

Lk(x) =

{
1, x = xk,

0, x = xj , j 6= k.

Then the Lagrange interpolating polynomial of f(x) is

pn(x) = f(x0)L0(x) + f(x1)L1(x) + · · · + f(xn)Ln(x). (8.2)

It is of degree up to n and interpolates f(x) at the points listed in (8.1).

Example 8.1. Interpolate f(x) = 1/x at the nodes x0 = 2, x1 = 2.5 and
x2 = 4 with the Lagrange interpolating polynomial of degree 2.

183
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Solution. The Lagrange basis, in nested form, is

L0(x) =
(x − 2.5)(x − 4)

(2 − 2.5)(2 − 4)
=(x − 6.5)x + 10,

L1(x) =
(x − 2)(x − 4)

(2.5 − 2)(2.5 − 4)
=

(−4x + 24)x − 32

3
,

L2(x) =
(x − 2)(x − 2.5)

(4 − 2)(4 − 2.5)
=

(x − 4.5)x + 5

3
.

Thus,

p(x) =
1

2
[(x − 6.5)x + 10] +

1

2.5

(−4x + 24)x − 32

3
+

1

4

(x − 4.5)x + 5

3
= (0.05x− 0.425)x + 1.15. �

Theorem 8.1. Suppose x0, x1, . . . , xn are n+1 distinct points in the interval
[a, b] and f ∈ Cn+1[a, b]. Then there exits a number ξ(x) ∈ [a, b] such that

f(x) − pn(x) =
f (n+1)(ξ(x))

(n + 1)!
(x − x0) (x − x1) · · · (x − xn), (8.3)

where pn(x) is the Lagrange interpolating polynomial. In particular, if

mn+1 = min
a≤x≤b

|f (n+1)(x)| and Mn+1 = max
a≤x≤b

|f (n+1)(x)|,

then the absolute error in pn(x) is bounded by the inequalities:

mn+1

(n + 1)!
|(x − x0) (x − x1) · · · (x − xn)| ≤ |f(x) − pn(x)|

≤ Mn+1

(n + 1)!
|(x − x0) (x − x1) · · · (x − xn)|

for a ≤ x ≤ b.

Proof. First, note that the error is 0 at x = x0, x1, . . . , xn since

pn(xk) = f(xk), k = 0, 1, . . . , n,

from the interpolating property of pn(x). For x 6= xk, define the auxiliary function

g(t) = f(t) − pn(t) − [f(x) − pn(x)]
(t − x0)(t − x1) · · · (t − xn)

(x − x0)(x − x1) · · · (x − xn)

= f(t) − pn(t) − [f(x) − pn(x)]

n∏

i=0

t − xi

x − xi
.

For t = xk,

g(xk) = f(xk) − pn(xk) − [f(x) − pn(x)] × 0 = 0

and for t = x,

g(x) = f(x) − pn(x) − [f(x) − pn(x)] × 1 = 0.

Thus g ∈ Cn+1[a, b] and it has n + 2 zeros in [a, b]. By the generalized Rolle
theorem, g′(t) has n + 1 zeros in [a, b], g′′(t) has n zeros in [a, b], . . . , g(n+1)(t)
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has 1 zero, ξ ∈ [a, b],

g(n+1)(ξ) = f (n+1)(ξ) − p(n+1)
n (ξ) − [f(x) − pn(x)]

dn+1

dtn+1

[
n∏

i−0

t − xi

x − xi

∣∣∣∣∣
t=ξ

= f (n+1)(ξ) − 0 − [f(x) − pn(x)]
(n + 1)!∏n

i=0(x − xi)

= 0

since pn(x) is a polynomial of degree n so that its (n + 1)st derivative is zero and
only the top term, tn+1, in the product

∏n
i=0(t−xi) contributes to (n + 1)! in its

(n + 1)st derivative. Hence

f(x) = pn(x) +
f (n+1)(ξ(x))

(n + 1)!
(x − x0) (x − x1) · · · (x − xn). �

From a computational point of view, (8.2) is not the best representation of
pn(x) because it is computationally costly and has to be redone from scratch if
we want to increase the degree of pn(x) to improve the interpolation.

Example 8.2. Suppose we have the data points (1.2, 3.1), (1.7, 5.2) and
(2.1, 7.4). Use Lagrange’s interpolating polynomial to estimate the value of the
function at x = 1.5.

Solution. Since we have 3 data points, we will be using

p2(x) = L0(x)f0 + L1(x)f1 + L2(x)f2

=
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f0 +

(x − x0)(x − x2)

(x1 − x0)(x1 − x0)
f1 +

(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f2.

So,

p2(1.5) =
(1.5 − 1.7)(1.5 − 2.1)

(1.2 − 1.7)(1.2 − 2.1)
(3.1) +

(1.5 − 1.2)(1.5 − 2.1)

(1.7 − 1.2)(1.7 − 2.1)
(5.2)

+
(1.5 − 1.2)(1.5 − 1.7)

(2.1 − 1.2)(2.1 − 1.7)
(7.4)

=
0.12

0.45
(3.1) +

0.18

0.20)
(5.2) +

−0.06

0.36
(7.4)

= 4.2733,

and so

f(1.5) ≈ p2(1.5) = 4.2733. �

8.2. Newton’s Divided Difference Interpolating Polynomial

Newton’s divided difference interpolating polynomials, pn(x), of degree n use
a factorial basis in the form

pn(x) = a0+a1(x−x0)+a2(x−x0)(x−x1)+· · ·+an(x−x0)(x−x1) · · · (x−xn−1).

The values of the coefficients ak are determined by recurrence. We denote

fk = f(xk).
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Let x0 6= x1 and consider the two data points: (x0, f0) and (x1, f1). Then the
interpolating property of the polynomial

p1(x) = a0 + a1(x − x0)

implies that

p1(x0) = a0 = f0, p1(x1) = f0 + a1(x1 − x0) = f1.

Solving for a1 we have

a1 =
f1 − f0

x1 − x0
.

If we let

f [x0, x1] =
f1 − f0

x1 − x0

be the first divided difference, then the divided difference interpolating polynomial
of degree one is

p1(x) = f0 + (x − x0) f [x0, x1].

Example 8.3. Consider a function f(x) which passes through the points
(2.2, 6.2) and (2.5, 6.7). Find the divided difference interpolating polynomial of
degree one for f(x) and use it to interpolate f at x = 2.35.

Solution. Since

f [2.2, 2.5] =
6.7 − 6.2

2.5 − 2.2
= 1.6667,

then

p1(x) = 6.2 + (x − 2.2) × 1.6667 = 2.5333 + 1.6667 x.

In particular, p1(2.35) = 6.45. �

Example 8.4. Approximate cos 0.2 linearly using the values of cos 0 and
cosπ/8.

Solution. We have the points

(0, cos 0) = (0, 1) and
(π

8
, cos

π

8

)
=

(
π

8
,
1

2

√√
2 + 2

)

(Substitute θ = π/8 into the formula

cos2 θ =
1 + cos(2 θ)

2
to get

cos
π

8
=

1

2

√√
2 + 2

since cos(π/4) =
√

2/2.) Thus

f [0, π/8] =

(√√
2 + 2

)/
2 − 1

π/8 − 0
=

4

π

(√√
2 + 2 − 2

)
.

This leads to

p1(x) = 1 +
4

π

(√√
2 + 2 − 2

)
x.

In particular,

p1(0.2) = 0.96125.
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Note that cos 0.2 = 0.98007 (rounded to five digits). The absolute error is 0.01882.
�

Consider the three data points

(x0, f0), (x1, f1), (x2, f2), where xi 6= xj for i 6= j.

Then the divided difference interpolating polynomial of degree two through these
points is

p2(x) = f0 + (x − x0) f [x0, x1] + (x − x0) (x − x1) f [x0, x1, x2]

where

f [x0, x1] :=
f1 − f0

x1 − x0
and f [x0, x1, x2] :=

f [x1, x2] − f [x0, x1]

x2 − x0

are the first and second divided differences, respectively.

Example 8.5. Interpolate a given function f(x) through the three points

(2.2, 6.2), (2.5, 6.7), (2.7, 6.5),

by means the divided difference interpolating polynomial of degree two, p2(x),
and interpolate f(x) at x = 2.35 by means of p2(2.35).

Solution. We have

f [2.2, 2.5] = 1.6667, f [2.5, 2.7] = −1

and

f [2.2, 2.5, 2.7] =
f [2.5, 2.7]− f [2.2, 2.5]

2.7 − 2.2
=

−1 − 1.6667

2.7 − 2.2
= −5.3334.

Therefore,

p2(x) = 6.2 + (x − 2.2) × 1.6667 + (x − 2.2) (x − 2.5) × (−5.3334).

In particular, p2(2.35) = 6.57. �

Example 8.6. Construct the divided difference interpolating polynomial of
degree two for cosx using the values cos 0, cosπ/8 and cosπ/4, and approximate
cos 0.2.

Solution. It was seen in Example 8.4 that

cos
π

8
=

1

2

√√
2 + 2.

Hence, from the three data points

(0, 1),

(
π

8
,
1

2

√√
2 + 2

)
,

(
π

4
,

√
2

2

)
,

we obtain the divided differences

f [0, π/8] =
4

π

(√√
2 + 2 − 2

)
, f [π/8, π/4] =

4

π

(√
2 −

√√
2 + 2

)
,
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Table 8.1. Ddivided difference table

First Second Third
x f(x) divided differences divided differences divided differences
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3]

f [x2, x3] f [x1, x2, x3, x4]
x3 f [x3] f [x2, x3, x4]

f [x3, x4] f [x2, x3, x4, x5]
x4 f [x4] f [x3, x4, x5]

f [x4, x5]
x5 f [x5]

and

f [0, π/8, π/4] =
f [π/8, π/4]− f [0, π/8]

π/4 − 0

=
4

π

[√
2/2 − (

√√
2 + 2)/2

π/4 − π/8
− 4

√√
2 + 2 − 8

π

]

=
16

π2

(√
2 − 2

√√
2 + 2

)
.

Hence,

p2(x) = 1 + x
4

π

(√√
2 + 2 − 2

)
+ x

(
x − π

8

) 16

π2

(√
2 − 2

√√
2 + 2

)
.

Evaluating this polynomial at x = 0.2, we obtain

p2(0.2) = 0.97881.

The absolute error is 0.00189. �

In general, given n + 1 data points

(x0, f0), (x1, f1), . . . , (xn, fn),

where xi 6= xj for i 6= j, Newton’s divided difference interpolating polynomial of
degree n is

pn(x) = f0 + (x − x0) f [x0, x1] + (x − x0) (x − x1) f [x0, x1, x2] + · · ·
+ (x − x0) (x − x1) · · · (x − xn−1) f [x0, x1, . . . , xn], (8.4)

where, by definition,

f [xj , xj+1, . . . , xk] =
f [xj+1, . . . , xk] − f [xj , xj+1, . . . , xk−1]

xk − xj

is a (k − j)th divided difference. This formula can be obtained by recurrence.
A divided difference table is shown in Table 8.1.
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Example 8.7. Construct the cubic interpolating polynomial through the four
unequally spaced points

(1.0, 2.4), (1.3, 2.2), (1.5, 2.3), (1.7, 2.4),

on the graph of a certain function f(x) and approximate f(1.4).

Solution. Newton’s divided difference table is

xi f(xi) f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]

1.0 2.4

−0.66667

1.3 2.2 2.33333

0.500000 −3.33333

1.5 2.3 0.00000
0.500000

1.7 2.4

Therefore,

p3(x) = 2.4 + (x − 1.0) (−0.66667) + (x − 1.0) (x − 1.3) × 2.33333

+ (x − 1.0) (x − 1.3) (x − 1.5) (−3.33333).

The approximation to f(1.4) is

p3(1.4) = 2.2400. �

Since the interpolating polynomial, pn(x), is unique, it does not matter how
we find it. We can see from the examples that Newton’s divided difference is a
more efficient way of calculating pn(x) than Lagrange’s idea, but the two methods
will give the same polynomial (up to round-off errors in the coefficients).

8.3. Gregory–Newton Forward-Difference Polynomial

We rewrite (8.4) in the special case where the nodes xi are equidistant,

xi = x0 + i h.

The first and second forward differences of f(x) at xj are

∆fj := fj+1 − fj, ∆2fj := ∆fj+1 − ∆fj ,

respectively, and in general, the kth forward difference of f(x) at xj is

∆kfj := ∆k−1fj+1 − ∆k−1fj .

It is seen by mathematical induction that

f [x0, . . . , xk] :=
1

k! hk
∆kf0.

If we set

r =
x − x0

h
,

then, for equidistant nodes,

x − xk = x − x0 − (xk − x0) = hr − hk = h(r − k)
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and

(x − x0)(x − x1) · · · (x − xk−1) = hkr(r − 1)(r − 2) · · · (r − k + 1).

Thus (8.4) becomes

pn(r) = f0 +

n∑

k=1

r (r − 1) · · · (r − k + 1)

k!
∆k f0

=

n∑

k=0

(
r

k

)
∆k f0, (8.5)

where
(

r

k

)
=





r (r − 1) · · · (r − k + 1)

k!
, if k > 0,

1, if k = 0.

Polynomial (8.5) is the Gregory–Newton forward-difference interpolating polyno-
mial .

Example 8.8. Suppose that we are given the following equally spaced data:

x 1988 1989 1990 1991 1992 1993
y 35000 36000 36500 37000 37800 39000

Extrapolate the value of y in year 1994.

Solution. The forward difference table is

i xi yi ∆yi ∆2yi ∆3yi ∆4yi ∆5yi

0 1988 35000

1000

1 1989 36000 −500

500 500

2 1990 36500 0 −200

500 300 0
3 1991 37000 300 −200

800 100
4 1992 37800 400

1200
5 1993 39000

Setting r = (x − 1988)/1, we have

p5(r) = 35000 + r (1000) +
r(r − 1)

2
(−500) +

r(r − 1)(r − 2)

6
(500)

+
r(r − 1)(r − 2)(r − 3)

24
(−200) +

r(r − 1)(r − 2)(r − 3)(r − 4)

120
(0).

Extrapolating the data at 1994 we have r = 6 and

p5(6) = 40500.

An iterative use of the Matlab diff(y,n) command produces a difference table.
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y = [35000 36000 36500 37000 37800 39000]

dy = diff(y);

dy = 1000 500 500 800 1200

d2y = diff(y,2)

d2y = -500 0 300 400

d3y = diff(y,3)

d3y = 500 300 100

d4y = diff(y,4)

d4y = -200 -200

d5y = diff(y,5)

d5y = 0

�

Example 8.9. Use the following equally spaced data to approximate f(1.5).

x 1.0 1.3 1.6 1.9 2.2
f(x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623

Solution. The forward difference table is

i xi yi ∆yi ∆2yi ∆3yi ∆4yi

0 1.0 0.7651977

−0.145112

1 1.3 0.6200860 −0.0195721

-0.164684 0.0106723

2 1.6 0.4554022 -0.0088998 0.0003548
-0.173584 0.0110271

3 1.9 0.2818186 0.0021273
-0.170856

4 2.2 0.1103623

Setting r = (x − 1.0)/0.3, we have

p4(r) = 0.7651977 + r (−0.145112) +
r(r − 1)

2
(−0.0195721)

+
r(r − 1)(r − 2)

6
(0.0106723) +

r(r − 1)(r − 2)(r − 3)

24
(0.0003548).

Interpolating f(x) at x = 1, we have r = 5/3 and and

p4(5/3) = 0.511819. �

8.4. Gregory–Newton Backward-Difference Polynomial

To interpolate near the bottom of a difference table with equidistant nodes,
one uses the Gregory–Newton backward-difference interpolating polynomial for
the data

(x−n, f−n), (x−n+1, f−n+1), . . . , (x0, f0).

If we set

r =
x − x0

h
,
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then, for equidistant nodes,

x − x−k = x − x0 − (x−k − x0) = hr + hk = h(r + k)

and

(x − x0)(x − x−1) · · · (x − x−(k−1)) = hkr(r + 1)(r + 2) · · · (r + k − 1).

Thus (8.5) becomes

pn(r) = f0 +
n∑

k=1

r (r + 1) · · · (r + k − 1)

k!
∆kf−k

=

n∑

k=0

(
r + k − 1

k

)
∆kf−k, (8.6)

The polynomial (8.6) is the Gregory–Newton backward-difference interpolating
polynomial .

Example 8.10. Interpolate the equally spaced data of Example 8.9 at x = 2.1

Solution. The difference table is

i xi yi ∆yi ∆2yi ∆3yi ∆4yi

−4 1.0 0.7651977
-0.145112

−3 1.3 0.6200860 -0.0195721
-0.164684 0.0106723

−2 1.6 0.4554022 -0.0088998 0.0003548

-0.173584 0.0110271

−1 1.9 0.2818186 0.0021273

−0.170856

0 2.2 0.1103623

Setting r = (x − 2.2)/0.3, we have

p4(r) = 0.1103623 + r (−0.170856) +
r(r + 1)

2
(0.0021273)

+
r(r + 1)(r + 2)

6
(0.0110271) +

r(r + 1)(r + 2)(r + 3)

24
(0.0003548).

Since

r =
2.1 − 2.2

0.3
= −1

3
,

then

p4(−1/3) = 0.115904. �

8.5. Hermite Interpolating Polynomial

Given n + 1 distinct nodes x0, x1,. . . ,xn and 2n + 2 values fk = f(xk) and
f ′

k = f ′(xk), the Hermite interpolating polynomial p2n+1(x) of degree 2n + 1,

p2n+1(x) =

n∑

m=0

hm(x)fm +

n∑

m=0

ĥm(x)f ′
m,
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takes the values

p2n+1(xk) = fk, p′2n+1(xk) = f ′
k, k = 0, 1, . . . , n.

We look for polynomials hm(x) and ĥm(x) of degree at most 2n+1 satisfying the
following conditions:

hm(xk) = h′
m(xk) = 0, k 6= m,

hm(xm) = 1,

h′
m(xm) = 0,

and

ĥm(xk) = ĥ′
m(xk) = 0, k 6= m,

ĥm(xm) = 0,

ĥ′
m(xm) = 1.

These conditions are satisfied by the polynomials

hm(x) = [1 − 2(x − xm)L′
m(xm)]L2

m(x)

and

ĥm(x) = (x − xm)L2
m(x),

where

Lm(x) =
n∏

k=0,k 6=m

x − xk

xm − xk

are the elements of the Lagrange basis of degree n.
A practical method of constructing a Hermite interpolating polynomial over

the n + 1 distinct nodes x0, x1,. . . ,xn is to set

z2i = z2i+1 = xi, i = 0, 1, . . . , n,

and take

f ′(x0) for f [z0, z1], f ′(x1) for f [z2, z3], . . . , f ′(xj) for f [z2nz2n+1]

in the divided difference table for the Hermite interpolating polynomial of degree
2n + 1. Thus,

p2n+1(x) = f [z0] +
2n+1∑

k=1

f [z0, z1, . . . , zk](x − z0)(x − z1) · · · (x − zk−1).

A divided difference table for a Hermite interpolating polynomial is as follows.



194 8. INTERPOLATION AND EXTRAPOLATION

First Second Third
z f(z) divided differences divided differences divided differences

z0 = x0 f [z0] = f(x0)
f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f(x0) f [z0, z1, z2]
f [z1, z2] f [z0, z1, z2, z3]

z2 = x1 f [z2] = f(x1) f [z1, z2, z3]
f [z2, z3] = f ′(x1) f [z1, z2, z3, z4]

z3 = x1 f [z3] = f(x1) f [z2, z3, z4]
f [z3, z4] f [z2, z3, z4, z5]

z4 = x2 f [z4] = f(x2) f [z3, z4, z5]
f [z4, z5] = f ′(x2)

z5 = x2 f [z5] = f(x2)

Example 8.11. Interpolate the underlined data, given in the table below, at
x = 1.5 by a Hermite interpolating polynomial of degree five.

Solution. In the difference table the underlined entries are the given data.
The remaining entries are generated by standard divided differences.

1.3 0.6200860
−0.5220232

1.3 0.6200860 −0.0897427
−0.5489460 0.0663657

1.6 0.4554022 −0.0698330 0.0026663
−0.5698959 0.0679655 −0.0027738

1.6 0.4554022 −0.0290537 0.0010020
−0.5786120 0.0685667

1.9 0.2818186 −0.0084837
−0.5811571

1.9 0.2818186

Taking the elements along the top downward diagonal, we have

P (1.5) = 0.6200860 + (1.5 − 1.3)(−0.5220232)+ (1.5 − 1.3)2(−0.0897427)

+ (1.5 − 1.3)2(1.5 − 1.6)(0.0663657)+ (1.5 − 1.3)2(1.5 − 1.6)2(0.0026663)

+ (1.5 − 1.3)2(1.5 − 1.6)2(1.5 − 1.9)(−0.0027738)

= 0.5118277. �

8.6. Cubic Spline Interpolation

In this section, we interpolate functions by piecewise cubic polynomials which
satisfy some global smoothness conditions. Piecewise polynomials avoid the os-
cillatory nature of high-degree polynomials over a large interval as a polynomial
of degree n will habve up to n − 1 local extrema or turning points.

Definition 8.1. Given a function f(x) defined on the interval [a, b] and a
set of nodes

a = x0 < x1 < · · · < xn = b,
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a cubic spline interpolant S for f is a piecewise cubic polynomial that satisfies
the following conditions:

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj , xj+1]
for each j = 0, 1, . . . , n − 1;

(b) S(xj) = f(xj) for each j = 0, 1, . . . , n;
(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n − 2;
(d) S′

j+1(xj+1) = S′
j(xj+1) for each j = 0, 1, . . . , n − 2;

(e) S′′
j+1(xj+1) = S′′

j (xj+1) for each j = 0, 1, . . . , n − 2;
(f) One of the sets of boundary conditions is satisfied:

(i) S′′(x0) = S′′(xn) = 0 (free or natural boundary);
(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

Other boundary conditions can be used in the definition of splines. When
free or clamped boundary conditions occur, the spline is called a natural spline
or a clamped spline, respectively.

To construct the cubic spline interpolant for a given function f , the conditions
in the definition are applied to the cubic polynomials

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3,

for each j = 0, 1, . . . , n − 1.
The following existence and uniqueness theorems hold for natural and clamped

spline interpolants, respectively.

Theorem 8.2 (Natural Spline). If f is defined at a = x0 < x1 < · · · < xn =
b, then f has a unique natural spline interpolant S on the nodes x0, x1, . . . , xn

with boundary conditions S′′(a) = 0 and S′′(b) = 0.

Theorem 8.3 (Clamped Spline). If f is defined at a = x0 < x1 < · · · <
xn = b and is differentiable at a and b, then f has a unique clamped spline
interpolant S on the nodes x0, x1, . . . , xn with boundary conditions S′(a) = f ′(a)
and S′(b) = f ′(b).

The following Matlab commands generate a sine curve and sample the spline
over a finer mesh:

x = 0:10; y = sin(x);

xx = 0:0.25:10;

yy = spline(x,y,xx);

subplot(2,2,1); plot(x,y,’o’,xx,yy);

The result is shown in Fig 8.1.
The following Matlab commands illustrate the use of clamped spline inter-

polation where the end slopes are prescribed. Zero slopes at the ends of an
interpolant to the values of a certain distribution are enforced:

x = -4:4; y = [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];

cs = spline(x,[0 y 0]);

xx = linspace(-4,4,101);

plot(x,y,’o’,xx,ppval(cs,xx),’-’);

The result is shown in Fig 8.2.
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Figure 8.1. Spline interpolant of sine curve.
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Figure 8.2. Clamped spline approximation to data.



CHAPTER 9

Numerical Differentiation and Integration

9.1. Numerical Differentiation

9.1.1. Two-point formula for f ′(x). The Lagrange interpolating polyno-
mial of degree 1 for f(x) at x0 and x1 = x0 + h is

f(x) = f(x0)
x − x1

−h
+ f(x1)

x − x0

h

+
(x − x0)(x − x1)

2!
f ′′(ξ(x)), x0 < ξ(x) < x0 + h.

Differentiating this polynomial, we have

f ′(x) = f(x0)
1

−h
+ f(x1)

1

h
+

(x − x1) + (x − x0)

2!
f ′′(ξ(x))

+
(x − x0)(x − x1)

2!

d

dx

[
f ′′(ξ(x))

]
.

Putting x = x0 in f ′(x), we obtain the first-order two-point formula

f ′(x0) =
f(x0 + h) − f(x0)

h
− h

2
f ′′(ξ). (9.1)

If h > 0, this is a forward difference formula and, if h < 0, this is a backward
difference formula.

9.1.2. Three-point formula for f ′(x). The Lagrange interpolating poly-
nomial of degree 2 for f(x) at x0, x1 = x0 + h and x2 = x0 + 2h is

f(x) = f(x0)
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

+ f(x2)
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
+

(x − x0)(x − x1)(x − x2)

3!
f ′′′(ξ(x)),

where x0 < ξ(x) < x2. Differentiating this polynomial and substituting x = xj ,
we have

f ′(xj) = f(x0)
2xj − x1 − x2

(x0 − x1)(x0 − x2)
+ f(x1)

2xj − x0 − x2

(x1 − x0)(x1 − x2)

+ f(x2)
2xj − x0 − x1

(x2 − x0)(x2 − x1)
+

1

6
f ′′′(ξ(xj))

2∏

k=0,k 6=j

(xj − xk).

197



198 9. NUMERICAL DIFFERENTIATION AND INTEGRATION

With j = 0, 1, 2, f ′(xj) gives three second-order three-point formulae:

f ′(x0) = f(x0)
−3h

2h2
+ f(x1)

−2h

−h2
+ f(x2)

−h

2h2
+

2h2

6
f ′′′(ξ0)

=
1

h

[
−3

2
f(x0) + 2f(x1) −

1

2
f(x2)

]
+

h2

3
f ′′′(ξ0),

f ′(x1) = f(x0)
−h

2h2
+ f(x1)

0

−h2
+ f(x2)

h

2h2
− h2

6
f ′′′(ξ1)

=
1

h

[
−1

2
f(x0) +

1

2
f(x2)

]
− h2

6
f ′′′(ξ1),

and, similarly,

f ′(x2) =
1

h

[
1

2
f(x0) − 2f(x1) +

3

2
f(x2)

]
+

h2

3
f ′′′(ξ2).

These three-point formulae are usually written at x0:

f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h) − f(x0 + 2h)] +

h2

3
f ′′′(ξ0), (9.2)

f ′(x0) =
1

2h
[f(x0 + h) − f(x0 − h)] − h2

6
f ′′′(ξ1). (9.3)

The third formula is obtained from (9.2) by replacing h with −h. It is to be noted
that the centred formula (9.3) is more precise than (9.2) since its error coefficient
is half the error coefficient of the other formula.

Example 9.1. Consider the data points (0, 1), (0.25, 0.97) and (0.5, 0.88).
Estimate the derivative of the function at the three points.

Solution. Clearly, h = ∆x = 0.25. So

f ′(0) ≈ 1

h

[
−3

2
f(0) + 2f(0.25)− 1

2
f(0.5)

]

=
1

0.25

[
−3

2
(1) + 2(0.97)− 1

2
(0.88)

]

= 0,

f ′(0.25) ≈ 1

h

[
−1

2
f(0) +

1

2
f(0.5)

]

=
1

0.25

[
−1

2
(1) +

1

2
(0.88)

]

= −0.24,

f ′(0.5) ≈ 1

h

[
1

2
f(0) − 2f(0.25) +

3

2
f(0.5)

]

=
1

0.25

[
1

2
(1) − 2(0.97) +

3

2
(0.88)

]

= −0.48.
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The true function is f(x) = cosx, so f ′(x) = − sin x and the true values are

f ′(0) = − sin 0 = 0,

f ′(0.25) = − sin 0.25 = −0.2474,

f ′(0.5) = sin 0.5 = −0.4794.

It is seen that the aproximations are actually quite good. �

9.1.3. Three-point centered difference formula for f ′′(x). We use trun-
cated Taylor’s expansions for f(x + h) and f(x − h):

f(x0 + h) = f(x0) + f ′(x0)h +
1

2
f ′′(x0)h

2 +
1

6
f ′′′(x0)h

3 +
1

24
f (4)(ξ0)h

4,

f(x0 − h) = f(x0) − f ′(x0)h +
1

2
f ′′(x0)h

2 − 1

6
f ′′′(x0)h

3 +
1

24
f (4)(ξ1)h

4.

Adding these expansions, we have

f(x0 + h) + f(x0 − h) = 2f(x0) + f ′′(x0)h
2 +

1

24

[
f (4)(ξ0) + f (4)(ξ1)

]
h4.

Solving for f ′′(x0), we have

f ′′(x0) =
1

h2
[f(x0 − h) − 2f(x0) + f(x0 + h)] − 1

24

[
f (4)(ξ0) + f (4)(ξ1)

]
h2.

By the Mean Value Theorem 7.5 for sums, there is a value ξ, x0 −h < ξ < x0 +h,
such that

1

2

[
f (4)(ξ0) + f (4)(ξ1)

]
= f (4)(ξ).

We thus obtain the three-point second-order centered difference formula

f ′′(x0) =
1

h2
[f(x0 − h) − 2f(x0) + f(x0 + h)] − h2

12
f (4)(ξ). (9.4)

9.2. The Effect of Roundoff and Truncation Errors

The presence of the stepsize h in the denominator of numerical differentiation
formulae may produce large errors due to roundoff errors. We consider the case of
the two-point centred formula (9.3) for f ′(x). Other cases are treated similarly.

Suppose that the roundoff error in the evaluated value f̃(xj) for f(xj) is
e(xj). Thus,

f(x0 + h) = f̃(x0 + h) + e(x0 + h), f(x0 − h) = f̃(x0 − h) + e(x0 − h).

Subtituting these values in (9.3), we have the total error, which is the sum of the
roundoff and the truncation errors,

f ′(x0) −
f̃(x0 + h) − f̃(x0 − h)

2h
=

e(x0 + h) − e(x0 − h)

2h
− h2

6
f (3)(ξ).

Taking the absolute value of the right-hand side and applying the triangle in-
equality, we have
∣∣∣∣
e(x0 + h) − e(x0 − h)

2h
− h2

6
f (3)(ξ)

∣∣∣∣ ≤
1

2h
(|e(x0 +h)|+ |e(x0−h)|)+ h2

6
|f (3)(ξ)|.

If

|e(x0 ± h)| ≤ ε, |f (3)(x)| ≤ M,
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Figure 9.1. Truncation and roundoff error curve as a function of 1/h.

then ∣∣∣∣∣f
′(x0) −

f̃(x0 + h) − f̃(x0 − h)

2h

∣∣∣∣∣ ≤
ε

h
+

h2

6
M.

We remark that the expression

z(h) =
ε

h
+

h2

6
M

first decreases and afterwards increases as 1/h increases, as shown in Fig. 9.1. The
term Mh2/6 is due to the trunctation error and the term ε/h is due to roundoff
errors.

Example 9.2. (a) Given the function f(x) and its first derivative f ′(x):

f(x) = cosx, f ′(x) = − sin x,

approxminate f ′(0.7) with h = 0.1 by the five-point formula, without the trunca-
tion error term,

f ′(x) =
1

12h

[
−f(x + 2h) + 8f(x + h) − 8f(x − h) + f(x − 2h)

]
+

h4

30
f (5)(ξ),

where ξ, in the truncaction error, satisfies the inequalities x − 2h ≤ ξ ≤ x + 2h.
(b) Given that the roundoff error in each evaluation of f(x) is bounded by ǫ =
5 × 10−7, find a bound for the total error in f ′(0.7) by adding bounds for the
roundoff and the truncation errors).
(c) Finally, find the value of h that minimizes the total error.

Solution. (a) A simple computation with the given formula, without the
truncation error, gives the approximation

f ′(0.7) ≈ −0.644 215 542.

(b) Since

f (5)(x) = − sinx

is negative and decreasing on the interval 0.5 ≤ x ≤ 0.9, then

M = max
0.5≤x≤0.9

| − sin x| = sin 0.9 = 0.7833.
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Hence, a bound for the total error is

Total error ≤ 1

12 × 0.1
(1 + 8 + 8 + 1) × 5 × 10−7 +

(0.1)4

30
× 0.7833

= 7.5000× 10−6 + 2.6111× 10−6

= 1.0111× 10−5.

(c) The minimum of the total error, as a function of h,

90 × 10−7

12h
+

0.7833

30
h4,

will be attained at a zero of its derivative with respect to h, that is,

d

dh

(
90 × 10−7

12h
+

0.7833

30
h4

)
= 0.

Performing the derivative and multiplying both sides by h2, we obtain a quintic
equation for h:

−7.5 × 10−7 +
4 × 0.7833

30
h5 = 0.

Hence,

h =

(
7.5 × 10−7 × 30

4 × 0.7833

)1/5

= 0.0936

minimizes the total error. �

9.3. Richardson’s Extrapolation

Suppose it is known that a numerical formula, N(h), approximates an exact
value M with an error in the form of a series in hj,

M = N(h) + K1h + K2h
2 + K3h

3 + . . . ,

where the constants Kj are independent of h. Then computing N(h/2), we have

M = N

(
h

2

)
+

1

2
K1h +

1

4
K2h

2 +
1

8
K3h

3 + . . . .

Subtracting the first expression from twice the second, we eliminate the error in
h:

M = N

(
h

2

)
+

[
N

(
h

2

)
− N(h)

]
+

(
h2

2
− h2

)
K2 +

(
h3

4
− h3

)
K3 + . . . .

If we put

N1(h) = N(h),

N2(h) = N1

(
h

2

)
+

[
N1

(
h

2

)
− N1(h)

]
,

the last expression for M becomes

M = N2(h) − 1

2
K2h

2 − 3

4
K3h

3 − . . . .
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Now with h/4, we have

M = N2

(
h

2

)
− 1

8
K2h

2 − 3

32
K3h

3 + . . . .

Subtracting the second last expression for M from 4 times the last one and di-
viding the result by 3, we elininate the term in h2:

M =

[
N2

(
h

2

)
+

N2(h/2) − N2(h)

3

]
+

1

8
K3h

3 + . . . .

Now, putting

N3(h) = N2

(
h

2

)
+

N2(h/2) − N2(h)

3
,

we have

M = N3(h) +
1

8
K3h

3 + . . . .

The presence of the number 2j−1 − 1 in the denominator of the second term of
Nj(h) ensures convergence. It is clear how to continue this process which is called
Richardson’s extrapolation.

An important case of Richardson’s extrapolation is when N(h) is the centred
difference formula (9.3) for f ′(x), that is,

f ′(x0) =
1

2h

[
f(x0 + h) − f(x0 − h)

]
− h2

6
f ′′′(x0) −

h4

120
f (5)(x0) − . . . .

Since, in this case, the error term contains only even powers of h, the convergence
of Richardson’s extrapolation is very fast. Putting

N1(h) = N(h) =
1

2h

[
f(x0 + h) − f(x0 − h)

]
,

the above formula for f ′(x0) becomes

f ′(x0) = N1(h) − h2

6
f ′′′(x0) −

h4

120
f (5)(x0) − . . . .

Replacing h with h/2 in this formula gives the approximation

f ′(x0) = N1

(
h

2

)
− h2

24
f ′′′(x0) −

h4

1920
f (5)(x0) − . . . .

Subtracting the second last formula for f ′(x0) from 4 times the last one and
dividing by 3, we have

f ′(x0) = N2(h) − h4

480
f (5)(x0) + . . . ,

where

N2(h) = N1

(
h

2

)
+

N1(h/2) − N1(h)

3
.

The presence of the number 4j−1 − 1 in the denominator of the second term of
Nj(h) provides fast convergence.

Example 9.3. Let

f(x) = x ex.

Apply Richardson’s extrapolation to the centred difference formula to compute
f ′(x) at x0 = 2 with h = 0.2.
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Table 9.1. Richardson’s extrapolation to the derivative of x ex.

N1(0.2) = 22.414 160
N1(0.1) = 22.228 786 N2(0.2) = 22.166 995
N1(0, 05) = 22.182 564 N2(0.1) = 22.167 157 N3(0.2) = 22.167 168

Solution. We have

N1(0.2) = N(0.2) =
1

0.4
[f(2.2) − f(1.8)] = 22.414 160,

N1(0.1) = N(0.1) =
1

0.2
[f(2.1) − f(1.9)] = 22.228 786,

N1(0.05) = N(0.05) =
1

0.1
[f(2.05)− f(1.95)] = 22.182 564.

Next,

N2(0.2) = N1(0.1) +
N1(0.1) − N1(0.2)

3
= 22.166 995,

N2(0.1) = N1(0.05) +
N1(0.05) − N1(0.1)

3
= 22.167 157.

Finally,

N3(0.2) = N2(0.1) +
N2(0.1) − N2(0.2)

15
= 22.167 168,

which is correct to all 6 decimals. The results are listed in Table 9.1. One
sees the fast convergence of Richarson’s extrapolation for the centred difference
formula. �

9.4. Basic Numerical Integration Rules

To approximate the value of the definite integral
∫ b

a

f(x) dx,

where the function f(x) is smooth on [a, b] and a < b, we subdivide the interval
[a, b] into n subintervals of equal length h = (b − a)/n. The function f(x) is
approximated on each of these subintervals by an interpolating polynomial and
the polynomials are integrated.

For the midpoint rule, f(x) is interpolated on each subinterval [xi−1, x1] by
f([xi−1 + x1]/2), and the integral of f(x) over a subinterval is estimated by the
area of a rectangle (see Fig. 9.2). This corresponds to making a piecewise constant
approximation of the function.

For the trapezoidal rule, f(x) is interpolated on each subinterval [xi−1, x1] by
a polynomial of degree one, and the integral of f(x) over a subinterval is estimated
by the area of a trapezoid (see Fig. 9.3).This corresponds to making a piecewise
linear approximation of the function.

For Simpson’s rule, f(x) is interpolated on each pair of subintervals, [x2i, x2i+1]
and [x2i+1, x2i+2], by a polynomial of degree two (parabola), and the integral of
f(x) over such pair of subintervals is estimated by the area under the parabola
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(see Fig. 9.4). This corresponds to making a piecewise quadratic approximation
of the function.

9.4.1. Midpoint rule. The midpoint rule,
∫ x1

x0

f(x) dx = hf(x∗
1) +

1

24
f ′′(ξ)h3, x0 < ξ < x1, (9.5)

approximates the integral of f(x) on the interval x0 ≤ x ≤ x1 by the area of a
rectangle with height f(x∗

1) and base h = x1 − x0, where x∗
1 is the midpoint of

the interval [x0, x1],

x∗
1 =

x0 + x1

2
,

(see Fig. 9.2).
To derive formula (9.5), we expand f(x) in a truncated Taylor series with

center at x = x∗
1,

f(x) = f(x∗
1) + f ′(x∗

1)(x − x∗
1) +

1

2
f ′′(ξ)(x − x∗

1)
2, x0 < ξ < x1.

Integrating this expression from x0 to x1, we have
∫ x1

x0

f(x) dx = hf(x∗
1) +

∫ x1

x0

f ′(x∗
1)(x − x∗

1) dx +
1

2

∫ x1

x0

f ′′(ξ(x))(x − x∗
1)

2 dx

= hf(x∗
1) +

1

2
f ′′(ξ)

∫ x1

x0

(x − x∗
1)

2 dx.

where the integral over the linear term (x−x∗
1) is zero because this term is an odd

function with respect to the midpoint x = x∗
1 and the Mean Value Theorem 7.4

for integrals has been used in the integral of the quadratic term (x − x∗
0)

2 which
does not change sign over the interval [x0, x1]. The result follows from the value
of the integral

1

2

∫ x1

x0

(x − x∗
1)

2 dx =
1

6

[
(x − x∗

1)
3
∣∣x1

x0
=

1

24
h3.

9.4.2. Trapezoidal rule. The trapezoidal rule,
∫ x1

x0

f(x) dx =
h

2
[f(x0) + f(x1)] −

1

12
f ′′(ξ)h3, x0 < ξ < x1, (9.6)

approximates the integral of f(x) on the interval x0 ≤ x ≤ x1 by the area of a
trapezoid with heights f(x0) and f(x1) and base h = x1 − x0 (see Fig. 9.3).

To derive formula (9.6), we interpolate f(x) at x = x0 and x = x1 by the
linear Lagrange polynomial

p1(x) = f(x0)
x − x1

x0 − x1
+ f(x1)

x − x0

x1 − x0
.

Thus,

f(x) = p1(x) +
f ′′(ξ)

2
(x − x0)(x − x1), x0 < ξ < x1.

Since ∫ x1

x0

p1(x) dx =
h

2

[
f(x0) + f(x1)

]
,
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we have∫ x1

x0

f(x) dx − h

2
[f(x0) + f(x1)]

=

∫ x1

x0

[f(x) − p1(x)] dx

=

∫ x1

x0

f ′′(ξ(x))

2
(x − x0)(x − x1) dx

by the Mean Value Theorem 7.4 for integrals

since (x − x0)(x − x1) ≤ 0 over [x0, x1]

=
f ′′(ξ)

2

∫ x1

x0

(x − x0)(x − x1) dx

with x − x0 = s, dx = ds, x − x1 = (x − x0) − (x1 − x0) = s − h

=
f ′′(ξ)

2

∫ h

0

s(s − h) ds

=
f ′′(ξ)

2

[
s3

3
− h

2
s2

]h

0

= −f ′′(ξ)

12
h3,

.

9.4.3. Simpson’s rule. Simpson’s rule
∫ x2

x0

f(x) dx =
h

3

[
f(x0) + 4f(x1) + f(x2)

]
− h5

90
f (4)(ξ), x0 < ξ < x2, (9.7)

approximates the integral of f(x) on the interval x0 ≤ x ≤ x2 by the area under
a parabola which interpolates f(x) at x = x0, x1 and x2 (see Fig. 9.4).

To derive formula (9.7), we expand f(x) in a truncated Taylor series with
center at x = x1,

f(x) = f(x1)+f ′(x1)(x−x1)+
f ′′(x1)

2
(x−x1)

2+
f ′′′(x1)

6
(x−x1)

3+
f (4)(ξ(x))

24
(x−x1)

4.

Integrating this expression from x0 to x2 and noticing that the odd terms (x−x1)
and (x − x1)

3 are odd functions with respect to the point x = x1 so that their
integrals vanish, we have

∫ x2

x0

f(x) dx =

[
f(x1)x +

f ′′(x1)

6
(x − x1)

3 +
f (4)(ξ1)

120
(x − x1)

5

∣∣∣∣
x2

x0

= 2hf(x1) +
h3

3
f ′′(x1) +

f (4)(ξ1)

60
h5,

where the Mean Value Theorem 7.4 for integrals was used in the integral of the
error term because the factor (x − x1)

4 does not change sign over the interval
[x0, x2].

Substituting the three-point centered difference formula (9.4) for f ′′(x1) in
terms of f(x0), f(x1) and f(x2):

f ′′(x1) =
1

h2
[f(x0) − 2f(x1) + f(x2)] −

1

12
f (4)(ξ2)h

2,
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xi

Figure 9.2. The ith panel of the midpoint rule.

we obtain∫ x2

x0

f(x) dx =
h

3

[
f(x0) + 4f(x1) + f(x2)

]
− h5

12

[
1

3
f (4)(ξ2) −

1

5
f (4)(ξ2)

]
.

In this case, we cannot apply the Mean Value Theorem 7.5 for sums to express the
error term in the form of f (4)(ξ) evaluated at one point since the weights 1/3 and
−1/5 have different signs. However, since the formula is exact for polynomials of
degree less than or equal to 4, to obtain the factor 1/90 it suffices to apply the
formula to the monomial f(x) = x4 and, for simplicity, integrate from −h to h:

∫ h

−h

x4 dx =
h

3

[
(−h)4 + 4(0)4 + h4

]
+ kf (4)(ξ)

=
2

3
h5 + 4!k =

2

5
h5,

where the last term is the exact value of the integral. It follows that

k =
1

4!

[
2

5
− 2

3

]
h5 = − 1

90
h5,

which yields (9.7).

9.5. The Composite Midpoint Rule

We subdivide the interval [a, b] into n subintervals of equal length h = (b −
a)/n with end-points

x0 = a, x1 = a + h, . . . , xi = a + ih, . . . , xn = b.

On the subinterval [xi−1, xi], the integral of f(x) is approximated by the signed
area of the rectangle with base [xi−1, xi] and height f(x∗

i ), where

x∗
i =

1

2
(xi−1 + xi)

is the mid-point of the segment [xi−1, xi], as shown in Fig. 9.2 Thus, on the
interval [xi−1, xi], by the basic midpoint rule (9.5) we have

∫ xi

xi−1

f(x) dx = hf(x∗
i ) +

1

24
f ′′(ξi)h

3, xi−1 < ξi < xi.

Summing over all the subintervals, we have
∫ b

a

f(x) dx = h

n∑

i=1

f(x∗
i ) +

h3

24

n∑

i=1

f ′′(ξi).
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Multiplying and dividing the error term by n, applying the Mean Value Theo-
rem 7.5 for sums to this term and using the fact that nh = b − a, we have

nh3

24

n∑

i=1

1

n
f ′′(ξi) =

(b − a)h2

24
f ′′(ξ), a < ξ < b.

Thus, we obtain the composite midpoint rule:

∫ b

a

f(x) dx = h
[
f(x∗

1) + f(x∗
2) + · · · + f(x∗

n)
]

+
(b − a)h2

24
f ′′(ξ), a < ξ < b. (9.8)

We see that the composite midpoint rule is a method of order O(h2), which is
exact for polynomials of degree smaller than or equal to 1.

Example 9.4. Use the composite midpoint rule to approximate the integral

I =

∫ 1

0

ex2

dx

with step size h such that the absolute truncation error is bounded by 10−4.

Solution. Since

f(x) = ex2

and f ′′(x) = (2 + 4 x2) ex2

,

then

0 ≤ f ′′(x) ≤ 6 e for x ∈ [0, 1].

Therefore, a bound for the absolute truncation error is

|ǫM | ≤ 1

24
6 e(1 − 0)h2 =

1

4
eh2 < 10−4.

Thus

h < 0.0121
1

h
= 82.4361.

We take n = 83 ≥ 1/h = 82.4361 and h = 1/83. The approximate value of I is

I ≈ 1

83

[
e(0.5/83)2 + e(1.5/83)2 + · · · + e(13590.5/83)2 + e(82.5/83)2

]

≈ 1.46262 �

The following Matlab commands produce the midpoint integration.

x = 0.5:82.5; y = exp((x/83).^2);

z = 1/83*sum(y)

z = 1.4626

�
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Figure 9.3. The ith panel of the trapezoidal rule.

9.6. The Composite Trapezoidal Rule

We divide the interval [a, b] into n subintervals of equal length h = (b− a)/n,
with end-points

x0 = a, x1 = a + h, . . . , xi = a + ih, . . . , xn = b.

On each subinterval [xi−1, xi], the integral of f(x) is approximated by the signed
area of the trapezoid with vertices

(xi−1, 0), (xi, 0), (xi, f(xi)), (xi−1, f(xi−1)),

as shown in Fig. 9.3. Thus, by the basic trapezoidal rule (9.6),
∫ x1

xi−1

f(x) dx =
h

2
[f(xi−1) + f(xi)] −

h3

12
f ′′(ξi).

Summing over all the subintervals, we have
∫ b

a

f(x) dx =
h

2

n∑

i=1

[
f(xi−1) + f(xi)

]
− h3

12

n∑

i=1

f ′′(ξi).

Multiplying and dividing the error term by n, applying the Mean Value Theo-
rem 7.5 for sums to this term and using the fact that nh = b − a, we have

−nh3

12

n∑

i=1

1

n
f ′′(ξi) = − (b − a)h2

12
f ′′(ξ), a < ξ < b.

Thus, we obtain the composite trapezoidal rule:
∫ b

a

f(x) dx =
h

2

[
f(x0) + 2f(x1) + 2f(x2) + · · · + 2f(xn−2)

+ 2f(xn−1) + f(xn)
]
− (b − a)h2

12
f ′′(ξ), a < ξ < b. (9.9)

We see that the composite trapezoidal rule is a method of order O(h2), which is
exact for polynomials of degree smaller than or equal to 1. Its absolute truncation
error is twice the absolute truncation error of the midpoint rule.

Example 9.5. Use the composite trapezoidal rule to approximate the integral

I =

∫ 1

0

ex2

dx

with step size h such that the absolute truncation error is bounded by 10−4.
Compare with Examples 9.4 and 9.7.
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Solution. Since

f(x) = ex2

and f ′′(x) = (2 + 4 x2) ex2

,

then

0 ≤ f ′′(x) ≤ 6 e for x ∈ [0, 1].

Therefore,

|ǫT | ≤
1

12
6 e(1 − 0)h2 =

1

2
eh2 < 10−4, that is, h < 0.008 577 638.

We take n = 117 ≥ 1/h = 116.6 (compared to 83 for the composite midpoint
rule). The approximate value of I is

I ≈ 1

117 × 2

[
e(0/117)2 + 2 e(1/117)2 + 2 e(2/117)2 + · · ·

+ 2 e(115/117)2 + 2 e(116/117)2 + e(117/117)2
]

= 1.46268.

The following Matlab commands produce the trapesoidal integration of nu-
merical values yk at nodes k/117, k = 0, 1, . . . , 117, with stepsize h = 1/117.

x = 0:117; y = exp((x/117).^2);

z = trapz(x,y)/117

z = 1.4627

�

Example 9.6. How many subintervals are necessary for the composite trape-
zoidal rule to approximate the integral

I =

∫ 2

1

[
x2 − 1

12
(x − 1.5)4

]
dx

with step size h such that the absolute truncation error is bounded by 10−3 ?

Solution. Denote the integrand by

f(x) = x2 − 1

12
(x − 1.5)4.

Then

f ′′(x) = 2 − (x − 1.5)2.

It is clear that

M = max
1≤x≤2

f ′′(x) = f(1.5) = 2.

To bound the absolute truncation error by 10−3, we need
∣∣∣∣
(b − a)h2

12
f ′′(ξ)

∣∣∣∣ ≤
h2

12
M

=
h2

6

≤ 10−3.

This gives

h ≤
√

6 × 10−3 = 0.0775
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Figure 9.4. A double panel of Simpson’s rule.

and
1

h
= 12.9099 ≤ n = 13.

Thus it suffices to take

h =
1

13
, n = 13. �

9.7. The Composite Simpson Rule

We subdivide the interval [a, b] into an even number, n = 2m, of subintervals
of equal length, h = (b − a)/(2m), with end-points

x0 = a, x1 = a + h, . . . , xi = a + i h, . . . , x2m = b.

On the subinterval [x2i, x2i+2], the function f(x) is interpolated by the quadratic
polynomial p2(x) which passes through the points

(
x2i, f(x2i)

)
,
(
x2i+1, f(x2i+1)

)
,
(
x2i+2, f(x2i+2)

)
,

as shown in Fig. 9.4.
Thus, by the basic Simpson rule (9.7),

∫ x2i+2

x2i

f(x) dx =
h

3

[
f(x2i)+4f(x2i+1)+f(x2i+2)

]
−h5

90
f (4)(ξi), x2i < ξ < x2i+2.

Summing over all the subintervals, we have
∫ b

a

f(x) dx =
h

3

m∑

i=1

[
f(x2i) + 4f(x2i+1) + f(x2i+2)

]
− h5

90

m∑

i=1

f (4)(ξi).

Multiplying and dividing the error term by m, applying the Mean Value Theo-
rem 7.5 for sums to this term and using the fact that 2mh = nh = b − a, we
have

− 2mh5

2 × 90

m∑

i=1

1

m
f (4)(ξi) = − (b − a)h4

180
f (4)(ξ), a < ξ < b.

Thus, we obtain the composite Simpson rule:

∫ b

a

f(x) dx =
h

3

[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+ 2f(x2m−2) + 4f(x2m−1) + f(x2m)
]
− (b − a)h4

180
f (4)(ξ), a < ξ < b. (9.10)

We see that the composite Simpson rule is a method of order O(h4), which
is exact for polynomials of degree smaller than or equal to 3.
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Example 9.7. Use the composite Simpson rule to approximate the integral

I =

∫ 1

0

ex2

dx

with stepsize h such that the absolute truncation error is bounded by 10−4. Com-
pare with Examples 9.4 and 9.5.

Solution. We have

f(x) = ex2

and f (4)(x) = 4 ex2 (
3 + 12x2 + 4x4

)
.

Thus

0 ≤ f (4)(x) ≤ 76 e on [0, 1].

The absolute truncation error is thus less than or equal to 76
180 e(1− 0)h4. Hence,

h must satisfy the inequality

76

180
eh4 < 10−4, that is, h < 0.096 614 232.

To satisfy the inequality

2m ≥ 1

h
= 10.4

we take

n = 2m = 12 and h =
1

12
.

The approximation is

I ≈ 1

12 × 3

[
e(0/12)2 + 4 e(1/12)2 + 2 e(2/12)2 + · · · + 2 e(10/12)2 + 4 e(11/12)2 + e(12/12)2

]

= 1.46267.

We obtain a value which is similar to those found in Examples 9.4 and 9.5. How-
ever, the number of arithmetic operations is much less when using Simpson’s
rule (hence cost and truncation errors are reduced). In general, Simpson’s rule is
preferred to the midpoint and trapezoidal rules. �

Example 9.8. Use the composite Simpson rule to approximate the integral

I =

∫ 2

0

√
1 + cos2 xdx

within an accuracy of 0.0001.

Solution. We must determine the step size h such that the absolute trun-
cation error, |ǫS |, will be bounded by 0.0001. For

f(x) =
√

1 + cos2 x,

we have

f (4)(x) =
−3 cos4(x)

(1 + cos2(x))
3/2

+
4 cos2(x)√
1 + cos2(x)

− 18 cos4(x) sin2(x)

(1 + cos2(x))
5/2

+
22 cos2(x) sin2(x)

(1 + cos2(x))
3/2

− 4 sin2(x)√
1 + cos2(x)

− 15 cos4(x) sin4(x)

(1 + cos2(x))
7/2

+
18 cos2(x) sin4(x)

(1 + cos2(x))5/2
− 3 sin4(x)

(1 + cos2(x))3/2
.



212 9. NUMERICAL DIFFERENTIATION AND INTEGRATION

Since every denominator is greater than one, we have

|f (4)(x)| ≤ 3 + 4 + 18 + 22 + 4 + 15 + 18 + 3 = 87.

Therefore, we need

|ǫS | <
87

180
(2 − 0)h4.

Hence,

h < 0.100 851 140,
1

h
> 9.915 604 269.

To have 2m ≥ 2/h = 2 × 9.9 we take n = 2m = 20 and h = 1/10. The
approximation is

I ≈ 1

20 × 3

[√
1 + cos2(0) + 4

√
1 + cos2(0.1) + 2

√
1 + cos2(0.2) + · · ·

+ 2
√

1 + cos2(1.8) + 4
√

1 + cos2(1.9) +
√

1 + cos2(2)
]

= 2.35169. �

9.8. Romberg Integration for the Trapezoidal Rule

Romberg integration uses Richardson’s extrapolation to improve the trape-
zoidal rule approximation, Rk,1, with step size hk, to an integral

I =

∫ b

a

f(x) dx.

It can be shown that

I = Rk,1 + K1h
2
k + K2h

4
k + K3h

6
k + . . . ,

where the constants Kj are independent of hk. With step sizes

h1 = h, h2 =
h

2
, h3 =

h

22
, . . . , hk =

h

2k−1
, . . . ,

one can cancel errors of order h2, h4, etc. as follows. Suppose Rk,1 and Rk+1,1

have been computed, then we have

I = Rk,1 + K1h
2
k + K2h

4
k + K3h

6
k + . . .

and

I = Rk+1,1 + K1
h2

k

4
+ K2

h4
k

16
+ K3

h6
k

64
+ . . . .

Subtracting the first expression for I from 4 times the second expression and
dividing by 3, we obtain

I =

[
Rk+1,1 +

Rk+1,1 − Rk,1

3

]
+

K2

3

[
1

4
− 1

]
h4

k +
K3

3

[
1

16
− 1

]
h4

k + . . . .

Put

Rk,2 = Rk,1 +
Rk,1 − Rk−1,1

3
and, in general,

Rk,j = Rk,j−1 +
Rk,j−1 − Rk−1,j−1

4j−1 − 1
.

Then Rk,j is a better approximation to I than Rk,j−1 and Rk−1,j−1. The relations
between the Rk,j are shown in Table 9.2.
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Table 9.2. Romberg integration table with n levels

R1,1

ց
R2,1 → R2,2

ց ց
R3,1 → R3,2 → R3,3

ց ց ց
R4,1 → R4,2 → R4,3 → R4,4

...
...

...
...

ց ց ց ց
Rn,1 → Rn,2 → Rn,3 → Rn,4 · · · → Rn,n

Example 9.9. Use 6 levels of Romberg integration, with h1 = h = π/4, to
approximate the integral

I =

∫ π/4

0

tan xdx.

Solution. The following results are obtained by a simple Matlab program.

Romberg integration table:

0.39269908

0.35901083 0.34778141

0.34975833 0.34667417 0.34660035

0.34737499 0.34658054 0.34657430 0.34657388

0.34677428 0.34657404 0.34657360 0.34657359 0.34657359

0.34662378 0.34657362 0.34657359 0.34657359 0.34657359 0.34657359

�

9.9. Adaptive Quadrature Methods

Uniformly spaced composite rules that are exact for degree d polynomials are
efficient if the (d+1)st derivative f (d+1) is uniformly behaved across the interval of
integration [a, b]. However, if the magnitude of this derivative varies widely across
this interval, the error control process may result in an unnecessary number of
function evaluations. This is because the number n of nodes is determined by an
interval-wide derivative bound Md+1. In regions where f (d+1) is small compared
to this value, the subintervals are (possibly) much shorter than necessary. Adap-
tive quadrature methods address this problem by discovering where the integrand
is ill-behaved and shortening the subintervals accordingly.

We take Simpson’s rule as a typical example:

I =:

∫ b

a

f(x) dx = S(a, b) − h5

90
f (4)(ξ), 0 < ξ < b,

where

S(a, b) =
h

3
[f(a) + 4f(a + h) + f(b)], h =

b − a

2
.
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Figure 9.5. A fast varying function for adaptive quadrature.

The aim of adaptive quadrature is to take h large over regions where |f (4)(x)| is
small and take h small over regions where |f (4)(x)| is large to have a uniformly
small error. A simple way to estimate the error is to use h and h/2 as follows:

I = S(a, b) − h5

90
f (4)(ξ1), (9.11)

I = S

(
a,

a + b

2

)
+ S

(
a + b

2
, b

)
− 2

32

h5

90
f (4)(ξ2). (9.12)

Assuming that

f (4)(ξ2) ≈ f (4)(ξ1)

and subtracting the second expression for I from the first we have an expression
for the error term:

h5

90
f (4)(ξ1) ≈

16

15

[
S(a, b) − S

(
a,

a + b

2

)
− S

(
a + b

2
, b

)]
.

Putting this expression in (9.12), we obtain an estimate for the absolute error:
∣∣∣∣I − S

(
a,

a + b

2

)
− S

(
a + b

2
, b

)∣∣∣∣ ≈
1

15

∣∣∣∣S(a, b) − S

(
a,

a + b

2

)
− S

(
a + b

2
, b

)∣∣∣∣ .

If the right-hand side of this estimate is smaller than a given tolerance, then

S

(
a,

a + b

2

)
+ S

(
a + b

2
, b

)

is taken as a good approximation to the value of I.
The adaptive quadrature for Simpson’s rule is often better than the composite

Simpson rule. For example, in integrating the function

f(x) =
100

x2
sin

(
10

x

)
, 1 ≤ x ≤ 3,

shown in Fig. 9.5, with toleralance 10−4, the adaptive quadrature uses 23 subinter-
vals and requires 93 evaluations of f . On the other hand, the composite Simpson
rule uses a constant value of h = 1/88 and requires 177 evaluations of f . It is
seen from the figure that f varies quickly over the interval [1, 1.5]. The adaptive
quadrature needs 11 subintervals on the short interval [1, 1.5] and only 12 on the
longer interval [1.5, 3].
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The Matlab quadrature routines quad, quadl and dblquad are adaptive
routines.

Matlab’s adaptive Simpson’s rule quad and adaptive Newton–Cotes 8-panel
rule quad8 evaluate the integral

I =

∫ π/2

0

sinxdx

as follows.

>> v1 = quad(’sin’,0,pi/2)

v1 = 1.00000829552397

>> v2 = quad8(’sin’,0,pi/2)

v2 = 1.00000000000000

respectively, within a relative error of 10−3.

9.10. Gaussian Quadrature

The Gaussian Quadrature formulae are the most accurate integration for-
mulae for a given number of nodes. The n-point Gaussian Quadrature formula
approximate the integral of f(x) over the standardized interval −1 ≤ x ≤ 1 by
the formula ∫ 1

−1

f(x) dx ≈
n∑

i=1

wif(ti) (9.13)

where the nodes xi are the zeros of the Legendre polynomial Pn(x) of degree n.
The two-point Gaussian Quadrature formula is

∫ 1

−1

f(x) dx = f

(
− 1√

3

)
+ f

(
1√
3

)
.

The three-point Gaussian Quadrature formula is
∫ 1

−1

f(x) dx =
5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)
.

The nodes xi, weights wi and precision 2n− 1 of n points Gaussian Quadra-
tures, are listed in Table 9.3 for n = 1, 2, . . . , 5.

The error in the n-point formula is

En(f) =
2

(2n + 1)!

[
2n(n!)2

(2n)!

]2
f (2n)(ξ), −1 < ξ < 1.

This formula is therefore exact for polynomials of degree 2n − 1 or less.
Gaussian Quadratures are derived in Section 6.6 by means of the orthogonal-

ity relations of the Legendre polynomials. These quadratures can also be obtained
by means of the integrals of the Lagrange basis on −1 ≤ x ≤ 1 for the nodes xi

taken as the zeros of the Legendre polynomials:

wi =

∫ 1

−1

n∏

j=1,j 6=i

x − xj

xi − xj
dx.

Examples can be found in Section 6.6 and exercises in Exercises for Chapter 6.
In the applications, the interval [a, b] of integration is split into smaller inter-

vals and a Gaussian Quadrature is used on each subinterval with an appropriate
change of variable as in Example 6.11.
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Table 9.3. Nodes xi, weights wi and precision 2n−1 of n points
Gaussian quadratures.

n xi wi Precision 2n − 1

2 −1/
√

3 1 3

1/
√

3 1

3 −
√

3/5 5/9 5
0 8/9√
3/5 5/9

4 −0.861 136 311 6 0.347 854 845 1 7
−0.339 981 043 6 0.652 145 154 9

0.339 981 043 6 0.652 145 154 9
0.861 136 311 6 0.347 854 845 1

5 −0.906 179 845 9 0.236 926 885 1 9
−0.538 469 310 1 0.478 628 670 5

0 0,568 888 888 9
0.538 469 310 1 0.478 628 670 5
0.906 179 845 9 0.236 926 885 1



CHAPTER 10

Numerical Solution of Differential Equations

10.1. Initial Value Problems

Consider the first-order initial value problem:

y′ = f(x, y), y(x0) = y0. (10.1)

To find an approximation to the solution y(x) of (10.1) on the interval a ≤ x ≤ b,
we choose N + 1 distinct points, x0, x1, . . . , xN , such that a = x0 < x1 < x2 <
. . . < xN = b, and construct approximations yn to y(xn), n = 0, 1, . . . , N .

It is important to know whether or not a small perturbation of (10.1) shall
lead to a large variation in the solution. If this is the case, it is extremely unlikely
that we will be able to find a good approximation to (10.1). Truncation errors,
which occur when computing f(x, y) and evaluating the initial condition, can be
identified with perturbations of (10.1). The following theorem gives sufficient
conditions for an initial value problem to be well-posed .

Definition 10.1. Problem (10.1) is said to be well-posed in the sense of Ha-
damard if it has one, and only one, solution and any small perturbation of the
problem leads to a correspondingly small change in the solution.

Theorem 10.1. Let

D = {(x, y) : a ≤ x ≤ b and −∞ < y < ∞}.
If f(x, y) is continuous on D and satisfies the Lipschitz condition

|f(x, y1) − f(x, y2)| ≤ L|y1 − y2| (10.2)

for all (x, y1) and (x, y2) in D, where L is the Lipschitz constant, then the initial
value problem (10.1) is well-posed, that is, we are assuming that the problem sat-
isfies the Existence and Uniqueness Theorem requirements as seen in Chapter 1.

In the sequel, we shall assume that the conditions of Theorem 10.1 hold and
(10.1) is well-posed. Moreover, we shall suppose that f(x, y) has mixed partial
derivatives of arbitrary order.

In considering numerical methods for the solution of (10.1) we shall use the
following notation:

• h > 0 denotes the integration step size
• xn = x0 + nh is the n-th node
• y(xn) is the exact solution at xn

• yn is the numerical solution at xn

• fn = f(xn, yn) is the numerical value of f(x, y) at (xn, yn)

A function, g(x), is said to be of order p as x → x0, written g ∈ O(|x− x0|p)
if

|g(x)| < M |x − x0|p, M a constant,

217
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for all x near x0.

10.2. Euler’s and Improved Euler’s Methods

We begin with the simplest explicit method.

10.2.1. Euler’s method. To find an approximation to the solution y(x) of
(10.1) on the interval a ≤ x ≤ b, we choose N + 1 distinct points, x0, x1, . . . , xN ,
such that a = x0 < x1 < x2 < . . . < xN = b and set h = (xN − x0)/N . From
Taylor’s Theorem we get

y(xn+1) = y(xn) + y′(xn) (xn+1 − xn) +
y′′(ξn)

2
(xn+1 − xn)2

with ξn between xn and xn+1, n = 0, 1, . . . , N . Since y′(xn) = f(xn, y(xn)) and
xn+1 − xn = h, it follows that

y(xn+1) = y(xn) + f
(
xn, y(xn)

)
h +

y′′(ξn)

2
h2.

We obtain Euler’s method,

yn+1 = yn + hf(xn, yn), (10.3)

by deleting the term of order O(h2),

y′′(ξn)

2
h2,

called the local truncation error . This corresponds to making a piecewise lin-
ear approximation to the solution as we are assuming constant slope on each
subinterval [xi, xi+1], based on the left endpoint.

The algorithm for Euler’s method is as follows.

(1) Choose h such that N = (xN − x0)/h is an integer.
(2) Given y0, for n = 0, 1, . . . , N , iterate the scheme

yn+1 = yn + hf(x0 + nh, yn). (10.4)

Then, yn is as an approximation to y(xn).

Example 10.1. Use Euler’s method with h = 0.1 to approximate the solution
to the initial value problem

y′(x) = 0.2xy, y(1) = 1, (10.5)

on the interval 1 ≤ x ≤ 1.5.

Solution. We have

x0 = 1, xN = 1.5, y0 = 1, f(x, y) = 0.2xy.

Hence

xn = x0 + hn = 1 + 0.1n, N =
1.5 − 1

0.1
= 5,

and
yn+1 = yn + 0.1 × 0.2(1 + 0.1n)yn, with y0 = 1,

for n = 0, 1, . . . , 4. The numerical results are listed in Table 10.1. Note that the
differential equation in (10.5) is separable. The (unique) solution of (10.5) is

y(x) = e(0.1x2−0.1).

This formula has been used to compute the exact values y(xn) in the table. �
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Table 10.1. Numerical results of Example 10.1.

n xn yn y(xn) Absolute Relative
error error

0 1.00 1.0000 1.0000 0.0000 0.00
1 1.10 1.0200 1.0212 0.0012 0.12
2 1.20 1.0424 1.0450 0.0025 0.24
3 1.30 1.0675 1.0714 0.0040 0.37
4 1.40 1.0952 1.1008 0.0055 0.50
5 1.50 1.1259 1.1331 0.0073 0.64

Table 10.2. Numerical results of Example 10.2.

n xn yn y(xn) Absolute Relative
error error

0 1.00 1.0000 1.0000 0.0000 0.00
1 1.10 1.2000 1.2337 0.0337 2.73
2 1.20 1.4640 1.5527 0.0887 5.71
3 1.30 1.8154 1.9937 0.1784 8.95
4 1.40 2.2874 2.6117 0.3244 12.42
5 1.50 2.9278 3.4904 0.5625 16.12

The next example illustrates the limitations of Euler’s method. In the next
subsections, we shall see more accurate methods than Euler’s method.

Example 10.2. Use Euler’s method with h = 0.1 to approximate the solution
to the initial value problem

y′(x) = 2xy, y(1) = 1, (10.6)

on the interval 1 ≤ x ≤ 1.5.

Solution. As in the previous example, we have

x0 = 1, xN = 1.5, y0 = 1, xn = x0 + hn = 1 + 0.1n, N =
1.5 − 1

0.1
= 5.

With f(x, y) = 2xy, Euler’s method is

yn+1 = yn + 0.1 × 2(1 + 0.1n)yn, y0 = 1,

for n = 0, 1, 2, 3, 4. The numerical results are listed in Table 10.2. The relative
errors show that our approximations are not very good. �

Because Euler’s method is assuming constant slope on each subinterval, the
results are not very good in general.

Definition 10.2. The local truncation error of a method of the form

yn+1 = yn + h φ(xn, yn), (10.7)

is defined by the expression

τn+1 =
1

h

[
y(xn+1) − y(xn)

]
− φ(xn, y(xn)) for n = 0, 1, 2, . . . , N − 1.

The method (10.7) is of order k if |τj | ≤ M hk for some constant M and for all j.

An equivalent definition is found in Section 10.4
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h
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z = Mh / 2 + δ / h
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1/

Figure 10.1. Truncation and roundoff error curve as a function
of 1/h.

Example 10.3. The local truncation error of Euler’s method is

τn+1 =
1

h

[
y(xn+1) − y(xn)

]
− f

(
xn, y(xn)

)
=

h

2
y′′(ξn)

for some ξn between xn and xn+1. If

M = max
x0≤x≤xN

|y′′(x)|,

then |τn| ≤ h
2 M for all n. Hence, Euler’s method is of order one.

Remark 10.1. It is generally incorrect to say that by taking h sufficiently
small one can obtain any desired level of precision, that is, get yn as close to
y(xn) as one wants. As the step size h decreases, at first the truncation error
of the method decreases, but as the number of steps increases, the number of
arithmetic operations increases, and, hence, the roundoff errors increase as shown
in Fig. 10.1.

For instance, let yn be the computed value for y(xn) in (10.4). Set

en = y(xn) − yn, for n = 0, 1, . . . , N.

If

|e0| < δ0

and the precision in the computations is bounded by δ, then it can be shown that

|en| ≤
1

L

(
Mh

2
+

δ

h

)(
eL(xn−x0) − 1

)
+ δ0 eL(xn−x0),

where L is the Lipschitz constant defined in Theorem 10.1,

M = max
x0≤x≤xN

|y′′(x)|,

and h = (xN − x0)/N .
We remark that the expression

z(h) =
Mh

2
+

δ

h

first decreases and afterwards increases as 1/h increases, as shown in Fig. 10.1.
The term Mh/2 is due to the trunctation error and the term δ/h is due to the
roundoff errors.
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Table 10.3. Numerical results of Example 10.4.

n xn yP
n yC

n y(xn) Absolute Relative
error error

0 1.00 1.0000 1.0000 0.0000 0.00
1 1.10 1.200 1.2320 1.2337 0.0017 0.14
2 1.20 1.5479 1.5527 0.0048 0.31
3 1.30 1.9832 1.9937 0.0106 0.53
4 1.40 2.5908 2.6117 0.0209 0.80
5 1.50 3.4509 3.4904 0.0344 1.13

10.2.2. Improved Euler’s method. The improved Euler’s method takes
the average of the slopes at the left and right ends of each step. It is, here,
formulated in terms of a predictor and a corrector:

yP
n+1 = yC

n + hf(xn, yC
n ),

yC
n+1 = yC

n +
1

2
h
[
f(xn, yC

n ) + f(xn+1, y
P
n+1)

]
.

This method is of order 2.
Notice that the second formula or the corrector is an implicit function of

yn+1. However the formula has order two and will give better results than Euler’s
method and so we would like to use it. To get around the problem “we have to
know yn+1 to calculate yn+1”, we use Euler’s method to predict a value of yn+1

which is then plugged into the implicit formula to calculate a better or corrected
value.

Example 10.4. Use the improved Euler method with h = 0.1 to approximate
the solution to the initial value problem of Example 10.2.

y′(x) = 2xy, y(1) = 1,

1 ≤ x ≤ 1.5.

Solution. We have

xn = x0 + hn = 1 + 0.1n, n = 0, 1, . . . , 5.

The approximation yn to y(xn) is given by the predictor-corrector scheme

yC
0 = 1,

yP
n+1 = yC

n + 0.2 xn yn,

yC
n+1 = yC

n + 0.1
(
xn yC

n + xn+1 yP
n+1

)

for n = 0, 1, . . . , 4. The numerical results are listed in Table 10.3. These results
are much better than those listed in Table 10.2 for Euler’s method. �

We need to develop methods of order greater than one, which, in general, are
more precise than Euler’s method.

10.3. Low-Order Explicit Runge–Kutta Methods

Runge–Kutta methods are one-step multistage methods.
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10.3.1. Second-order Runge–Kutta method. Two-stage explicit Runge–
Kutta methods are given by the formula (left) and, conveniently, in the form of
a Butcher tableau (right):

k1 = hf(xn, yn)

k2 = hf (xn + c2h, yn + a21k1)

yn+1 = yn + b1k1 + b2k2

c A
k1 0 0
k2 c2 a21 0

yn+1 bT b1 b2

In a Butcher tableau, the components of the vector c are the increments of xn and
the entries of the matrix A are the multipliers of the approximate slopes which,
after multiplication by the step size h, increments yn. The components of the
vector b are the weights in the combination of the intermediary values kj . The
left-most column of the tableau is added here for the reader’s convenience.

To attain second order, c, A and b have to be chosen judiciously. We proceed
to derive two-stage second-order Runge-Kutta methods.

By Taylor’s Theorem, we have

y(xn+1) = y(xn) + y′(xn)(xn+1 − xn) +
1

2
y′′(xn)(xn+1 − xn)2

+
1

6
y′′′(ξn)(xn+1 − xn)3 (10.8)

for some ξn between xn and xn+1 and n = 0, 1, . . . , N − 1. From the differential
equation

y′(x) = f
(
x, y(x)

)
,

and its first total derivative with respect to x, we obtain expressions for y′(xn)
and y′′(xn),

y′(xn) = f
(
xn, y(xn)

)
,

y′′(xn) =
d

dx
f
(
x, y(x)

)∣∣
x=xn

= fx

(
xn, y(xn)

)
+ fy

(
xn, y(xn)

)
f
(
xn, y(xn)

)
.

Therefore, putting h = xn+1 − xn and substituting these expressions in (10.8),
we have

y(xn+1) = y(xn) + f
(
xn, y(xn)

)
h

+
1

2

[
fx

(
xn, y(xn)

)
+ fy

(
xn, y(xn)

)
f
(
xn, y(xn)

)]
h2

+
1

6
y′′′(ξn)h3 (10.9)

for n = 0, 1, . . . , N − 1.
Our goal is to replace the expression

f
(
xn, y(xn)

)
h +

1

2

[
fx

(
xn, y(xn)

)
+ fy

(
xn, y(xn)

)
f
(
xn, y(xn)

)]
h + O(h2)

by an expression of the form

af
(
xn, y(xn)

)
h + bf

(
xn + αh, y(xn) + βhf(xn, y(xn)

)
h + O(h2). (10.10)

The constants a, b, α and β are to be determined. This last expression is simpler
to evaluate than the previous one since it does not involve partial derivatives.
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Using Taylor’s Theorem for functions of two variables, we get

f
(
xn + αh, y(xn) + βhf(xn, y(xn))

)
= f

(
xn, y(xn)

)
+ αhfx

(
xn, y(xn)

)

+ βhf
(
xn, y(xn)

)
fy

(
xn, y(xn)

)
+ O(h2).

In order for the expressions (10.8) and (10.9) to be equal to order h3, we must
have

a + b = 1, αb = 1/2, βb = 1/2.

Thus, we have three equations in four unknowns. This gives rise to a one-
parameter family of solutions. Identifying the parameters:

c1 = α, a21 = β, b1 = a, b2 = b,

we obtain second-order Runge–Kutta methods.
Here are some two-stage second-order Runge–Kutta methods.
The Improved Euler’s method can be written in the form of a two-stage

explicit Runge–Kutta method (left) with its Butcher tableau (right):

k1 = hf(xn, yn)

k2 = hf (xn + h, yn + k1)

yn+1 = yn +
1

2
(k1 + k2)

c A
k1 0 0
k2 1 1 0

yn+1 bT 1/2 1/2

This is Heun’s method of order 2.
Other two-stage second-order methods are the mid-point method:

k1 = hf(xn, yn)

k2 = hf

(
xn +

1

2
h, yn +

1

2
k1

)

yn+1 = yn + k2

c A
k1 0 0
k2 1/2 1/2 0

yn+1 bT 0 1

and Heun’s method:

k1 = hf(xn, yn)

k2 = hf

(
xn +

2

3
h, yn +

2

3
k1

)

yn+1 = yn +
1

4
k1 +

3

4
k2

c A
k1 0 0
k2 2/3 2/3 0

yn+1 bT 1/4 3/4

10.3.2. Third-order Runge–Kutta method. We list two common three-
stage third-order Runge–Katta methods in their Butcher tableau, namely Heun’s
third-order formula and Kutta’s third-order rule.

c A
k1 0 0
k2 1/3 1/3 0
k3 2/3 0 2/3 0

yn+1 bT 1/4 0 3/4

Butcher tableau of Heun’s third-order formula.
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c A
k1 0 0
k2 1/2 1/2 0
k3 1 −1 2 0

yn+1 bT 1/6 2/3 1/6

Butcher tableau of Kutta’s third-order rule.

10.3.3. Fourth-order Runge–Kutta method. The fourth-order Runge–
Kutta method (also known as the classic Runge–Kutta method or sometimes
just as the Runge–Kutta method) is very popular amongst the explicit one-step
methods.

By Taylor’s Theorem, we have

y(xn+1) = y(xn)+y′(xn)(xn+1−xn)+
y′′(xn)

2!
(xn+1−xn)2+

y(3)(xn)

3!
(xn+1−xn)3

+
y(4)(xn)

4!
(xn+1 − xn)4 +

y(5)(ξn)

5!
(xn+1 − xn)5

for some ξn between xn and xn+1 and n = 0, 1, . . . , N − 1. To obtain the
fourth-order Runge–Kutta method, we can proceed as we did for the second-
order Runge–Kutta methods. That is, we seek values of a, b, c, d, αj and βj such
that

y′(xn)(xn+1 − xn) +
y′′(xn)

2!
(xn+1 − xn)2 +

y(3)(xn)

3!
(xn+1 − xn)3

+
y(4)(xn)

4!
(xn+1 − xn)4 + O(h5)

is equal to

ak1 + bk2 + ck3 + dk4 + O(h5),

where

k1 = hf(xn, yn),

k2 = hf(xn + α1 h, yn + β1k1),

k3 = hf(xn + α2 h, yn + β2k2),

k4 = hf(xn + α3 h, yn + β3k3).

This follows from the relations

xn+1 − xn = h,

y′(xn) = f(xn, y(xn)),

y′′(xn) =
d

d x
f(x, y(x))|t=xn

= fx(xn, y(xn)) + fy(xn, y(xn)) f(xn, y(xn)), . . . ,

and Taylor’s Theorem for functions of two variables. The lengthy computation is
omitted.

The (classic) four-stage Runge–Kutta method of order 4 given by its formula
(left) and, conveniently, in the form of a Butcher tableau (right).
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Table 10.4. Numerical results for Example 10.5.

xn yn y(xn) Absolute Relative
error error

1.00 1.0000 1.0000 0.0000 0.0
1.10 1.2337 1.2337 0.0000 0.0
1.20 1.5527 1.5527 0.0000 0.0
1.30 1.9937 1.9937 0.0000 0.0
1.40 2.6116 2.6117 0.0001 0.0
1.50 3.4902 3.4904 0.0002 0.0

k1 = hf(xn, yn)

k2 = hf

(
xn +

1

2
h, yn +

1

2
k1

)

k3 = hf

(
xn +

1

2
h, yn +

1

2
k2

)

k4 = hf (xn + h, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

c A
k1 0 0
k2 1/2 1/2 0
k3 1/2 0 1/2 0
k4 1 0 0 1 0

yn+1 bT 1/6 2/6 2/6 1/6

Essentially, the method is making four ∆y estimates based on slopes at the
left end, midpoint and right end of the subinterval. A weighted average of these
∆y estimates, the two midpoint estimates weighted more than those at the left
and right ends, is added to the previous y value.

The next example shows that the fourth-order Runge–Kutta method yields
better results for (10.6) than the previous methods.

Example 10.5. Use the fourth-order Runge–Kutta method with h = 0.1 to
approximate the solution to the initial value problem of Example 10.2,

y′(x) = 2xy, y(1) = 1,

on the interval 1 ≤ x ≤ 1.5.

Solution. We have f(x, y) = 2xy and

xn = 1.0 + 0.1n, for n = 0, 1, . . . , 5.

With the starting value y0 = 1.0, the approximation yn to y(xn) is given by the
scheme

yn+1 = yn +
1

6
(k1 + 2 k2 + 2 k3 + k4)

where

k1 = 0.1 × 2(1.0 + 0.1n)yn,

k2 = 0.1 × 2(1.05 + 0.1n)(yn + k1/2),

k3 = 0.1 × 2(1.05 + 0.1n)(yn + k2/2),

k4 = 0.1 × 2(1.0 + 0.1(n + 1))(yn + k3),

and n = 0, 1, 2, 3, 4. The numerical results are listed in Table 10.4. These results
are much better than all those previously obtained. �
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Example 10.6. Consider the initial value problem

y′ = (y − x − 1)2 + 2, y(0) = 1.

Compute y4 by means of Runge–Kutta’s method of order 4 with step size h = 0.1.

Solution. The solution is given in tabular form.

Exact value Global error
n xn yn y(xn) y(xn) − yn

0 0.0 1.000 000 000 1.000 000 000 0.000 000 000
1 0.1 1.200 334 589 1.200 334 672 0.000 000 083
2 0.2 1.402 709 878 1.402 710 036 0.000 000 157
3 0.3 1.609 336 039 1.609 336 250 0.000 000 181
4 0.4 1.822 792 993 1.822 793 219 0.000 000 226

�

Example 10.7. Use the Runge–Kutta method of order 4 with h = 0.01 to
obtain a six-decimal approximation for the initial value problem

y′ = x + arctany, y(0) = 0,

on 0 ≤ x ≤ 1. Print every tenth value and plot the numerical solution.

Solution. The Matlab numeric solution.— The M-file exp5_7 for Ex-
ample 10.7 is

function yprime = exp5_7(x,y); % Example 5.7.

yprime = x+atan(y);

The Runge–Kutta method of order 4 is applied to the given differential equa-
tion:

clear

h = 0.01; x0= 0; xf= 1; y0 = 0;

n = ceil((xf-x0)/h); % number of steps

%

count = 2; print_time = 10; % when to write to output

x = x0; y = y0; % initialize x and y

output = [0 x0 y0];

for i=1:n

k1 = h*exp5_7(x,y);

k2 = h*exp5_7(x+h/2,y+k1/2);

k3 = h*exp5_7(x+h/2,y+k2/2);

k4 = h*exp5_7(x+h,y+k3);

z = y + (1/6)*(k1+2*k2+2*k3+k4);

x = x + h;

if count > print_time

output = [output; i x z];

count = count - print_time;

end

y = z;

count = count + 1;

end
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Figure 10.2. Graph of numerical solution of Example 10.7.

output

save output %for printing the graph

The command output prints the values of n, x, and y.

n x y

0 0 0

10.0000 0.1000 0.0052

20.0000 0.2000 0.0214

30.0000 0.3000 0.0499

40.0000 0.4000 0.0918

50.0000 0.5000 0.1486

60.0000 0.6000 0.2218

70.0000 0.7000 0.3128

80.0000 0.8000 0.4228

90.0000 0.9000 0.5531

100.0000 1.0000 0.7040

The following commands print the output.

load output;

subplot(2,2,1); plot(output(:,2),output(:,3));

title(’Plot of solution y_n for Example 5.7’);

xlabel(’x_n’); ylabel(’y_n’);

�

In the next example, the Runge–Kutta method of order 4 is used to solve the
van der Pol system of two equations. This system is also solved by means of the
Matlab ode23 code and the graphs of the two solutions are compared.

Example 10.8. Use the Runge–Kutta method of order 4 with fixed step size
h = 0.1 to solve the second-order van der Pol equation

y′′ +
(
y2 − 1

)
y′ + y = 0, y(0) = 0, y′(0) = 0.25, (10.11)
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on 0 ≤ x ≤ 20, print every tenth value, and plot the numerical solution. Also,
use the ode23 code to solve (10.11) and plot the solution.

Solution. We first rewrite problem (10.11) as a system of two first-order
differential equations by putting y1 = y and y2 = y′

1,

y′
1 = y2,

y′
2 = y2

(
1 − y2

1

)
− y1,

with initial conditions y1(0) = 0 and y2(0) = 0.25.
Our Matlab program will call the Matlab function M-file exp1vdp.m:

function yprime = exp1vdp(t,y); % Example 5.8.

yprime = [y(2); y(2).*(1-y(1).^2)-y(1)]; % van der Pol system

The following program applies the Runge–Kutta method of order 4 to the
differential equation defined in the M-file exp1vdp.m:

clear

h = 0.1; t0= 0; tf= 21; % step size, initial and final times

y0 = [0 0.25]’; % initial conditions

n = ceil((xf-t0)/h); % number of steps

count = 2; print_control = 10; % when to write to output

t = t0; y = y0; % initialize t and y

output = [t0 y0’]; % first row of matrix of printed values

w = [t0, y0’]; % first row of matrix of plotted values

for i=1:n

k1 = h*exp1vdp(x,y); k2 = h*exp1vdp(x+h/2,y+k1/2);

k3 = h*exp1vdp(x+h/2,y+k2/2); k4 = h*exp1vdp(x+h,y+k3);

z = y + (1/6)*(k1+2*k2+2*k3+k4);

t = t + h;

if count > print_control

output = [output; t z’]; % augmenting matrix of printed values

count = count - print_control;

end

y = z;

w = [w; t z’]; % augmenting matrix of plotted values

count = count + 1;

end

[output(1:11,:) output(12:22,:)] % print numerical values of solution

save w % save matrix to plot the solution

The command output prints the values of t, y1, and y2.

t y(1) y(2) t y(1) y(2)

0 0 0.2500 11.0000 -1.9923 -0.2797

1.0000 0.3586 0.4297 12.0000 -1.6042 0.7195

2.0000 0.6876 0.1163 13.0000 -0.5411 1.6023

3.0000 0.4313 -0.6844 14.0000 1.6998 1.6113

4.0000 -0.7899 -1.6222 15.0000 1.8173 -0.5621

5.0000 -1.6075 0.1456 16.0000 0.9940 -1.1654
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Figure 10.3. Graph of numerical solution of Example 10.8.

6.0000 -0.9759 1.0662 17.0000 -0.9519 -2.6628

7.0000 0.8487 2.5830 18.0000 -1.9688 0.3238

8.0000 1.9531 -0.2733 19.0000 -1.3332 0.9004

9.0000 1.3357 -0.8931 20.0000 0.1068 2.2766

10.0000 -0.0939 -2.2615 21.0000 1.9949 0.2625

The following commands graph the solution.

load w % load values to produce the graph

subplot(2,2,1); plot(w(:,1),w(:,2)); % plot RK4 solution

title(’RK4 solution y_n for Example 5.8’); xlabel(’t_n’); ylabel(’y_n’);

We now use the ode23 code. The command

load w % load values to produce the graph

v = [0 21 -3 3 ]; % set t and y axes

subplot(2,2,1);

plot(w(:,1),w(:,2)); % plot RK4 solution

axis(v);

title(’RK4 solution y_n for Example 5.8’); xlabel(’t_n’); ylabel(’y_n’);

subplot(2,2,2);

[t,y] = ode23(’exp1vdp’,[0 21], y0);

plot(x,y(:,1)); % plot ode23 solution

axis(v);

title(’ode23 solution y_n for Example 5.8’); xlabel(’t_n’); ylabel(’y_n’);

The code ode23 produces three vectors, namely t of (144 unequally-spaced) nodes
and corresponding solution values y(1) and y(2), respectively. The left and right
parts of Fig. 9.3 show the plots of the solutions obtained by RK4 and ode23,
respectively. It is seen that the two graphs are identical. �

10.4. Convergence of Numerical Methods

In this and the next sections, we introduce the concepts of convergence, con-
sistency and stability of numerical ode solvers.
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The numerical methods considered in this chapter can be written in the gen-
eral form

k∑

n=0

αjyn+j = hϕf (yn+k, yn+k−1, . . . , yn, xn; h). (10.12)

where the subscript f to ϕ indicates the dependance of ϕ on the function f(x, y)
of (10.1). We impose the condition that

ϕf≡0(yn+k, yn+k−1, . . . , yn, xn; h) ≡ 0,

and note that the Lipschitz continuity of ϕ with respect to yn+j, n = 0, 1, . . . , k,
follows from the Lipschitz continuity (10.2) of f .

Definition 10.3. Method (10.12) with appropriate starting values is said to
be convergent if, for all initial value problems (10.1), we have

yn − y(xn) → 0 as h ↓ 0,

where nh = x for all x ∈ [a, b].

The local truncation error of (10.12) is the residual

Rn+k :=

k∑

n=0

αjy(xn+j) − hϕf (y(xn+k), y(xn+k−1), . . . , y(xn), xn; h). (10.13)

Definition 10.4. Method (10.12) with appropriate starting values is said to
be consistent if, for all initial value problems (10.1), we have

1

h
Rn+k → 0 as h ↓ 0,

where nh = x for all x ∈ [a, b].

Definition 10.5. Method (10.12) is zero-stable if the roots of the character-
istic polynomial

k∑

n=0

αjr
n+j

lie inside or on the boundary of the unit disk, and those on the unit circle are
simple.

We finally can state the following fundamental theorem.

Theorem 10.2. A method is convergent as h ↓ 0 if and only if it is zero-stable
and consistent.

All numerical methods considered in this chapter are convergent.

10.5. Absolutely Stable Numerical Methods

We now turn attention to the application of a consistent and zero-stable
numerical solver with small but nonvanishing step size.

For n = 0, 1, 2, . . ., let yn be the numerical solution of (10.1) at x = xn, and
y[n](xn+1) be the exact solution of the local problem:

y′ = f(x, y), y(xn) = yn. (10.14)

A numerical method is said to have local error ,

εn+1 = yn+1 − y[n](xn+1). (10.15)
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If we assume that y(x) ∈ Cp+1[x0, xN ] and

εn+1 ≈ Cp+1h
p+1
n+1y

(p+1)(xn) + O(hp+2
n+1), (10.16)

then we say that the local error is of order p+1 and Cp+1 is the error constant of
the method. For consistent and zero-stable methods, the global error is of order
p whenever the local error is of order p + 1. In such case, we say that the method
is of order p. We remark that a method of order p ≥ 1 is consistent according to
Definition 10.4.

Let us now apply the solver (10.12), with its small nonvanishing parameter
h, to the linear test equation

y′ = λy, ℜλ < 0. (10.17)

The region of absolute stability, R, is that region in the complex ĥ-plane, where

ĥ = hλ, for which the numerical solution yn of (10.17) goes to zero, as n goes to
infinity.

The region of absolute stability of the explicit Euler method is the disk of
radius 1 and center (−1, 0), see curve k = 1 in Fig. 10.7. The region of stability
of the implicit backward Euler method is the outside of the disk of radius 1 and
center (1, 0), hence it contains the left half-plane, see curve k = 1 in Fig. 10.10.

The region of absolute stability, R, of an explicit method is very roughly a
disk or cardioid in the left half-plane (the cardioid overlaps with the right half-
plane with a cusp at the origin). The boundary of R cuts the real axis at α,
where −∞ < α < 0, and at the origin. The interval [α, 0] is called the interval of
absolute stability. For methods with real coefficients, R is symmetric with respect
to the real axis. All methods considered in this work have real coefficients; hence
Figs. 10.7, 10.8 and 10.10, below, show only the upper half of R.

The region of stability, R, of implicit methods extends to infinity in the left
half-plane, that is α = −∞. The angle subtended at the origin by R in the left
half-plane is usually smaller for higher order methods, see Fig. 10.10.

If the region R does not include the whole negative real axis, that is, −∞ <
α < 0, then the inclusion

hλ ∈ R

restricts the step size:

α ≤ hℜλ =⇒ 0 < h ≤ α

ℜλ
.

In practice, we want to use a step size h small enough to ensure accuracy of the
numerical solution as implied by (10.15)–(10.16), but not too small.

10.6. Stability of Runge–Kutta Methods

There are stable s-stage explicit Runge-Kutta methods of order p = s for
s = 1, 2, 3, 4. The minimal number of stages of a stable explicit Runge-Kutta
method of order 5 is 6.

Applying a Runge-Kutta method to the test equation,

y′ = λy, ℜλ < 0,

with solution y(x) → 0 as t → ∞, one obtains a one-step difference equation of
the form

yn+1 = Q(ĥ)yn, ĥ = hλ,
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Figure 10.4. Region of absolute stability of s-stage explicit
Runge–Kutta methods of order k = s.

where Q(ĥ) is the stability function of the method. We see that yn → 0 as n → ∞
if and only if

|Q(ĥ)| < 1, (10.18)

and the method is absolutely stable for those values of ĥ in the complex plane
for which (10.18) holds; those values form the region of absolute stability of the
method. It can be shown that the stability function of explicit s-stage Runge-
Kutta methods of order p = s, s = 1, 2, 3, 4, is

R(ĥ) =
yn+1

yn
= 1 + ĥ +

1

2!
ĥ2 + · · · + 1

s!
ĥs.

The regions of absolute stability, R, of s-stage explicit Runge–Kutta methods of
order k = s, for s = 1, 2, 3, 4, are the interiors of the closed regions whose upper
halves are shown in Fig. 10.4. The left-most point α of R is −2, −2, 2.51 and
−2.78 for the methods of order s = 1, 2, 3 and 4, respectively

Fixed stepsize Runge–Kutta methods of order 1 to 5 are implemented in the
following Matlab function M-files which are found in
ftp://ftp.cs.cornell.edu/pub/cv.

function [tvals,yvals] = FixedRK(fname,t0,y0,h,k,n)

%

% Produces approximate solution to the initial value problem

%

% y’(t) = f(t,y(t)) y(t0) = y0

%

% using a strategy that is based upon a k-th order

% Runge-Kutta method. Stepsize is fixed.

%

% Pre: fname = string that names the function f.

% t0 = initial time.

% y0 = initial condition vector.

% h = stepsize.

% k = order of method. (1<=k<=5).

% n = number of steps to be taken,

%
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% Post: tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(:j) = approximate solution at t = tvals(j), j=1:n+1

%

tc = t0;

yc = y0;

tvals = tc;

yvals = yc;

fc = feval(fname,tc,yc);

for j=1:n

[tc,yc,fc] = RKstep(fname,tc,yc,fc,h,k);

yvals = [yvals yc ];

tvals = [tvals tc];

end

function [tnew,ynew,fnew] = RKstep(fname,tc,yc,fc,h,k)

%

% Pre: fname is a string that names a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%

% fc = f(tc,yc).

%

% h is the time step.

%

% k is the order of the Runge-Kutta method used, 1<=k<=5.

%

% Post: tnew=tc+h, ynew is an approximate solution at t=tnew, and

% fnew = f(tnew,ynew).

if k==1

k1 = h*fc;

ynew = yc + k1;

elseif k==2

k1 = h*fc;

k2 = h*feval(fname,tc+h,yc+k1);

ynew = yc + (k1 + k2)/2;

elseif k==3

k1 = h*fc;

k2 = h*feval(fname,tc+(h/2),yc+(k1/2));

k3 = h*feval(fname,tc+h,yc-k1+2*k2);

ynew = yc + (k1 + 4*k2 + k3)/6;

elseif k==4

k1 = h*fc;

k2 = h*feval(fname,tc+(h/2),yc+(k1/2));

k3 = h*feval(fname,tc+(h/2),yc+(k2/2));
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k4 = h*feval(fname,tc+h,yc+k3);

ynew = yc + (k1 + 2*k2 + 2*k3 + k4)/6;

elseif k==5

k1 = h*fc;

k2 = h*feval(fname,tc+(h/4),yc+(k1/4));

k3 = h*feval(fname,tc+(3*h/8),yc+(3/32)*k1

+(9/32)*k2);

k4 = h*feval(fname,tc+(12/13)*h,yc+(1932/2197)*k1

-(7200/2197)*k2+(7296/2197)*k3);

k5 = h*feval(fname,tc+h,yc+(439/216)*k1

- 8*k2 + (3680/513)*k3 -(845/4104)*k4);

k6 = h*feval(fname,tc+(1/2)*h,yc-(8/27)*k1

+ 2*k2 -(3544/2565)*k3 + (1859/4104)*k4 - (11/40)*k5);

ynew = yc + (16/135)*k1 + (6656/12825)*k3 +

(28561/56430)*k4 - (9/50)*k5 + (2/55)*k6;

end

tnew = tc+h;

fnew = feval(fname,tnew,ynew);

10.7. Embedded Pairs of Runge–Kutta Methods

Thus far, we have only considered a constant step size h. In practice, it is
advantageous to let h vary so that h is taken larger when y(x) does not vary
rapidly and smaller when y(x) changes rapidly. We turn to this problem.

Embedded pairs of Runge–Kutta methods of orders p and p+ 1 have built-in
local error and step-size controls by monitoring the difference between the higher
and lower order solutions, yn+1 − ŷn+1. Some pairs include an interpolant which
is used to interpolate the numerical solution between the nodes of the numerical
solution and also, in some cases, to control the step-size.

10.7.1. Matlab’s four-stage RK pair ode23. The code ode23 consists
of a four-stage pair of embedded explicit Runge–Kutta methods of orders 2 and 3
with error control. It advances from yn to yn+1 with the third-order method (so
called local extrapolation) and controls the local error by taking the difference
between the third-order and the second-order numerical solutions. The four stages
are:

k1 = h f(xn, yn),

k2 = h f(xn + (1/2)h, yn + (1/2)k1),

k3 = h f(xn + (3/4)h, yn + (3/4)k2),

k4 = h f(xn + h, yn + (2/9)k1 + (1/3)k2 + (4/9)k3),

The first three stages produce the solution at the next time step:

yn+1 = yn +
2

9
k1 +

1

3
k2 +

4

9
k3,

and all four stages give the local error estimate:

E = − 5

72
k1 +

1

12
k2 +

1

9
k3 −

1

8
k4.
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However, this is really a three-stage method since the first step at xn+1 is the

same as the last step at xn, that is k
[n+1]
1 = k

[n]
4 . Such methods are called FSAL

methods.
The natural interpolant used in ode23 is the two-point Hermite polyno-

mial of degree 3 which interpolates yn and f(xn, yn) at x = xn, and yn+1 and
f(xn+1, xn+1) at t = xn+1.

Example 10.9. Use Matlab’s four-stage FSAL ode23 method with h = 0.1
to approximate y(0.1) and y(0.2) to 5 decimal places and estimate the local error
for the initial value problem

y′ = xy + 1, y(0) = 1.

Solution. The right-hand side of the differential equation is

f(x, y) = xy + 1.

With n = 0:

k1 = 0.1 × 1 = 0.1

k2 = 0.1 × (0.05 × 1.05 + 1) = 0.105 25

k3 = 0.1 × (0.75 × 1.078 937 5 + 1) = 0.108 092 031 25

k4 = 0.1 × (0.1 × 1.105 346 458 333 33+ 1) = 0.111 053 464 583 33

y1 = 1.105 346 458 333 33

The estimate of the local error is

Local error estimate = −4.506 848 958 333 448e− 05

With n = 1:

k1 = 0.111 053 464 583 33

k2 = 0.117 413 097 859 37

k3 = 0.120 884 609 930 24

k4 = 0.124 457 783 972 15

y2 = 1.222 889 198 607 30

The estimate of the local error is

Local error estimate = −5.322 100 094 209 102e− 05

To use the numeric Matlab command ode23 to solve and plot the given initial
value problem on [0, 1], one writes the function M-file exp5_9.m:

function yprime = exp5_9(x,y)

yprime = x.*y+1;

and use the commands

clear

xspan = [0 1]; y0 = 1; % xspan and initial value

[x,y] = ode23(’exp5_9’,xspan,y0);

subplot(2,2,1); plot(x,y); xlabel(’x’); ylabel(’y’);
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Figure 10.5. Graph of numerical solutions of Example 10.9.

title(’Solution to equation of Example 5.9’);

print -deps2 Figexp5_9 % print figure to file Fig.exp5.9

�

The Matlab solver ode23 is an implementation of the explicit Runge–Kutta
(2,3) pair of Bogacki and Shampine called BS23. It uses a “free” interpolant of
order 3. Local extrapolation is done, that is, the higher-order solution, namely of
order 3, is used to avance the solution.

10.7.2. Seven-stage Dormand–Prince pair DP(5,4)7M with inter-
polant. The seven-stage Dormand–Prince pair DP(5,4)7M with local error es-
timate and interpolant is presented in a Butcher tableau. The number 5 in the
designation DP(5,4)7M means that the solution is advanced with the solution
yn+1 of order five (a procedure called local extrapolation). The number 4 means
that the solution ŷn+1 of order four is used to obtain the local error estimate by
means of the difference yn+1 − ŷn+1. In fact, ŷn+1 is not computed; rather the

coefficients in the line bT − b̂T are used to obtain the local error estimate. The
number 7 means that the method has seven stages. The letter M means that the
constant C6 in the top-order error term has been minimized, while maintaining
stability. Six stages are necessary for the method of order 5. The seventh stage is
necessary to have an interpolant. The last line of the tableau is used to produce
an interpolant.
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Figure 10.6. Region of absolute stability of the Dormand-
Prince pair DP(5,4)7M.

c A
k1 0 0
k2

1
5

1
5 0

k3
3
10

3
40

9
40 0

k4
4
5

44
45 − 56

15
32
9 0

k5
8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0

k6 1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656 0

k7 1 35
384 0 500

1113
125
192 − 2187

6784
11
84

ŷn+1 b̂T 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

yn+1 bT 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

bT − b̂T 71
57 600 0 − 71

16 695
71

1 920 − 17 253
339 200

22
525 − 1

40

yn+0.5
5783653
57600000 0 466123

1192500 − 41347
1920000

16122321
339200000 − 7117

20000
183

10000
(10.19)

Seven-stage Dormand–Prince pair DP(5,4)7M of order 5 and 4.

This seven-stage FSAL method reduces, in practice, to a six-stage method since

k
[n+1]
1 = k

[n]
7 ; in fact the row vector bT is the same as the 7-th line corresponding

to k7.
The interval of absolute stability of the pair DP(5,4)7M is approximately

(−3.3, 0) (see Fig. 10.6).
One notices that the matrix A in the Butcher tableau of an explicit Rung–

Kutta method is strictly lower triangular. Semi-explicit methods have a lower
triangular matrix. Otherwise, the method is implicit. Solving semi-explicit meth-
ods for the vector solution yn+1 of a system is much cheaper than solving implicit
methods.

Runge–Kutta methods constitute a clever and sensible idea. The unique
solution of a well-posed initial value problem is a single curve in Rn+1, but due
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to truncation and roundoff error, any numerical solution is, in fact, going to
wander off that integral curve, and the numerical solution is inevitably going to
be affected by the behavior of neighboring curves. Thus, it is the behavior of the
family of integral curves, and not just that of the unique solution curve, that is of
importance. Runge–Kutta methods deliberately try to gather information about
this family of curves, as it is most easily seen in the case of explicit Runge–Kutta
methods.

The Matlab solver ode45 is an implementation of the explicit Runge–Kutta
(5,4) pair of Dormand and Prince called variously RK5(4)7FM, DOPRI5, DP(4,5)
and DP54. It uses a “free” interpolant of order 4 communicated privately by
Dormand and Prince. Local extrapolation is done.

Details on Matlab solvers ode23, ode45 and other solvers can be found in
The MATLAB ODE Suite, L. F. Shampine and M. W. Reichelt, SIAM Journal
on Scientific Computing, 18(1), 1997.

10.7.3. Six-stage Runge–Kutta–Fehlberg pair RKF(4,5). The six-stage
Runge–Kutta–Fehlberg pair RKF(4,5) with local error estimate uses a method of
order 4 to advance the numerical value from yn to yn+1, and a method of order
5 to obtain the auxiliary value ŷn+1 which serves in computing the local error
by means of the difference yn+1 − ŷn+1. We present this method in a Butcher
tableau. The estimated local error is obtained from the last line. The method of
order 4 minimizes the local error.

k1 0 0
k2

1
4

1
4 0

k3
3
8

3
32

9
32 0

k4
12
13

1932
2197 − 7200

2197
7296
2197 0

k5 1 439
216 −8 3680

513 − 845
4104 0

k6
1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40 0

2197
4104 − 1

5 0

ŷn+1 b̂T 16
135 0 6656

12825
28561
56430 − 9

50
2
55

b̂T − bT 1
360 0 − 128

4275 − 2197
75240

1
50

2
55

(10.20)

Six-stage Runge–Kutta–Fehlberg pair RKF(4,5) of order 4 and 5.

The interval of absolute stability of the pair RKF(4,5) is approximately
(−3.78, 0).

The pair RKF45 of order four and five minimizes the error constant C5 of the
lower order method which is used to advance the solution from yn to yn+1, that
is, without using local extrapolation. The algorithm follows.

Algorithm 10.1. Let y0 be the initial condition. Suppose that the approx-
imation yn to y(xn) has been computed and satisfies |y(xn) − yn| < ǫ where ǫ is
the desired precision. Let h > 0.

(1) Compute two approximations for yn+1: one using the fourth-order method

yn+1 = yn +

(
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5

)
, (10.21)
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and the second using the fifth-order method,

ŷj+1 = yn +

(
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6

)
, (10.22)

where

k1 = hf(xn, yn),

k2 = hf(xn + h/4, yn + k1/4),

k3 = hf(xn + 3h/8, yn + 3k1/32 + 9k2/32),

k4 = hf(xn + 12h/13, yn + 1932k1/2197− 7200k2/2197 + 7296k3/2197),

k5 = hf(xn + h, yn + 439k1/216 − 8k2 + 3680k3/513 + 845k4/4104),

k6 = hf(xn + h/2, yn − 8k1/27 + 2k2 + 3544k3/2565 + 1859k4/4104− 11k5/40).

(2) If |ŷj+1 − yn+1| < ǫh, accept yn+1 as the approximation to y(xn+1).
Replace h by qh where

q =
[
ǫh/(2|ŷj+1 − yn+1|)

]1/4

and go back to step (1) to compute an approximation for yj+2.
(3) If |ŷj+1 − yn+1| ≥ ǫh, replace h by qh where

q =
[
ǫh/(2|ŷj+1 − yn+1|)

]1/4

and go back to step (1) to compute the next approximation for yn+1.

One can show that the local truncation error for (10.21) is approximately

|ŷj+1 − yn+1|/h.

At step (2), one requires that this error be smaller than ǫh in order to get |y(xn)−
yn| < ǫ for all j (and in particular |y(xN ) − yf | < ǫ). The formula to compute q
in (2) and (3) (and hence a new value for h) is derived from the relation between
the local truncation errors of (10.21) and (10.22).

RKF(4,5) overestimate the error in the order-four solution because its local
error constant is minimized. The next method, RKV, corrects this fault.

10.7.4. Eight-stage Runge–Kutta–Verner pair RKV(5,6). The eight-
stage Runge–Kutta–Verner pair RKV(5,6) of order 5 and 6 is presented in a
Butcher tableau. Note that 8 stages are necessary to get order 6. The method
attempts to keep the global error proportional to a user-specified tolerance. It is
efficient for nonstiff systems where the derivative evaluations are not expensive
and where the solution is not required at a large number of finely spaced points
(as might be required for graphical output).
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c A
k1 0 0
k2

1
6

1
6 0

k3
4
15

4
75

16
75 0

k4
2
3

5
6 − 8

3
5
2 0

k5
5
6 − 165

64
55
6 − 425

64
85
96 0

k6 1 12
5 −8 4015

612 − 11
36

88
255 0

k7
1
15 − 8263

15000
124
75 − 643

680 − 81
250

2484
10625 0

k8 1 3501
1720 − 300

43
297275
52632 − 319

2322
24068
84065 0 3850

26703

yn+1 bT 13
160 0 2375

5984
5
16

12
85

3
44

ŷn+1 b̂T 3
40 0 875

2244
23
72

264
1955 0 125

11592
43
616

(10.23)

Eight-stage Runge–Kutta–Verner pair RKV(5,6) of order 5 and 6.

10.8. Multistep Predictor-Corrector Methods

10.8.1. General multistep methods. Consider the initial value problem

y′ = f(x, y), y(a) = η, (10.24)

where f(x, y) is continuous with respect to x and Lipschitz continuous with re-
spect to y on the strip [a, b] × (−∞,∞). Then, by Theorem 10.1, the exact
solution, y(x), exists and is unique on [a, b].

We look for an approximate numerical solution {yn} at the nodes xn = a+nh
where h is the step size and n = (b − a)/h.
For this purpose, we consider the k-step linear method:

k∑

j=0

αjyn+j = h
k∑

j=0

βjfn+j, (10.25)

where yn ≈ y(xn) and fn := f(xn, yn). We normalize the method by the condition
αk = 1 and insist that the number of steps be exactly k by imposing the condition

(α0, β0) 6= (0, 0).

We choose k starting values y0, y1, . . . , yk−1, say, by means of a Runge–Kutta
method of the same order.

The method is explicit if βk = 0; in this case, we obtain yn+1 directly. The
method is implicit if βk 6= 0; in this case, we have to solve for yn+k by the
recurrence formula:

y
[s+1]
n+k = hβkf

(
xn+k, y

[s]
n+k

)
+ g, y

[0]
n+k arbitrary, s = 0, 1, . . . , (10.26)

where the function

g = g(xn, . . . , xn+k−1, y0, . . . , yn+k−1)

contains only known values. The recurrence formula (10.26) converges as s → ∞,
if 0 ≤ M < 1 where M is the Lipschitz constant of the right-hand side of (10.26)
with respect to yn+k. If L is the Lipschitz constant of f(x, y) with respect to y,
then

M := Lh|βk| < 1 (10.27)
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and the inequality

h <
1

L|βk|
implies convergence.

Applying (10.25) to the test equation,

y′ = λy, ℜλ < 0,

with solution y(x) → 0 as t → ∞, one finds that the numerical solution yn → 0

as n → ∞ if the zeros, rs(ĥ), of the stability polynomial

π(r, ĥ) :=

k∑

n=0

(αj − ĥβj)r
j

satisfy |rs(ĥ)| ≤ 1, s = 1, 2, . . . , k, s = 1, 2, . . . , k, and |rs(ĥ)| < 1 if rs(ĥ) is a
multiple zero. In that case, we say that the linear multistep method (10.25) is

absolutely stable for given ĥ. The region of absolute stability, R, in the complex

plane is the set of values of ĥ for with the method is absolutely stable.

10.8.2. Adams-Bashforth-Moulton linear multistep methods. Pop-
ular linear k-step methods are (explicit) Adams–Bashforth (AB) and (implicit)
Adams–Moulton (AM) methods,

yn+1 − yn = h

k−1∑

j=0

β∗
j fn+j−k+1, yn+1 − yn = h

k∑

j=0

βjfn+j−k+1,

respectively. Tables 10.5 and 10.6 list the AB and AM methods of stepnumber 1
to 6, respectively. In the tables, the coefficients of the methods are to be divided
by d, k is the stepnumber, p is the order, and C∗

p+1 and Cp+1 are the corresponding
error constants of the methods.

Table 10.5. Coefficients of Adams–Bashforth methods of step-
number 1–6.

β∗
5 β∗

4 β∗
3 β∗

2 β∗
1 β∗

0 d k p C∗
p+1

1 1 1 1 1/2

3 −1 2 2 2 5/12

23 −16 5 12 3 3 3/8

55 −59 37 −9 24 4 4 251/720

1901 −2774 1616 −1274 251 720 5 5 95/288

4277 −7923 9982 −7298 2877 −475 1440 6 6 19 087/60480

The regions of absolute stability of k-step Adams–Bashforth and Adams–
Moulton methods of order k = 1, 2, 3, 4, are the interiors of the closed regions
whose upper halves are shown in the left and right parts, respectively, of Fig. 10.7.
The region of absolute stability of the Adams–Bashforth method of order 3 ex-
tends in a small triangular region in the right half-plane. The region of absolute
stability of the Adams–Moulton method of order 1 is the whole left half-plane.
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Table 10.6. Coefficients of Adams–Moulton methods of step-
number 1–6.

β5 β4 β3 β2 β1 β0 d k p Cp+1

1 1 2 1 2 −1/12

5 8 −1 12 2 3 −1/24

9 19 −5 1 24 3 4 −19/720

251 646 −264 106 −19 720 4 5 −3/160

475 1427 −798 482 −173 27 1440 5 6 −863/60 480
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k = 4
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k = 1

Figure 10.7. Left: Regions of absolute stability of k-step
Adams–Bashforth methods. Right: Regions of absolute stability
of k-step Adams–Moulton methods.

In practice, an AB method is used as a predictor to predict the next-step
value y∗

n+1, which is then inserted in the right-hand side of an AM method used
as a corrector to obtain the corrected value yn+1. Such combination is called an
ABM predictor-corrector which, when of the same order, comes with the Milne
estimate for the principal local truncation error

ǫn+1 ≈ Cp+1

C∗
p+1 − Cp+1

(yn+1 − y∗
n+1).

The procedure called local approximation improves the higher-order solution yn+1

by the addition of the error estimator, namely,

yn+1 +
Cp+1

C∗
p+1 − Cp+1

(yn+1 − y∗
n+1).

The regions of absolute stability of kth-order Adams–Bashforth–Moulton
pairs, for k = 1, 2, 3, 4, in Predictor-Evaluation-Corrector-Evaluation mode, de-
noted by PECE, are the interiors of the closed regions whose upper halves are
shown in the left part of Fig. 10.8. The regions of absolute stability of kth-order
Adams–Bashforth–Moulton pairs, for k = 1, 2, 3, 4, in the PECLE mode where L
stands for local extrapolation, are the interiors of the closed regions whose upper
halves are shown in the right part of Fig. 10.8.
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Figure 10.8. Regions of absolute stability of k-order Adams–
Bashforth–Moulton methods, left in PECE mode, and right in
PECLE mode.

10.8.3. Adams–Bashforth–Moulton methods of orders 3 and 4. As a
first example of multistep methods, we consider the three-step Adams–Bashforth–
Moulton method of order 3, given by the formula pair:

yP
n+1 = yC

n +
h

12

(
23fC

n − 16fC
n−1 + 5fC

n−2

)
, fC

k = f
(
xk, yC

k

)
, (10.28)

yC
n+1 = yC

n +
h

12

(
5fP

n+1 + 8fC
n − fC

n−1

)
, fP

k = f
(
xk, yP

k

)
, (10.29)

with local error estimate

Err. ≈ − 1

10

[
yC

n+1 − yP
n+1

]
. (10.30)

Example 10.10. Solve to six decimal places the initial value problem

y′ = x + sin y, y(0) = 0,

by means of the Adams–Bashforth–Moulton method of order 3 over the interval
[0, 2] with h = 0.2. The starting values have been obtained by a high precision
method. Use formula (10.30) to estimate the local error at each step.

Solution. The solution is given in a table.

Starting Predicted Corrected 105×Local Error in yC
n

n xn yC
n yP

n yC
n ≈ −(yC

n − yP
n ) × 104

0 0.0 0.000 000 0
1 0.2 0.021 404 7
2 0.4 0.091 819 5
3 0.6 0.221 260 0.221 977 − 7
4 0.8 0.423 703 0.424 064 − 4
5 1.0 0.710 725 0.709 623 11
6 1.2 1.088 004 1.083 447 46
7 1.4 1.542 694 1.533 698 90
8 1.6 2.035 443 2.026 712 87
9 1.8 2.518 039 2.518 431 − 4

10 2.0 2.965 994 2.975 839 −98

�
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As a second and better known example of multistep methods, we consider
the four-step Adams–Bashforth–Moulton method of order 4.

The Adams–Bashforth predictor and the Adams–Moulton corrector of order
4 are

yP
n+1 = yC

n +
h

24

(
55fC

n − 59fC
n−1 + 37fC

n−2 − 9fC
n−3

)
(10.31)

and

yC
n+1 = yC

n +
h

24

(
9fP

n+1 + 19fC
n − 5fC

n−1 + fC
n−2

)
, (10.32)

where

fC
n = f(xn, yC

n ) and fP
n = f(xn, yP

n ).

Starting values are obtained with a Runge–Kutta method or otherwise.
The local error is controlled by means of the estimate

C5h
5y(5)(xn+1) ≈ − 19

270

[
yC

n+1 − yP
n+1

]
. (10.33)

A certain number of past values of yn and fn are kept in memory in order to
extend the step size if the local error is small with respect to the given tolerance.
If the local error is too large with respect to the given tolerance, the step size can
be halved by means of the following formulae:

yn−1/2 =
1

128
(35yn + 140yn−1 − 70yn−2 + 28yn−3 − yn−4) , (10.34)

yn−3/2 =
1

162
(−yn + 24yn−1 + 54yn−2 − 16yn−3 + 3yn−4) . (10.35)

In PECE mode, the Adams–Bashforth–Moulton pair of order 4 has interval
of absolute stability equal to (−1.25, 0), that is, the method does not amplify past
errors if the step size h is sufficiently small so that

−1.25 < h
∂f

∂y
< 0, where

∂f

∂y
< 0.

Example 10.11. Consider the initial value problem

y′ = x + y, y(0) = 0.

Compute the solution at x = 2 by the Adams–Bashforth–Moulton method of
order 4 with h = 0.2. Use Runge–Kutta method of order 4 to obtain the starting
values. Use five decimal places and use the exact solution to compute the global
error.

Solution. The global error is computed by means of the exact solution

y(x) = ex − x − 1.

We present the solution in the form of a table for starting values, predicted values,
corrected values, exact values and global errors in the corrected solution.
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Starting Predicted Corrected Exact Error: 106×
n xn yC

n yP
n yC

n y(xn) (y(xn) − yC
n )

0 0.0 0.000 000 0.000 000 0
1 0.2 0.021 400 0.021 403 3
2 0.4 0.091 818 0.091 825 7
3 0.6 0.222 107 0.222 119 12
4 0.8 0.425 361 0.425 529 0.425 541 12
5 1.0 0.718 066 0.718 270 0.718 282 12
6 1.2 1.119 855 1.120 106 1.120 117 11
7 1.4 1.654 885 1.655 191 1.655 200 9
8 1.6 2.352 653 2.353 026 2.353 032 6
9 1.8 3.249 190 3.249 646 3.249 647 1

10 2.0 4.388 505 4.389 062 4.389 056 −6

We see that the method is stable since the error does not grow. �

Example 10.12. Solve to six decimal places the initial value problem

y′ = arctanx + arctany, y(0) = 0,

by means of the Adams–Bashforth–Moulton method of order 3 over the interval
[0, 2] with h = 0.2. Obtain the starting values by Runge–Kutta 4. Use formula
(10.30) to estimate the local error at each step.

Solution. The Matlab numeric solution.— The M-file exp5_12 for Ex-
ample 10.12 is

function yprime = exp5_12(x,y); % Example 5.12.

yprime = atan(x)+atan(y);

The initial conditions and the Runge–Kutta method of order 4 is used to
obtain the four starting values

clear

h = 0.2; x0= 0; xf= 2; y0 = 0;

n = ceil((xf-x0)/h); % number of steps

%

count = 2; print_time = 1; % when to write to output

x = x0; y = y0; % initialize x and y

output = [0 x0 y0 0];

%RK4

for i=1:3

k1 = h*exp5_12(x,y);

k2 = h*exp5_12(x+h/2,y+k1/2);

k3 = h*exp5_12(x+h/2,y+k2/2);

k4 = h*exp5_12(x+h,y+k3);

z = y + (1/6)*(k1+2*k2+2*k3+k4);

x = x + h;

if count > print_time

output = [output; i x z 0];

count = count - print_time;

end

y = z;
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count = count + 1;

end

% ABM4

for i=4:n

zp = y + (h/24)*(55*exp5_12(output(i,2),output(i,3))-...

59*exp5_12(output(i-1,2),output(i-1,3))+...

37*exp5_12(output(i-2,2),output(i-2,3))-...

9*exp5_12(output(i-3,2),output(i-3,3)) );

z = y + (h/24)*( 9*exp5_12(x+h,zp)+...

19*exp5_12(output(i,2),output(i,3))-...

5*exp5_12(output(i-1,2),output(i-1,3))+...

exp5_12(output(i-2,2),output(i-2,3)) );

x = x + h;

if count > print_time

errest = -(19/270)*(z-zp);

output = [output; i x z errest];

count = count - print_time;

end

y = z;

count = count + 1;

end

output

save output %for printing the graph

The command output prints the values of n, x, and y.

n x y Error estimate

0 0 0 0

1 0.2 0.02126422549044 0

2 0.4 0.08962325332457 0

3 0.6 0.21103407185113 0

4 0.8 0.39029787517821 0.00001007608281

5 1.0 0.62988482479868 0.00005216829834

6 1.2 0.92767891924367 0.00004381671342

7 1.4 1.27663327419538 -0.00003607372725

8 1.6 1.66738483675693 -0.00008228934754

9 1.8 2.09110753309673 -0.00005318684309

10 2.0 2.54068815072267 -0.00001234568256

The following commands print the output.

load output;

subplot(2,2,1); plot(output(:,2),output(:,3));

title(’Plot of solution y_n for Example 5.12’);

xlabel(’x_n’); ylabel(’y_n’);

�
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Figure 10.9. Graph of the numerical solution of Example 10.12.

Fixed stepsize Adams–Bashforth–Moulton methods of order 1 to 5 are imple-
mented in the following Matlab function M-files which are found in
ftp://ftp.cs.cornell.edu/pub/cv.

function [tvals,yvals] = FixedPC(fname,t0,y0,h,k,n)

%

% Produces an approximate solution to the initial value problem

%

% y’(t) = f(t,y(t)) y(t0) = y0

%

% using a strategy that is based upon a k-th order

% Adams PC method. Stepsize is fixed.

%

% Pre: fname = string that names the function f.

% t0 = initial time.

% y0 = initial condition vector.

% h = stepsize.

% k = order of method. (1<=k<=5).

% n = number of steps to be taken,

%

% Post: tvals(j) = t0 + (j-1)h, j=1:n+1

% yvals(:j) = approximate solution at t = tvals(j), j=1:n+1

%

[tvals,yvals,fvals] = StartAB(fname,t0,y0,h,k);

tc = tvals(k);

yc = yvals(:,k);

fc = fvals(:,k);

for j=k:n

% Take a step and then update.

[tc,yPred,fPred,yc,fc] = PCstep(fname,tc,yc,fvals,h,k);
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tvals = [tvals tc];

yvals = [yvals yc];

fvals = [fc fvals(:,1:k-1)];

end

The starting values are obtained by the following M-file by means of a Runge–
Kutta method.

function [tvals,yvals,fvals] = StartAB(fname,t0,y0,h,k)

%

% Uses k-th order Runge-Kutta to generate approximate

% solutions to

% y’(t) = f(t,y(t)) y(t0) = y0

%

% at t = t0, t0+h, ... , t0 + (k-1)h.

%

% Pre:

% fname is a string that names the function f.

% t0 is the initial time.

% y0 is the initial value.

% h is the step size.

% k is the order of the RK method used.

%

% Post:

% tvals = [ t0, t0+h, ... , t0 + (k-1)h].

% For j =1:k, yvals(:,j) = y(tvals(j)) (approximately).

% For j =1:k, fvals(:,j) = f(tvals(j),yvals(j)) .

%

tc = t0;

yc = y0;

fc = feval(fname,tc,yc);

tvals = tc;

yvals = yc;

fvals = fc;

for j=1:k-1

[tc,yc,fc] = RKstep(fname,tc,yc,fc,h,k);

tvals = [tvals tc];

yvals = [yvals yc];

fvals = [fc fvals];

end

The function M-file Rkstep is found in Subsection 10.6. The Adams-Bashforth
predictor step is taken by the following M-file.

function [tnew,ynew,fnew] = ABstep(fname,tc,yc,fvals,h,k)

%

% Pre: fname is a string that names a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%
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% fvals is an d-by-k matrix where fvals(:,i) is an approximation

% to f(t,y) at t = tc +(1-i)h, i=1:k

%

% h is the time step.

%

% k is the order of the AB method used, 1<=k<=5.

%

% Post: tnew=tc+h, ynew is an approximate solution at t=tnew, and

% fnew = f(tnew,ynew).

if k==1

ynew = yc + h*fvals;

elseif k==2

ynew = yc + (h/2)*(fvals*[3;-1]);

elseif k==3

ynew = yc + (h/12)*(fvals*[23;-16;5]);

elseif k==4

ynew = yc + (h/24)*(fvals*[55;-59;37;-9]);

elseif k==5

ynew = yc + (h/720)*(fvals*[1901;-2774;2616;-1274;251]);

end

tnew = tc+h;

fnew = feval(fname,tnew,ynew);

The Adams-Moulton corrector step is taken by the following M-file.

function [tnew,ynew,fnew] = AMstep(fname,tc,yc,fvals,h,k)

%

% Pre: fname is a string that names a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%

% fvals is an d-by-k matrix where fvals(:,i) is an approximation

% to f(t,y) at t = tc +(2-i)h, i=1:k

%

% h is the time step.

%

% k is the order of the AM method used, 1<=k<=5.

%

% Post: tnew=tc+h, ynew is an approximate solution at t=tnew, and

% fnew = f(tnew,ynew).

if k==1

ynew = yc + h*fvals;

elseif k==2

ynew = yc + (h/2)*(fvals*[1;1]);

elseif k==3

ynew = yc + (h/12)*(fvals*[5;8;-1]);
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elseif k==4

ynew = yc + (h/24)*(fvals*[9;19;-5;1]);

elseif k==5

ynew = yc + (h/720)*(fvals*[251;646;-264;106;-19]);

end

tnew = tc+h;

fnew = feval(fname,tnew,ynew);

The predictor-corrector step is taken by the following M-file.

function [tnew,yPred,fPred,yCorr,fCorr] = PCstep(fname,tc,yc,fvals,h,k)

%

% Pre: fname is a string that names a function of the form f(t,y)

% where t is a scalar and y is a column d-vector.

%

% yc is an approximate solution to y’(t) = f(t,y(t)) at t=tc.

%

% fvals is an d-by-k matrix where fvals(:,i) is an approximation

% to f(t,y) at t = tc +(1-i)h, i=1:k

%

% h is the time step.

%

% k is the order of the Runge-Kutta method used, 1<=k<=5.

%

% Post: tnew=tc+h,

% yPred is the predicted solution at t=tnew

% fPred = f(tnew,yPred)

% yCorr is the corrected solution at t=tnew

% fCorr = f(tnew,yCorr).

[tnew,yPred,fPred] = ABstep(fname,tc,yc,fvals,h,k);

[tnew,yCorr,fCorr] = AMstep(fname,tc,yc,[fPred fvals(:,1:k-1)],h,k);

10.8.4. Specification of multistep methods. The left-hand side of Adams
methods is of the form

yn+1 − yn.

Adams–Bashforth methods are explicit and Adams–Moulton methods are im-
plicit. In the following formulae, Adams methods are obtained by taking a = 0
and b = 0. The integer k is the number of steps of the method. The integer p is
the order of the method and the constant Cp+1 is the constant of the top-order
error term.

Explicit Methods

k = 1 :
α1 = 1,
α0 = −1, β0 = 1,

p = 1; Cp+1 = 1
2 .
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k = 2 :

α2 = 1,

α1 = −1 − a, β1 = 1
2 (3 − a),

α0 = a, β0 = 1
2 (−1 + a),

p = 2; Cp+1 = 1
12 (5 + a).

Absolute stability limits the order to 2.

k = 3 :

α3 = 1,

α2 = −1 − a, β2 = 1
12 (23 − 5a − b),

α1 = a + b, β1 = 1
3 (−4 − 2a + 2b),

α0 = −b, β0 = 1
12 (5 + a + 5b),

p = 3; Cp+1 = 1
24 (9 + a + b).

Absolute stability limits the order to 3.

k = 4 :

α4 = 1,

α3 = −1 − a, β3 = 1
24 (55 − 9a − b − c),

α2 = a + b, β2 = 1
24 (−59 − 19a + 13b − 19c),

α1 = −b − c, β1 = 1
24 (37 + 5a + 13b − 19c),

α0 = c, β0 = 1
24 (−9 − a − b − 9c),

p = 4; Cp+1 = 1
720 (251 + 19a + 11b + 19c).

Absolute stability limits the order to 4.

Implicit Methods

k = 1 :

α1 = 1, β1 = 1
2 ,

α0 = −1, β0 = 1
2 ,

p = 2; Cp+1 = − 1
12 .

k = 2 :

α2 = 1, β2 = 1
12 (5 + a),

α1 = −1 − a, β1 = 2
3 (1 − a),

α0 = a, β0 = 1
12 (−1 − 5a),

If a 6= −1, p = 3; Cp+1 = − 1
24 (1 + a),

If a = −1, p = 4; Cp+1 = − 1
90 .
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k = 3 :

α3 = 1, β3 = 1
24 (9 + a + b),

α2 = −1 − a, β2 = 1
24 (19 − 13a− 5b),

α1 = a + b, β1 = 1
24 (−5 − 13a + 19b),

α0 = −b, β0 = 1
24 (1 + a + 9b),

p = 4; Cp+1 = − 1
720 (19 + 11a + 19b).

Absolute stability limits the order to 4.

k = 4 :
α4 = 1, β4 = 1

720 (251 + 19a + 11b + 19c),

α3 = −1 − a, β3 = 1
360 (323 − 173a− 37b − 53c),

α2 = a + b, β2 = 1
30 (−11 − 19a + 19b + 11c),

α1 = −b − c, β1 = 1
360 (53 + 37a + 173b − 323c),

α0 = c, β0 = 1
720 (−19 − 11a− 19b − 251c).

If 27 + 11a + 11b + 27c 6= 0, then

p = 5; Cp+1 = − 1

1440
(27 + 11a + 11b + 27c).

If 27 + 11a + 11b + 27c = 0, then

p = 6; Cp+1 = − 1

15 120
(74 + 10a− 10b − 74c).

Absolute stability limits the order to 6.
The Matlab solver ode113 is a fully variable step size, PECE implementation

in terms of modified divided differences of the Adams–Bashforth–Moulton family
of formulae of orders 1 to 12. The natural “free” interpolants are used. Local
extrapolation is done. Details are to be found in The MATLAB ODE Suite, L. F.
Shampine and M. W. Reichelt, SIAM Journal on Scientific Computing, 18(1),
1997.

10.9. Stiff Systems of Differential Equations

In this section, we illustrate the concept of stiff systems of differential equa-
tions by means of an example and mention some numerical methods that can
handle such systems.

10.9.1. The phenomenon of stiffness. While the intuitive meaning of
stiff is clear to all specialists, much controversy is going on about its correct
mathematical definition. The most pragmatic opinion is also historically the first
one: stiff equations are equations where certain implicit methods, in particular
backward differentiation methods, perform much better than explicit ones.

Consider a system of n differential equations,

y′ = f(x, y),

and let λ1, λ2, . . . , λn be the eigenvalues of the n × n Jacobian matrix

J =
∂f

∂y
=

(
∂fi

∂yj

)
, i ↓ 1, . . . , n, j → 1, . . . , n, (10.36)
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where Nagumo’s matrix index notation has been used. We assume that the n
eigenvalues, λ1, . . . , λn, of the matrix J have negative real parts, ℜλj < 0, and
are ordered as follows:

ℜλn ≤ · · · ≤ ℜλ2 ≤ ℜλ1 < 0. (10.37)

The following definition occurs in discussing stiffness.

Definition 10.6. The stiffness ratio of the system y′ = f(x,y) is the positive
number

r =
ℜλn

ℜλ1
, (10.38)

where the eigenvalues of the Jacobian matrix (10.36) of the system satisfy the
relations (10.37).

The phenomenon of stiffness appears under various aspects:

• A linear constant coefficient system is stiff if all of its eigenvalues have
negative real parts and the stiffness ratio is large.

• Stiffness occurs when stability requirements, rather than those of accu-
racy, constrain the step length.

• Stiffness occurs when some components of the solution decay much more
rapidly than others.

• A system is said to be stiff in a given interval I containing t if in I the
neighboring solution curves approach the solution curve at a rate which
is very large in comparison with the rate at which the solution varies in
that interval.

A statement that we take as a definition of stiffness is one which merely relates
what is observed happening in practice.

Definition 10.7. If a numerical method with a region of absolute stability,
applied to a system of differential equation with any initial conditions, is forced
to use in a certain interval I of integration a step size which is excessively small
in relation to the smoothness of the exact solution in I, then the system is said
to be stiff in I.

Explicit Runge–Kutta methods and predictor-corrector methods, which, in
fact, are explicit pairs, cannot handle stiff systems in an economical way, if they
can handle them at all. Implicit methods require the solution of nonlinear equa-
tions which are almost always solved by some form of Newton’s method. Two
such implicit methods are in the following two sections.

10.9.2. Backward differentiation formulae. We define a k-step back-
ward differentiation formula (BDF) in standard form by

k∑

j=0

αjyn+j−k+1 = hβkfn+1,

where αk = 1. BDF’s are implicit methods. Table 10.7 lists the BDF’s of step-
number 1 to 6, respectively. In the table, k is the stepnumber, p is the order,
Cp+1 is the error constant, and α is half the angle subtended at the origin by the
region of absolute stability R.
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Table 10.7. Coefficients of the BDF methods.

k α6 α5 α4 α3 α2 α1 α0 βk p Cp+1 α

1 1 −1 1 1 1 90◦

2 1 − 4
3

1
3

2
3 2 − 2

9 90◦

3 1 − 18
11

9
11 = 2

11
6
11 3 − 3

22 86◦

4 1 − 48
25

36
25 − 16

25
3
25

12
25 4 − 12

125 73◦

5 1 − 300
137

300
137 − 200

137
75
137 − 12

137
60
137 5 − 110

137 51◦

6 1 − 360
147

450
147 − 400

147
225
147 − 72

147
10
147

60
147 6 − 20

343 18◦

6i

3 6

k=1

k = 2

k = 3

3 6-6 -3

3i

6i

k = 6

k = 5

k = 4

Figure 10.10. Left: Regions of absolute stability for k-step
BDF for k = 1, 2 . . . , 6. These regions include the negative real
axis.

The left part of Fig. 10.10 shows the upper half of the region of absolute
stability of the 1-step BDF, which is the exterior of the unit disk with center 1,
and the regions of absolute stability of the 2- and 3-step BDF’s which are the
exterior of closed regions in the right-hand plane. The angle subtended at the
origin is α = 90◦ in the first two cases and α = 88◦ in the third case. The right
part of Fig. 10.10 shows the regions of absolute stability of the 4-, 5-, and 6-steps
BDF’s which include the negative real axis and make angles subtended at the
origin of 73◦, 51◦, and 18◦, respectively.

BDF methods are used to solve stiff systems.

10.9.3. Numerical differentiation formulae. Numerical differentiation
formulae (NDF) are a modification of BDF’s. Letting

∇yn = yn − yn−1

denote the backward difference of yn, we rewrite the k-step BDF of order p = k
in the form

k∑

m=1

1

m
∇myn+1 = hfn+1.

The algebraic equation for yn+1 is solved with a simplified Newton (chord) iter-
ation. The iteration is started with the predicted value

y
[0]
n+1 =

k∑

m=0

1

m
∇myn.
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Then the k-step NDF of order p = k is

k∑

m=1

1

m
∇myn+1 = hfn+1 + κγk

(
yn+1 − y

[0]
n+1

)
,

where κ is a scalar parameter and γk =
∑k

j=1 1/j. The NDF of order 1 to 5 are
given in Table 10.8.

Table 10.8. Coefficients of the NDF methods.

k κ α5 α4 α3 α2 α1 α0 βk p Cp+1 α

1 −37/200 1 −1 1 1 1 90◦

2 −1/9 1 − 4
3

1
3

2
3 2 − 2

9 90◦

3 −0.0823 1 − 18
11

9
11 − 2

11
6
11 3 − 3

22 80◦

4 −0.0415 1 − 48
25

36
25 − 16

25
3
25

12
25 4 − 12

125 66◦

5 0 1 − 300
137

300
137 − 200

137
75
137 − 12

137
60
137 5 − 110

137 51◦

The choice of the number κ is a compromise made in balancing efficiency in
step size and stability angle. Compared with the BDF’s, there is a step ratio gain
of 26% in NDF’s of order 1, 2, and 3, 12% in NDF of order 4, and no change
in NDF of order 5. The percent change in the stability angle is 0%, 0%, −7%,
−10%, and 0%, respectively. No NDF of order 6 is considered because, in this
case, the angle α is too small.

10.9.4. The effect of a large stiffness ratio. In the following example,
we analyze the effect of the large stiffness ratio of a simple decoupled system of
two differential equations with constant coefficients on the step size of the five
methods of the ODE Suite. Such problems are called pseudo-stiff since they are
quite tractable by implicit methods.

Consider the initial value problem
[

y1(x)
y2(x)

]′
=

[
1 0
0 10q

] [
y1(x)
y2(x)

]
,

[
y1(0)
y2(0)

]
=

[
1
1

]
, (10.39)

or
y′ = Ay, y(0) = y0.

Since the eigenvalues of A are

λ1 = −1, λ2 = −10q,

the stiffness ratio (10.38) of the system is

r = 10q.

The solution is [
y1(x)
y2(x)

]
=

[
e−x

e−10qx

]
.

Even though the second part of the solution containing the fast decaying factor
exp(−10qt) for large q numerically disappears quickly, the large stiffness ratio
continues to restrict the step size of any explicit schemes, including predictor-
corrector schemes.
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Example 10.13. Study the effect of the stiffness ratio on the number of steps
used by the five Matlab ode codes in solving problem (10.39) with q = 1 and
q = 5.

Solution. The function M-file exp5_13.m is

function uprime = exp5_13(x,u); % Example 5.13

global q % global variable

A=[-1 0;0 -10^q]; % matrix A

uprime = A*u;

The following commands solve the non-stiff initial value problem with q = 1,
and hence r = e10, with relative and absolute tolerances equal to 10−12 and
10−14, respectively. The option stats on requires that the code keeps track of
the number of function evaluations.

clear;

global q; q=1;

tspan = [0 1]; y0 = [1 1]’;

options = odeset(’RelTol’,1e-12,’AbsTol’,1e-14,’Stats’,’on’);

[x23,y23] = ode23(’exp5_13’,tspan,y0,options);

[x45,y45] = ode45(’exp5_13’,tspan,y0,options);

[x113,y113] = ode113(’exp5_13’,tspan,y0,options);

[x23s,y23s] = ode23s(’exp5_13’,tspan,y0,options);

[x15s,y15s] = ode15s(’exp5_13’,tspan,y0,options);

Similarly, when q = 5, and hence r = exp(105), the program solves a pseudo-
stiff initial value problem (10.39). Table 10.9 lists the number of steps used with
q = 1 and q = 5 by each of the five methods of the ODE suite.

Table 10.9. Number of steps used by each method with q = 1
and q = 5 with default relative and absolute tolerances RT =
10−3 and AT = 10−6 respectively, and tolerances 10−12 and
10−14, respectively.

(RT, AT ) (10−3, 10−6) (10−12, 10−14)
q 1 5 1 5
ode23 29 39 823 24 450 65 944
ode45 13 30 143 601 30 856
ode113 28 62 371 132 64 317
ode23s 37 57 30 500 36 925
ode15s 43 89 773 1 128

It is seen from the table that nonstiff solvers are hopelessly slow and very
expensive in solving pseudo-stiff equations. �

We consider another example of a second-order equation, with one real pa-
rameter q, which we first solve analytically. We shall obtain a coupled system in
this case.
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Example 10.14. Solve the initial value problem

y′′ + (10q + 1)y′ + 10qy = 0 on [0, 1],

with initial conditions

y(0) = 2, y′(0) = −10q − 1,

and real parameter q.

Solution. Substituting
y(x) = eλx

in the differential equation, we obtain the characteristic polynomial and eigenval-
ues:

λ2 + (10q + 1)λ + 10q = (λ + 10q)(λ + 1) = 0 =⇒ λ1 = −10q, λ2 = −1.

Two independent solutions are

y1 = e−10qx, y2(x) = e−x.

The general solution is

y(x) = c1 e−10qx + c2 e−x.

Using the initial conditions, one finds that c1 = 1 and c2 = 1. Thus the unique
solution is

y(x) = e−10qx + e−x. �

In view of solving the problem in Example 10.14 with numeric Matlab, we
reformulate it into a system of two first-order equations.

Example 10.15. Reformulate the initial value problem

y′′ + (10q + 1)y′ + 10qy = 0 on [0, 1],

with initial conditions

y(0) = 2, y′(0) = −10q − 1,

and real parameter q, into a system of two first-order equations and find its vector
solution.

Solution. Set
u1 = y, u2 = y′.

Hence,
u2 = u′

1, u′
2 = y′′ = −10qu1 − (10q + 1)u2.

Thus we have the system u′ = Au,
[

u1(x)
u2(x)

]′
=

[
0 1

−10q −(10q + 1)

] [
u1(x)
u2(x)

]
, with

[
u1(0)
u2(0)

]
=

[
2

−10q − 1

]
.

Substituting the vector function

u(x) = c eλx

in the differential system, we obtain the matrix eigenvalue problem

(A − λI)c =

[
−λ 1
−10q −(10q + 1) − λ

]
c = 0,

This problem has a nonzero solution c if and only if

det(A − λI) = λ2 + (10q + 1)λ + 10q = (λ + 10q)(λ + 1) = 0.
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Hence the eigenvalues are

λ1 = −10q, λ2 = −1.

The eigenvectors are found by solving the linear systems

(A − λiI)vi = 0.

Thus, [
10q 1

−10q −1

]
v1 = 0 =⇒ v1 =

[
1

−10q

]

and [
1 1

−10q −10q

]
v2 = 0 =⇒ v2 =

[
1

−1

]
.

The general solution is

u(x) = c1 e−10qxv1 + c2 e−xv2.

The initial conditions implies that c1 = 1 and c2 = 1. Thus the unique solution is
[

u1(x)
u2(x)

]
=

[
1

−10q

]
e−10qx +

[
1

−1

]
e−x. �

We see that the stiffness ratio of the equation in Example 10.15 is

10q.

Example 10.16. Use the five Matlab ode solvers to solve the pseudo-stiff
differential equation

y′′ + (10q + 1)y′ + 10qy = 0 on [0, 1],

with initial conditions

y(0) = 2, y′(0) = −10q − 1,

for q = 1 and compare the number of steps used by the solvers.

Solution. The function M-file exp5_16.m is

function uprime = exp5_16(x,u)

global q

A=[0 1;-10^q -1-10^q];

uprime = A*u;

The following commands solve the initial value problem.

>> clear

>> global q; q = 1;

>> xspan = [0 1]; u0 = [2 -(10^q + 1)]’;

>> [x23,u23] = ode23(’exp5_16’,xspan,u0);

>> [x45,u45] = ode45(’exp5_16’,xspan,u0);

>> [x113,u113] = ode113(’exp5_16’,xspan,u0);

>> [x23s,u23s] = ode23s(’exp5_16’,xspan,u0);

>> [x15s,u15s] = ode15s(’exp5_16’,xspan,u0);

>> whos

Name Size Bytes Class

q 1x1 8 double array (global)
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u0 2x1 16 double array

u113 26x2 416 double array

u15s 32x2 512 double array

u23 20x2 320 double array

u23s 25x2 400 double array

u45 49x2 784 double array

x113 26x1 208 double array

x15s 32x1 256 double array

x23 20x1 160 double array

x23s 25x1 200 double array

x45 49x1 392 double array

xspan 1x2 16 double array

Grand total is 461 elements using 3688 bytes

From the table produced by the command whos one sees that the nonstiff ode
solvers ode23, ode45, ode113, and the stiff ode solvers ode23s, ode15s, use 20,
49, 26, and 25, 32 steps, respectively. �

Example 10.17. Use the five Matlab ode solvers to solve the pseudo-stiff
differential equation

y′′ + (10q + 1)y′ + 10qy = 0 on [0, 1],

with initial conditions

y(0) = 2, y′(0) = −10q − 1,

for q = 5 and compare the number of steps used by the solvers.

Solution. Setting the value q = 5 in the program of Example 10.16, we
obtain the following results for the whos command.

clear

global q; q = 5;

xspan = [0 1]; u0 = [2 -(10^q + 1)]’;

[x23,u23] = ode23(’exp5_16’,xspan,u0);

[x45,u45] = ode45(’exp5_16’,xspan,u0);

[x113,u113] = ode113(’exp5_16’,xspan,u0);

[x23s,u23s] = ode23s(’exp5_16’,xspan,u0);

[x15s,u15s] = ode15s(’exp5_16’,xspan,u0);

whos

Name Size Bytes Class

q 1x1 8 double array (global)

u0 2x1 16 double array

u113 62258x2 996128 double array

u15s 107x2 1712 double array

u23 39834x2 637344 double array

u23s 75x2 1200 double array

u45 120593x2 1929488 double array

x113 62258x1 498064 double array

x15s 107x1 856 double array
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x23 39834x1 318672 double array

x23s 75x1 600 double array

x45 120593x1 964744 double array

xspan 1x2 16 double array

Grand total is 668606 elements using 5348848 bytes

From the table produced by the command whos, one sees that the nonstiff ode
solvers ode23, ode45, ode113, and the stiff ode solvers ode23s, ode15s, use 39 834,
120 593, 62 258, and 75, 107 steps, respectively. It follows that nonstiff solvers are
hopelessly slow and expensive to solve stiff equations. �

Numeric Matlab has four solvers with “free” interpolants for stiff systems.
The first three are low order solvers.

• The code ode23s is an implementation of a new modified Rosenbrock
(2,3) pair. Local extrapolation is not done. By default, Jacobians are
generated numerically.

• The code ode23t is an implementation of the trapezoidal rule.
• The code ode23tb is an in an implicit two-stage Runge–Kutta formula.
• The variable-step variable-order Matlab solver ode15s is a quasi-constant

step size implementation in terms of backward differences of the Klopfenstein–
Shampine family of Numerical Differentiation Formulae of orders 1 to
5. Local extrapolation is not done. By default, Jacobians are generated
numerically.

Details on these methods are to be found in The MATLAB ODE Suite, L. F.
Shampine and M. W. Reichelt, SIAM Journal on Scientific Computing, 18(1),
1997.



Part 3

Exercises and Solutions



Starred exercises have solutions in Chapter 12.



CHAPTER 11

Exercises for Differential Equations and Laplace

Transforms

Exercises for Chapter 1

Solve the following separable differential equations.

1.1. y′ = 2xy2.

1.2. y′ =
xy

x2 − 1
.

*1.3. (1 + x2)y′ = cos2 y.

1.4. (1 + ex)yy′ = ex.

1.5. y′ sin x = y ln y.

1.6. (1 + y2) dx + (1 + x2) dy = 0.

Solve the following initial-value problems and plot the solutions.

1.7. y′ sin x − y cosx = 0, y(π/2) = 1.

1.8. x sin y dx + (x2 + 1) cos y dy = 0, y(1) = π/2.

Solve the following differential equations.

1.9. (x2 − 3y2) dx + 2xy dy = 0.

1.10. (x + y) dx − xdy = 0.

*1.11. xy′ = y +
√

y2 − x2.

1.12. xy′ = y + x cos2(y/x).

Solve the following initial-value problems.

1.13. (2x − 5y) dx + (4x − y) dy = 0, y(1) = 4.

1.14. (3x2 + 9xy + 5y2) dx − (6x2 + 4xy) dy = 0, y(2) = −6.

1.15. yy′ = −(x + 2y), y(1) = 1.

1.16. (x2 + y2) dx − 2xy dy = 0, y(1) = 2.

Solve the following differential equations.

1.17. x(2x2 + y2) + y(x2 + 2y2)y′ = 0.

1.18. (3x2y2 − 4xy)y′ + 2xy3 − 2y2 = 0.

263
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1.19. (sin xy + xy cosxy) dx + x2 cosxy dy = 0.

1.20.

(
sin 2x

y
+ x

)
dx +

(
y − sin2 x

y2

)
dy = 0.

Solve the following initial-value problems.

*1.21. (2xy − 3) dx + (x2 + 4y) dy = 0, y(1) = 2.

1.22.
2x

y3
dx +

y2 − 3x2

y4
dy = 0, y(1) = 1.

1.23. (y ex + 2 ex + y2) dx + (ex + 2xy) dy = 0, y(0) = 6.

1.24. (2x cos y + 3x2y) dx + (x3 − x2 sin y − y) dy = 0, y(0) = 2.

Solve the following differential equations.

*1.25. (x + y2) dx − 2xy dy = 0.

1.26. (x2 − 2y) dx + xdy = 0.

1.27. (x2 − y2 + x) dx + 2xy dy = 0.

1.28. (1 − x2y) dx + x2(y − x) dy = 0.

1.29. (1 − xy)y′ + y2 + 3xy3 = 0.

1.30. (2xy2 − 3y3) dx + (7 − 3xy2) dy = 0.

1.31. (2x2y − 2y + 5) dx + (2x3 + 2x) dy = 0.

1.32. (x + sin x + sin y) dx + cos y dy = 0.

1.33. y′ +
2

x
y = 12.

1.34. y′ +
2x

x2 + 1
y = x.

1.35. x(ln x)y′ + y = 2 lnx.

1.36. xy′ + 6y = 3x + 1.

Solve the following initial-value problems.

1.37. y′ + 3x2y = x2, y(0) = 2.

1.38. xy′ − 2y = 2x4, y(2) = 8.

*1.39. y′ + y cosx = cosx, y(0) = 1.

1.40. y′ − y tanx =
1

cos3 x
, y(0) = 0.

Find the orthogonal trajectories of each given family of curves. In each case sketch
several members of the family and several of the orthogonal trajectories on the
same set of axes.

1.41. x2 + y2/4 = c.

1.42. y = ex + c.

1.43. y2 + 2x = c.
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1.44. y = arctanx + c.

1.45. x2 − y2 = c2.

1.46. y2 = cx3.

1.47. ex cos y = c.

1.48. y = lnx + c.

In each case draw direction fields and sketch several approximate solution curves.

1.49. y′ = 2y/x.

1.50. y′ = −x/y.

1.50. y′ = −xy.

1.51. 9yy′ + x = 0.

Exercises for Chapter 2

Solve the following differential equations.

2.1. y′′ − 3y′ + 2y = 0.

2.2. y′′ + 2y′ + y = 0.

*2.3. y′′ − 9y′ + 20y = 0.

Solve the following initial-value problems, with initial conditions y(x0) = y0, and
plot the solutions y(x) for x ≥ x0.

2.4. y′′ + y′ +
1

4
y = 0, y(2) = 1, y′(2) = 1.

2.5. y′′ + 9y = 0, y(0) = 0, y′(0) = 1.

2.6. y′′ − 4y′ + 3y = 0, y(0) = 6, y′(0) = 0.

2.7. y′′ − 2y′ + 3y = 0, y(0) = 1, y′(0) = 3.

2.8. y′′ + 2y′ + 2y = 0, y(0) = 2, y′(0) = −3.

For the undamped oscillator equations below, find the amplitude and period of
the motion.

2.9. y′′ + 4y = 0, y(0) = 1, y′(0) = 2.

2.10. y′′ + 16y = 0, y(0) = 0, y′(0) = 1.

For the critically damped oscillator equations, find a value T ≥ 0 for which |y(T )|
is a maximum, find that maximum, and plot the solutions y(x) for x ≥ 0.

2.11. y′′ + 2y′ + y = 0, y(0) = 1, y′(0) = 1.

2.12. y′′ + 6y′ + 9y = 0, y(0) = 0, y′(0) = 2.

Solve the following Euler–Cauchy differential equations.

*2.13. x2y′′ + 3xy′ − 3y = 0.
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2.14. x2y′′ − xy′ + y = 0.

2.15. 4x2y′′ + y = 0.

2.16. x2y′′ + xy′ + 4y = 0.

Solve the following initial-value problems, with initial conditions y(x0) = y0, and
plot the solutions y(x) for x ≥ x0.

2.17. x2y′′ + 4xy′ + 2y = 0, y(1) = 1, y′(1) = 2.

2.18. x2y′′ + 5xy′ + 3y = 0, y(1) = 1, y′(1) = −5.

2.19. x2y′′ − xy′ + y = 0, y(1) = 1, y′(1) = 0.

2.20. x2y′′ +
7

2
xy′ − 3

2
y = 0, y(4) = 1, y′(4) = 0.

Exercises for Chapter 3

Solve the following constant coefficient differential equations.

*3.1. y′′′ + 6y′′ = 0.

3.2. y′′′ + 3y′′ − 4y′ − 12y = 0.

3.3. y′′′ − y = 0.

3.4. y(4) + y′′′ − 3y′′ − y′ + 2y = 0.

Solve the following initial-value problems and plot the solutions y(x) for x ≥ 0.

3.5. y′′′ + 12y′′ + 36y′ = 0, y(0) = 0, y′(0) = 1, y′′(0) = −7.

3.6. y(4) − y = 0, y(0) = 0, y′(0) = 0, y′′(0) = 0, y′′′(0) = 1.

3.7. y′′′ − y′′ − y′ + y = 0, y(0) = 0, y′(0) = 5, y′′(0) = 2.

3.8. y′′′ − 2y′′ + 4y′ − 8y = 0, y(0) = 2, y′(0) = 0, y′′(0) = 0.

Determine whether the given functions are linearly dependent or independent on
−∞ < x < +∞.

*3.9. y1(x) = x, y2(x) = x2, y3(x) = 2x − 5x2.

3.10. y1(x) = 1 + x, y2(x) = x, y3(x) = x2.

3.11. y1(x) = 2, y2(x) = sin2 x, y3(x) = cos2 x.

3.12. y1(x) = ex, y2(x) = e−x, y3(x) = coshx.

Show by computing the Wronskian that the given functions are linearly indepen-
dent on the indicated interval.

*3.13. ex, e2x, e−x, −∞ < x < +∞.

3.14. x + 2, x2, −∞ < x < +∞.

3.15. x1/3, x1/4, 0 < x < +∞.
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3.16. x, x ln x, x2 lnx, 0 < x < +∞.

3.17 Show that the functions

f1(x) = x2, f2(x) = x|x| =

{
x2, x ≥ 0,

−x2, x < 0

are linearly independent on [−1, 1] and compute their Wronskian. Explain your
result.

Find a second solution of each differential equation if y1(x) is a solution.

3.18. xy′′ + y′ = 0, y1(x) = lnx.

3.19. x(x − 2)y′′ − (x2 − 2)y′ + 2(x − 1)y = 0, y1(x) = ex.

3.20. (1 − x2)y′′ − 2xy′ = 0, y1(x) = 1.

3.21. (1 + 2x)y′′ + 4xy′ − 4y = 0, y1(x) = e−2x.

Solve the following differential equations.

3.22. y′′ + 3y′ + 2y = 5 e−2x.

3.23. y′′ + y′ = 3x2.

3.24. y′′ − y′ − 2y = 2x e−x + x2.

*3.25. y′′ − y′ = ex sin x.

Solve the following initial-value problems and plot the solutions y(x) for x ≥ 0.

3.26. y′′ + y = 2 cosx, y(0) = 1, y′(0) = 0.

3.27. y(4) − y = 8 ex, y(0) = 0, y′(0) = 2, y′′(0) = 4, y′′′(0) = 6.

3.28. y′′′ + y′ = x, y(0) = 0, y′(0) = 1, y′′(0) = 0.

3.29. y′′ + y = 3x2 − 4 sin x, y(0) = 0, y′(0) = 1.

Solve the following differential equations.

3.30. y′′ + y =
1

sinx
.

3.31. y′′ + y =
1

cosx
.

3.32. y′′ + 6y′ + 9y =
e−3x

x3
.

3.33. y′′ − 2y′ tanx = 1.

3.34. y′′ − 2y′ + y =
ex

x
.

*3.35. y′′ + 3y′ + 2y =
1

1 + ex
.

Solve the following initial-value problems, with initial conditions y(x0) = y0, and
plot the solutions y(x) for x ≥ x0.
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3.36. y′′ + y = tanx, y(0) = 1, y′(0) = 0.

3.37. y′′ − 2y′ + y =
ex

x
, y(1) = e, y′(1) = 0.

3.38. 2x2y′′ + xy′ − 3y = x−2, y(1) = 0, y′(1) = 2.

3.39. 2x2y′′ + xy′ − 3y = 2x−3, y(1) = 0, y′(1) = 3.

Exercises for Chapter 4

Solve the following systems of differential equations y′ = Ay for given matri-
ces A.

4.1. A =

[
0 1

−2 −3

]
.

4.2. A =




2 0 4
0 2 0

−1 0 2


.

*4.3. A =

[
−1 1

4 −1

]
.

4.4. A =




−1 1 4
−2 2 4
−1 0 4


.

4.5. A =

[
1 1

−4 1

]
.

Solve the following systems of differential equations y′ = Ay + f (x) for given
matrices A and vectors f .

4.6. A =

[
−3 −2

1 0

]
, f(x) =

[
2 e−x

−e−x

]
.

4.7. A =

[
1 1
3 1

]
, f (x) =

[
1
1

]
.

4.8. A =

[
−2 1

1 −2

]
, f(x) =

[
2 e−x

3x

]
.

4.9. A =

[
2 −1
3 −2

]
, f(x) =

[
ex

−ex

]
.

4.10. A =

[
1

√
3√

3 −1

]
, f(x) =

[
1
0

]
.

Solve the initial value problem y′ = Ay with y(0) = y0, for given matrices A and
vectors y0.

4.11. A =

[
5 −1
3 1

]
, y0 =

[
2

−1

]
.

4.12. A =

[
−3 2
−1 −1

]
, y0 =

[
1

−2

]
.
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4.13. A =

[
1

√
3√

3 −1

]
, y0 =

[
1
0

]
.

Exercises for Chapter 5

Find the Laplace transform of the given functions.

5.1. f(t) = −3t + 2.

5.2. f(t) = t2 + at + b.

5.3. f(t) = cos(ωt + θ).

5.4. f(t) = sin(ωt + θ).

*5.5. f(t) = cos2 t.

5.6. f(t) = sin2 t.

5.7. f(t) = 3 cosh2t + 4 sinh 5t.

5.8. f(t) = 2 e−2t sin t.

5.9. f(t) = e−2t cosh t.

5.10. f(t) =
(
1 + 2e−t

)2
.

5.11. f(t) = u(t − 1)(t − 1).

*5.12. f(t) = u(t − 1)t2.

5.13. f(t) = u(t − 1) cosh t.

5.14. f(t) = u(t − π/2) sin t.

Find the inverse Laplace transform of the given functions.

5.15. F (s) =
4(s + 1)

s2 − 16
.

5.16. F (s) =
2s

s2 + 3
.

5.17. F (s) =
2

s2 + 3
.

5.18. F (s) =
4

s2 − 9
.

5.19. F (s) =
4s

s2 − 9
.

5.20. F (s) =
3s − 5

s2 + 4
.

5.21. F (s) =
1

s2 + s − 20
.

5.22. F (s) =
1

(s − 2)(s2 + 4s + 3)
.

*5.23. F (s) =
2s + 1

s2 + 5s + 6
.
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5.24. F (s) =
s2 − 5

s3 + s2 + 9s + 9
.

5.25. F (s) =
3s2 + 8s + 3

(s2 + 1)(s2 + 9)
.

5.26. F (s) =
s − 1

s2(s2 + 1)
.

5.27. F (s) =
1

s4 − 9
.

5.28. F (s) =
(1 + e−2s)2

s + 2
.

*5.29. F (s) =
e−3s

s2(s − 1)
.

5.30. F (s) =
π

2
− arctan

s

2
.

5.31. F (s) = ln
s2 + 1

s2 + 4
.

Find the Laplace transform of the given functions.

5.32. f(t) =

{
t, 0 ≤ t < 1,
1, t ≥ 1.

5.33. f(t) =

{
2t + 3, 0 ≤ t < 2,

0, t ≥ 2.

5.34. f(t) = t sin 3t.

5.35. f(t) = t cos 4t.

*5.36. f(t) = e−t t cos t.

5.37. f(t) =

∫ t

0

τet−τ dτ .

5.38. f(t) = 1 ∗ e−2t.

5.39. f(t) = e−t ∗ et cos t.

5.40. f(t) =
et − e−t

t
.

Use Laplace transforms to solve the given initial value problems and plot the
solution.

5.41. y′′ − 6y′ + 13y = 0, y(0) = 0, y′(0) = −3.

5.42. y′′ + y = sin 3t, y(0) = 0, y′(0) = 0.

5.43. y′′ + y = sin t, y(0) = 0, y′(0) = 0.

5.44. y′′ + y = t, y(0) = 0, y′(0) = 0.

5.45. y′′ + 5y′ + 6y = 3 e−2t, y(0) = 0, y′(0) = 1.

5.46. y′′ + 2y′ + 5y = 4t, y(0) = 0, y′(0) = 0.

5.47. y′′ − 4y′ + 4y = t3 e2t, y(0) = 0, y′(0) = 0.
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5.48. y′′ + 4y =

{
1, 0 ≤ t < 1
0, t ≥ 1

, y(0) = 0, y′(0) = −1.

5.49. y′′ − 5y′ + 6y =

{
t, 0 ≤ t < 1
0, t ≥ 1

, y(0) = 0, y′(0) = 1.

5.50. y′′ + 4y′ + 3y =

{
4 e1−t, 0 ≤ t < 1

4, t ≥ 1
, y(0) = 0, y′(0) = 0.

*5.51. y′′ + 4y′ = u(t − 1), y(0) = 0, y′(0) = 0.

5.52. y′′ + 3y′ + 2y = 1 − u(t − 1), y(0) = 0, y′(0) = 1.

5.53. y′′ − y = sin t + δ(t − π/2), y(0) = 3.5, y′(0) = −3.5.

5.54. y′′ + 5y′ + 6y = u(t − 1) + δ(t − 2), y(0) = 0, y′(0) = 1.

Using Laplace transforms solve the given integral equations and plot the solutions.

5.55. y(t) = 1 +

∫ t

0

y(τ) dτ .

5.56. y(t) = sin t +

∫ t

0

y(τ) sin(t − τ) dτ .

5.57. y(t) = cos 3t + 2

∫ t

0

y(τ) cos 3(t − τ) dτ .

5.58. y(t) = t + et +

∫ t

0

y(τ) cosh(t − τ) dτ .

5.59. y(t) = t et + 2 et

∫ t

0

e−τy(τ) dτ .

Sketch the following 2π-periodic functions over three periods and find their Laplace
transforms.

5.60. f(t) = π − t, 0 < t < 2π.

5.61. f(t) = 4π2 − t2, 0 < t < 2π.

5.62. f(t) = e−t, 0 < t < 2π.

5.63. f(t) =

{
t, if 0 < t < π,

π − t, if π < t < 2π.

5.64. f(t) =

{
0, if 0 < t < π,

t − π, if π < t < 2π.

Exercises for Chapter 6

Find the interval of convergence of the given series and of the term by term
first derivative of the series.

6.1.

∞∑

n=1

(−1)n

2n + 1
xn.
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6.2.

∞∑

n=1

2n

n3n+3
xn.

6.3.
∞∑

n=2

lnn

n
xn.

6.4.
∞∑

n=1

1

n2 + 1
(x + 1)n.

6.5.

∞∑

n=3

n(n − 1)(n − 2)

4n
xn.

6.6.

∞∑

n=0

(−1)n

kn
x2n.

6.7.

∞∑

n=0

(−1)n

kn
x3n.

6.8.

∞∑

n=1

(4n)!

(n!)4
xn.

Find the power series solutions of the following ordinary differential equations.

6.9. y′′ − 3y′ + 2y = 0.

6.10. (1 − x2)y′′ − 2xy′ + 2y = 0.

6.11. y′′ + x2y′ + xy = 0.

*6.12. y′′ − xy′ − y = 0.

6.13. (x2 − 1)y′′ + 4xy′ + 2y = 0.

6.14. (1 − x)y′′ − y′ + xy = 0.

6.15. y′′ − 4xy′ + (4x2 − 2)y = 0.

6.16. y′′ − 2(x − 1)y′ + 2y = 0.

6.17. Show that the equation

sin θ
d2y

dθ2
+ cos θ

dy

dθ
+ n(n + 1)(sin θ)y = 0

can be transformed into Legendre’s equation by means of the substitution x =
cos θ.

6.18. Derive Rodrigues’ formula (6.10).

6.19. Derive the generating function (6.11).

6.20. Let A1 and A2 be two points in space (see Fig. 11.1). By means of (6.9)
derive the formula

1

r
=

1√
r2
1 + r2

2 − 2r1r2 cos θ
=

1

r2

∞∑

m=0

Pm(cos θ)

(
r1

r2

)m

,

which is important in potential theory.
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Figure 11.1. Distance r from point A1 to point A2.

6.21. Derive Bonnet recurrence formula,

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x), n = 1, 2, . . . (11.1)

(Hint. Differentiate the generating function (6.11) with respect to t, substitute
(6.11) in the differentiated formula, and compare the coefficients of tn.)

6.22. Compare the value of P4(0.7) obtained by means of the three-point recur-
rence formula (11.1) of the previous exercise with the value obtained by evaluating
P4(x) directly at x = 0.7.

6.23. For nonnegative integers m and n, with m ≤ n, let

pm
n (x) =

dm

dxn
Pn(x).

Show that the function pm
n (x) is a solution of the differential equation

(1 − x2)y′′ + 2(m + 1)xy′ + (n − m)(n + m + 1)y = 0.

Express the following polynomials in terms of Legendre polynomials

P0(x), P1(x), . . .

6.24. p(x) = 5x3 + 4x2 + 3x + 2, −1 ≤ x ≤ 1.

6.25. p(x) = 10x3 + 4x2 + 6x + 1, −1 ≤ x ≤ 1.

6.26. p(x) = x3 − 2x2 + 4x + 1, −1 ≤ x ≤ 2.

Find the first three coefficients of the Fourier–Legendre expansion of the following
functions and plot f(x) and its Fourier–Legendre approximation on the same
graph.

6.27. f(x) = ex, −1 < x < 1.

6.28. f(x) = e2x, −1 < x < 1.

6.29. f(x) =

{
0 −1 < x < 0,

1 0 < x < 1.

6.30. Integrate numerically

I =

∫ 1

−1

(5x5 + 4x4 + 3x3 + 2x2 + x + 1) dx,
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by means of the three-point Gaussian Quadrature formula. Moreover, find the
exact value of I and compute the error in the numerical value.

*6.31. Evaluate

I =

∫ 1.5

0.2

e−x2

dx,

by the three-point Gaussian Quadrature formula.

6.32. Evaluate

I =

∫ 1.7

0.3

e−x2

dx,

by the three-point Gaussian Quadrature formula.

6.33. Derive the four-point Gaussian Quadrature formula.

6.34. Obtain P4(x) by means of Bonnet’s formula of Exercise 6.21 or otherwise.

6.35. Find the zeros of P4(x) in radical form.

Hint : Put t = x2 in the even quartic polynomial P4(x) and solve the quadratic
equation.

6.36. Obtain P5(x) by means of Bonnet’s formula of Exercise 6.21 or otherwise.

5.37. Find the zeros of P5(x) in radical form.

Hint : Write P5(x) = xQ4(x). Then put t = x2 in the even quartic polynomial
Q4(x) and solve the quadratic equation.



CHAPTER 12

Exercises for Numerical Methods

Angles are always in radian measure.
Exercises for Chapter 7

7.1. Use the bisection method to find x3 for f(x) =
√

x − cosx on [0, 1]. Angles
in radian measure.

7.2. Use the bisection method to find x3 for

f(x) = 3(x + 1)(x − 1

2
)(x − 1)

on the following intervals:

[−2, 1.5], [−1.25, 2.5].

7.3. Use the bisection method to find a solution accurate to 10−3 for f(x) =
x − tanx on [4, 4.5]. Angles in radian measure.

7.4. Use the bisection method to find an approximation to
√

3 correct to within
10−4. [Hint : Consider f(x) = x2 − 3.]

7.5. Show that the fixed point iteration

xn+1 =
√

2xn + 3

for the solving the equation f(x) = x2−2x−3 = 0 converges in the interval [2, 4].

7.6. Use a fixed point iteration method, other than Newton’s method, to de-
termine a solution accurate to 10−2 for f(x) = x3 − x − 1 = 0 on [1, 2]. Use
x0 = 1.

7.7. Use Newton’s method to approximate
√

3 to 10−4. Start with en x0 =
1. Compare your result and the number of iterations required with the answer
obtained in Exercise 8.4.

7.8. Do five iterations of the fixed point method g(x) = cos(x− 1). Take x0 = 2.
Use at least 6 decimals. Find the order of convergence of the method. Angles in
radian measure.

7.9. Do five iterations of the fixed point method g(x) = 1 + sin2 x. Take x0 = 1.
Use at least 6 decimals. Find the order of convergence of the method. Angles in
radian measure.

7.10. Sketch the function f(x) = 2x− tan x and compute a root of the equation
f(x) = 0 to six decimals by means of Newton’s method with x0 = 1. Find the
order of convergence of the method.

*7.11. Sketch the function f(x) = e−x−tanx and compute a root of the equation
f(x) = 0 to six decimals by means of Newton’s method with x0 = 1. Find the
order of convergence of the method.

275
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7.12 Compute a root of the equation f(x) = 2x − tan x given in Exercise 8.10
with the secant method with starting values x0 = 1 and x1 = 0.5. Find the order
of convergence to the root.

7.13. Repeat Exercise 8.12 with the method of false position. Find the order of
convergence of the method.

7.14. Repeat Exercise 8.11 with the secant method with starting values x0 = 1
and x1 = 0.5. Find the order of convergence of the method.

7.15. Repeat Exercise 8.14 with the method of false position. Find the order of
convergence of the method.

7.16. Consider the fixed point method of Exercise 8.5:

xn+1 =
√

2xn + 3.

Complete the table:

n xn ∆xn ∆2xn

1 x1 = 4.000

2 x2 =

3 x3 =

Accelerate convergence by Aitken.

a1 = x1 −
(
∆x1

)2

∆2x1
=

7.17. Apply Steffensen’s method to the result of Exercise 8.9. Find the order of
convergence of the method.

7.18. Use Müller’s method to find the three zeros of

f(x) = x3 + 3x2 − 1.

7.19. Use Müller’s method to find the four zeros of

f(x) = x4 + 2x2 − x − 3.

7.20. Sketch the function f(x) = x − tan x. Find the multiplicity of the zero
x = 0. Compute the root x = 0 of the equation f(x) = 0 to six decimals by
means of a modified Newton method wich takes the multiplicity of the rood into
account. Start at x0 = 1. Find the order of convergence of the modified Newton
method that was used.

*7.21. Sketch the function f(x) = x − tanx. Find the multiplicity of the zero
x = 0. Compute the root x = 0 of the equation f(x) = 0 to six decimals by
means of the secant method. Start at x0 = 1 and x1 = 0.5. Find the order of
convergence of the method.
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Exercises for Chapter 8

8.1. Given the function f(x) = ln(x + 1) and the points x0 = 0, x1 = 0.6 and
x2 = 0.9. Construct the Lagrange interpolating polynomials of degrees exactly
one and two to approximate f(0.45) and find the actual errors.

8.2. Consider the data

f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091.

Interpolate f(8.4) by Lagrange interpolating polynomials of degree one, two and
three.

8.3. Construct the Lagrange interpolating polynomial of degree 2 for the function
f(x) = e2x cos 3x, using the values of f at the points x0 = 0, x1 = 0.3 and
x2 = 0.6.

*8.4. The three points

(0.1, 1.0100502), (0.2, 1.04081077), (0.4, 1.1735109)

lie on the graph of a certain function f(x). Use these points to estimate f(0.3).

8.5. Complete the following table of divided differences:

i xi f [xi] f [xi, xi+1] f [xi, xi+1, xi+2] f [xi, xi+1, xi+2, xi+3]

0 3.2 22.0
8.400

1 2.7 17.8 2.856

−0.528

2 1.0 14.2

3 4.8 38.3

4 5.6 5.17

Write the interpolating polynomial of degree 3 that fits the data at all points from
x0 = 3.2 to x3 = 4.8.

8.6. Interpolate the data

(−1, 2), (0, 0), (1.5,−1), (2, 4),

by means of Newton’s divided difference interpolating polynomial of degree three.
Plot the data and the interpolating polynomial on the same graph.

8.7. Repeat Exercise 2.1 using Newton’s divided difference interpolating polyno-
mials.

8.8. Repeat Exercise 2.2 using Newton’s divided difference interpolating polyno-
mials.
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8.9. Interpolate the data

(−1, 2), (0, 0), (1,−1), (2, 4),

by means of Gregory–Newton’s interpolating polynomial of degree three.

8.10. Interpolate the data

(−1, 3), (0, 1), (1, 0), (2, 5),

by means of Gregory–Newton’s interpolating polynomial of degree three.

8.11. Approximate f(0.05) using the following data and Gregory–Newton’s for-
ward interpolating polynomial of degree four.

x 0.0 0.2 0.4 0.6 0.8
f(x) 1.00000 1.22140 1.49182 1.82212 2.22554

*8.12. Approximate f(0.65) using the data in Exercise 2.11 and Gregory–
Newton’s backward interpolating polynomial of degree four.

8.13. Construct a Hermite interpolating polynomial of degree three for the data

x f(x) f ′(x)
8.3 17.56492 3.116256
8.6 18.50515 3.151762

Exercises for Chapter 9

9.1. Consider the numerical differentiation formulae

(ND.4) f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h) − f(x0 + 2h)] +

h2

3
f (3)(ξ),

(ND.5) f ′(x0) =
1

2h
[f(x0 + h) − f(x0 − h)] − h2

6
f (3)(ξ),

(ND.6) f ′(x0) =
1

12h
[f(x0 − 2h) − 8f(x0 − h) + 8f(x0 + h) − f(x0 + 2h)] +

h4

30
f (5)(ξ),

(ND.7) f ′(x0) =
1

12h
[−25f(x0) + 48f(x0 + h) − 36f(x0 + 2h) + 16f(x0 + 3h)

− 3f(x0 + 4h) +
h4

5
f (5)(ξ),

and the table {xn, f(xn)} :

x = 1:0.1:1.8; format long; table = [x’,(cosh(x)-sinh(x))’]

table =

1.00000000000000 0.36787944117144

1.10000000000000 0.33287108369808

1.20000000000000 0.30119421191220

1.30000000000000 0.27253179303401

1.40000000000000 0.24659696394161

1.50000000000000 0.22313016014843

1.60000000000000 0.20189651799466

1.70000000000000 0.18268352405273

1.80000000000000 0.16529888822159

For each of the four formulae (DN.4)–(DN.7) with h = 0.1,
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(a) compute the numerical values

ndf = f ′(1.2)

(deleting the error term in the formulae),
(b) compute the exact value at x = 1.2 of the derivative df = f ′(x) of the

given function

f(x) = coshx − sinhx,

(c) compute the error

ε = ndf − df ;

(d) verify that |ε| is bounded by the absolute value of the error term.

9.2. Use Richardson’s extrapolation with h = 0.4, h/2 and h/4 to improve the
value f ′(1.4) obtained by formula (ND.5) for f(x) = x2 e−x.

9.3. Evaluate

∫ 1

0

dx

1 + x
by the composite trapezoidal rule with n = 10.

9.4. Evaluate

∫ 1

0

dx

1 + x
by the composite Simpson’s rule with n = 2m = 10.

9.5. Evaluate

∫ 1

0

dx

1 + 2x2
by the composite trapezoidal rule with n = 10.

9.6. Evaluate

∫ 1

0

dx

1 + 2x2
by the composite Simpson’s rule with n = 2m = 10.

9.7. Evaluate

∫ 1

0

dx

1 + x3
by the composite trapezoidal rule with h for an error

of 10−4.

9.8. Evaluate

∫ 1

0

dx

1 + x3
by the composite Simpson’s rule with with h for an

error of 10−6.

9.9. Determine the values of h and n to approximate
∫ 3

1

lnxdx

to 10−3 by the following composite rules: trapezoidal, Simpson’s, and midpoint.

9.10. Same as Exercise 10.9 with
∫ 2

0

1

x + 4
dx

to 10−5.

9.11. Use Romberg integration to compute R3,3 for the integral
∫ 1.5

1

x2 lnxdx.

9.12. Use Romberg integration to compute R3,3 for the integral
∫ 1.6

1

2x

x2 − 4
dx.



280 12. EXERCISES FOR NUMERICAL METHODS

9.13. Apply Romberg integration to the integral
∫ 1

0

x1/3 dx

until Rn−1,n−1 and Rn,n agree to within 10−4.

Exercises for Chapter 10

Use Euler’s method with h = 0.1 to obtain a four-decimal approximation for each
initial value problem on 0 ≤ x ≤ 1 and plot the numerical solution.

10.1. y′ = e−y − y + 1, y(0) = 1.

10.2. y′ = x + sin y, y(0) = 0.

*10.3. y′ = x + cos y, y(0) = 0.

10.4. y′ = x2 + y2, y(0) = 1.

10.5. y′ = 1 + y2, y(0) = 0.

Use the improved Euler method with h = 0.1 to obtain a four-decimal approx-
imation for each initial value problem on 0 ≤ x ≤ 1 and plot the numerical
solution.

10.6. y′ = e−y − y + 1, y(0) = 1.

10.7. y′ = x + sin y, y(0) = 0.

*10.8. y′ = x + cos y, y(0) = 0.

10.9. y′ = x2 + y2, y(0) = 1.

10.10. y′ = 1 + y2, y(0) = 0.

Use the Runge–Kutta method of order 4 with h = 0.1 to obtain a six-decimal
approximation for each initial value problem on 0 ≤ x ≤ 1 and plot the numerical
solution.

10.11. y′ = x2 + y2, y(0) = 1.

10.12. y′ = x + sin y, y(0) = 0.

*10.13. y′ = x + cos y, y(0) = 0.

10.14. y′ = e−y, y(0) = 0.

10.15. y′ = y2 + 2y − x, y(0) = 0.

Use the Matlab ode23 embedded pair of order 3 with h = 0.1 to obtain a six-
decimal approximation for each initial value problem on 0 ≤ x ≤ 1 and estimate
the local truncation error by means of the given formula.

10.16. y′ = x2 + 2y2, y(0) = 1.

10.17. y′ = x + 2 sin y, y(0) = 0.

10.18. y′ = x + 2 cos y, y(0) = 0.

10.19. y′ = e−y, y(0) = 0.
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10.20. y′ = y2 + 2y − x, y(0) = 0.

Use the Adams–Bashforth–Moulton three-step predictor-corrector method with
h = 0.1 to obtain a six-decimal approximation for each initial value problem on
0 ≤ x ≤ 1, estimate the local error at x = 0.5, and plot the numerical solution.

10.21. y′ = x + sin y, y(0) = 0.

10.22. y′ = x + cos y, y(0) = 0.

10.23. y′ = y2 − y + 1, y(0) = 0.

Use the Adams–Bashforth–Moulton four-step predictor-corrector method with
h = 0.1 to obtain a six-decimal approximation for each initial value problem on
0 ≤ x ≤ 1, estimate the local error at x = 0.5, and plot the numerical solution.

10.24. y′ = x + sin y, y(0) = 0.

*10.25. y′ = x + cos y, y(0) = 0.

10.26. y′ = y2 − y + 1, y(0) = 0.





Solutions to Starred Exercises

Solutions to Exercises from Chapters 1 to 6

Ex. 1.3. Solve (1 + x2)y′ = cos2 y.

Solution. Separate the variables,

dy

cos2 y
=

dx

1 + x2
,

and integrate, ∫
dy

cos2 y
=

∫
dx

1 + x2
+ c,

to get
tan y = arctanx + c,

so the general solution is y = arctan(arctanx + c). �

Ex. 1.11. Solve xy′ = y +
√

y2 − x2.

Solution. Rewrite the equation as

x
dy

dx
= y +

√
y2 − x2

or (
y +

√
y2 − x2

)
dx − xdy = 0,

so
M(x, y) = y +

√
y2 − x2 and N(x, y) = −x,

which are both homogeneous of degree 1. So let

y = ux and dy = u dx + xdy

to get (
ux +

√
u2x2 − x2

)
dx − x(u dx + xdu) = 0,

or
uxdx + x

√
u2 − 1 dx − xu dx − x2 du = 0,

or
x
√

u2 − 1 dx − x2 du = 0,

or
du√

u2 − 1
=

dx

x
.

Integrate ∫
du√

u2 − 1
=

∫
dx

x
+ c

to get
arccosh u = ln |x| + c,

283
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and so
u = cosh(ln |x| + c)

and the general solution is y = x cosh(ln |x| + c). �

Ex. 1.21. Solve the initial value problem

(2xy − 3) dx + (x2 + 4y) dy = 0, y(1) = 2.

Solution.

M(x, y) = 2xy − 3 and N(x, y) = x2 + 4y,

My = 2x and Nx = 2x,

My = Nx,

so the differential equation is exact. Then

u(x, y) =

∫
M(x, y) dx + T (y)

=

∫
(2xy − 3) dx + T (y)

= x2y − 3x + T (y).

But
∂u

∂y
=

∂

∂y

(
x2y − 3x + T (y)

)
= x2 + T ′(y) = N(x, y) = x2 + 4y,

so
T ′(y) = 4y ⇒ T (y) = 2y2,

and
u(x, y) = x2y − 3x + 2y2.

Thus, the general solution is

x2y − 3x + 2y2 = c.

But y(1) = 2, so

(1)2(2) − 3(1) + 2(22) = c ⇒ c = 7.

Therefore the unique solution is x2y − 3x + 2y2 = 7. �

Ex. 1.25. Find the general solution of (x + y2) dx − 2xy dy = 0.

Solution.

M(x, y) = x + y2 and N(x, y) = −2xy,

My = 2y and Nx = −2y,

My 6= Nx,

so the differential equation is not exact. Let

My − Nx

N
=

4y

−2xy
= − 2

x
,

a function of x only. So

µ(x) = e
R

− 2
x

dx = e−2 ln x = elnx−2

= x−2,

and the differential equation becomes
(
x−1 + x−2y2

)
dx − 2x−1y dy = 0.
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Now,

M∗(x, y) = x−1 + x−2y2 and N∗(x, y) = −2x−1y,

M∗
y = 2x−2y and N∗

x = 2x−2y,

M∗
y = N∗

x ,

so the differential equation is now exact. Then

u(x, y) =

∫
N∗(x, y) dy + T (x)

=

∫
−2x−1y dy + T (x)

= −x−1y2 + T (x).

But

∂u

∂x
=

∂

∂x

(
−x−1y2 + T (x)

)
= x−2y2 + T ′(x) = M∗(x, y) = x−1 + x−2y2,

so

T ′(x) = x−1 ⇒ T (x) = ln |x|,
and then

u(x, y) = ln |x| − x−1y2.

Thus, the general solution is

ln |x| − x−1y2 = c,

or x−1y2 = c + ln |x|, or y2 = cx + x ln |x|. �

Ex. 1.39. Solve the initial-value problem y′ + y cosx = cosx, y(0) = 1.

Solution. This is a first-order linear differential equation of the form y′ +
f(x)y = r(x) with f(x) = cosx and r(x) = cosx, so the general solution is

y(x) = e−
R

cos x dx

[∫
e

R

cos x dx cosxdx + c

]

= e− sin x

[∫
esin x cosxdx + c

]

= e− sin x
[
esin x + c

]

= 1 + c e− sin x.

Then,

y(0) = 1 ⇒ 1 = 1 + c e− sin 0 = 1 + c ⇒ c = 0,

and the unique solution is y(x) = 1. �

Ex. 2.3. Solve the differential equation y′′ − 9y′ + 20y = 0.

Solution. The characteristic equation is

λ2 − 9λ + 20 = (λ − 4)(λ − 5) = 0,

and the general solution is y(x) = c1 e4x + c2 e5x. �

Ex. 2.13. Solve the Euler–Cauchy differential equation x2y′′+3xy′−3y = 0.
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Solution. The characteristic equation is

m(m − 1) + 3m− 3 = m2 + 2m − 3 = (m + 3)(m − 1) = 0,

so the general solution is y(x) = c1x + c2x
−3. �

Ex. 3.1. Solve the constant coefficient differential equation y′′′ + 6y′′ = 0.

Solution. The characteristic equation is

λ3 + 6λ2 = λ2(λ + 6) = 0,

so the general solution is y(x) = c1 + c2x + c3 e−6x. �

Ex. 3.9. Determine whether the functions

y1(x) = x, y2(x) = x2, y3(x) = 2x − 5x2

are linearly dependent or independent on −∞ < x < +∞.

Solution. Since

y3(x) = 2x − 5x2 = 2y1(x) − 5y2(x),

the function are linearly dependent. �

Ex. 3.13. Show by computing the Wronskian that the functions ex, e2x,
e−x are linearly independent on the interval −∞ < x < +∞.

Solution.∣∣∣∣∣∣

y1 y2 y3

y′
1 y′

2 y′
3

y′′
1 y′

2 y′′
3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ex e2x e−x

ex 2 e2x −e−x

ex 4 e2x e−x

∣∣∣∣∣∣

= (ex)(e2x)(e−x)

∣∣∣∣∣∣

1 1 1
1 2 −1
1 4 1

∣∣∣∣∣∣

= e2x

[∣∣∣∣
2 −1
4 1

∣∣∣∣−
∣∣∣∣

1 −1
1 1

∣∣∣∣+
∣∣∣∣

1 2
1 4

∣∣∣∣
]

= e2x
[
(2 + 4) − (1 + 1) + (4 − 2)

]

= 6 e2x 6= 0

for any x. Since the three functions have continuous derivatives up to order 3, by
Corollary 3.2 they are solutions of the same differential equation; therefore they
are linearly independent on −∞ < x < +∞. �

Ex. 3.25. Solve the nonhomogeneous differential equation y′′−y′ = ex sin x.

Solution. The corresponding homogeneous equation, y′′− y′ = 0, has char-
acteristic equation

λ2 − λ = λ(λ − 1) = 0

and general solution

yh(x) = c1 + c2 ex.

The right-hand side is r(x) = ex sin x, so we can use Undetermined Coefficients
and our guess for the particular solution is

yp(x) = a ex cosx + b ex sinx.
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Then

y′
p(x) = a ex cosx − a ex sin x + b ex sin x + b ex cosx

and

y′′
p (x) = a ex cosx − 2a ex sinx − a ex cosx + b ex sin x + 2b ex cosx − b ex sinx

= −2a ex sin x + 2b ex cosx.

Therefore,

y′′
p (x) − y′

p(x) = −2a ex sin x + 2b ex cosx

− (a ex cosx − a ex sin x + b ex sin x + b ex cosx)

= −a ex cosx − a ex sin x + b ex cosx − b ex sinx

= (b − a) ex cosx + (−a − b) ex sin x

= r(x) = ex sin x.

So b − a = 0 and −a − b = 1 ⇒ a = b = −1/2. Thus, the particular solution is

yp(x) = −1

2
ex cosx − 1

2
ex sin x

and the general solution is

y(x) = yh(x) + yp(x)

= c1 + c2 ex − 1

2
ex cosx − 1

2
ex sin x.

�

Ex. 3.35. Solve the nonhomogeneous differential equation

y′′ + 3y′ + 2y =
1

1 + ex
.

Solution. The corresponding homogeneous equation, y′′ +3y′+2y = 0, has
characteristic equation

λ2 + 3λ + 2 = (λ + 1)(λ + 2) = 0

and general solution

yh(x) = c1 e−x + c2 e−2x.

The right-hand side r(x) = 1
1+ex admits infinitely many independent derivatives

so we must use Variation of Parameters. The equations for c′1(x) and c′1(x) are

c′1y1 + c′2y2 = 0,

c′1y
′
1 + c′2y

′
2 =

1

1 + ex
,

or

c′1 e−x + c′2 e−2x = 0, (a)

−c′1 e−x − 2c′2 e−2x =
1

1 + ex
. (b)

Thus, (a)+(b) gives

−c′2 e−2x =
1

1 + ex
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or

c′2 =
−e2x

1 + ex
=

1 − e2x − 1

1 + ex

=
(1 + ex)(1 − ex) − 1

1 + ex
= 1 − ex − 1

1 + ex
,

so

c′2(x) = 1 − ex − e−x

e−x + 1
,

and

c2(x) = x − ex + ln
(
e−x + 1

)
.

Then, (a) says

c′1 = −c′2 e−x =
ex

1 + ex
⇒ c1(x) = ln (ex + 1) .

So the particular solution is

yp(x) = c1(x)y1(x) + c2(x)y2(x)

= ln(ex + 1) e−x +
(
x − ex + ln(e−x + 1)

)
e−2x

= e−x ln(ex + 1) + x e−2x − e−x + e−2x ln(e−x + 1).

Since e−x appears in yh(x), we can delete that term and take

yp(x) = e−x ln(ex + 1) + x e−2x + e−2x ln(e−x + 1).

The general solution is

y(x) = c1 e−x + c2 e−2x + e−x ln(ex + 1) + x e−2x + e−2x ln(e−x + 1). �

Ex. 4.3. Solve the system y′ =

[
−1 1

4 −1

]
y.

Solution. Letting A be the matrix of the system, we have

det(A − λI) =

∣∣∣∣
−1 − λ 1

4 −1 − λ

∣∣∣∣
= (−1 − λ)2 − 4 = λ2 + 2λ − 3 = (λ + 3)(λ − 1) = 0,

so the eigenvalues are λ1 = −3 and λ2 = 1.
For λ1 = −3,

(A − λ1I)u1 =

[
−1 1

4 −1

]
u1 = 0, ⇒ u1 =

[
1

−2

]
.

For λ2 = 1,

(A − λ2I)u2 =

[
−2 1

4 −2

]
u2 = 0, ⇒ u2 =

[
1
2

]
.

The genral solution is

y(x) = c1 e−3x

[
1

−2

]
+ c2 ex

[
1
2

]
. �

Ex. 5.5. Find the Laplace transform of f(t) = cos2 t =
1

2

(
1 + cos(2t)

)
.
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Solution.

F (s) = L{cos2 t} = L
{

1

2

(
1 + cos(2t)

)}
=

1

2

(
1

s
+

s

s2 + 4

)
. �

Ex. 5.12. Find the Laplace transform of f(t) = u(t − 1)t2.

Solution.

F (s) = L{u(t − 1)t2} = e−sL{t2 + 2t + 1} = e−s

(
2

s3
+

2

s2
+

1

s

)
,

where the transformation f(t− 1) = t2 into f(t) = (t +1)2 = t2 + 2t+ 1 has been
used. �

Ex. 5.23. Find the inverse Laplace transform of F (s) =
2s + 1

s2 + 5s + 6
.

Solution.

F (s) =
2s + 1

s2 + 5s + 6
=

2s + 1

(s + 3)(s + 2)
=

A

s + 3
+

B

s + 2
=

5

s + 3
− 3

s + 2

since

A(s + 2) + B(s + 3) = 2s + 1 ⇒
{

A + B = 2, A = 5,
2A + 3B = 1, B = −3.

So

f(t) = L−1

{
5

s + 3
− 3

s + 2

}
= 5 e−3t − 3 e−2t. �

Ex. 5.29. Find the inverse Laplace transform of F (s) =
e−3s

s2(s − 1)
.

Solution.

F (s) =
e−3s

s2(s − 1)
= e−3s

[
As + B

s2
+

C

s + 1

]

= e−3s

[−s − 1

s2
+

1

s − 1

]
= e−3s

[
1

s − 1
− 1

s
− 1

s2

]

since

(As + B)(s − 1) + Cs2 = 1 ⇒





A + C = 0, B = −1,
B − A = 0, A = −1,

−B = 1, C = 1.

Thus

f(t) = L−1

{
e−3

s2(s − 1)

}
= u(t − 3)g(t − 3)

= u(t − 3)
[
et−3 − 1 − (t − 3)

]
= u(t − 3)

(
et−3 − t + 2

)
.

�

Ex. 5.36. Find the Laplace transform of f(t) = t e−t cos t.
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Solution.

F (s) = L
{
t e−t cos t

}
= − d

ds
L
{
e−t cos t

}

= − d

ds

[
s + 1

(s + 1)2 + 1

]
= −

[
(1)
(
(s + 1)2 + 1

)
− 2(s + 1)(s + 1)

((s + 1)2 + 1)
2

]

=
(s + 1)2 − 1

((s + 1)2 + 1)2
=

s2 + 2s

(s2 + 2s + 2)2
.

�

Ex. 5.51. Solve y′′ + 4y′ = u(t − 1), y(0) = 0, y′(0) = 0, by Laplace
transform.

Solution. Let Y (s) = L{y(t)} and take the Laplace transform of the equa-
tion to get

L{y′′} + 4L{y′} = L{u(t − 1)},

s2Y (s) − sy(0) − y′(0) + 4(sY (s) − y(0)) =
e−s

s
,

(
s2 + 4s

)
Y (s) =

e−s

s
⇒ Y (s) =

e−s

s2(s + 4)
.

By partial fractions,

Y (s) = e−s

[
As + B

s2
+

C

s + 4

]
.

Now

(As + B)(s + 4) + Cs2 = 1 ⇒





A + C = 0, B = 1/4,
4A + B = 0, A = −1/16

4B = 1, C = 1/16.

So

Y (s) =
e−s

16

[−s + 4

s2
+

1

s + 4

]
=

e−s

16

[
4

s2
− 1

s
+

1

s + 4

]

and the solution to the initial value problem is

y(t) = L−1{Y (s)} = L−1

{
e−s

16

[
4

s2
− 1

s
+

1

s + 4

]}

= u(t − 1)g(t − 1) =
1

16
u(t − 1)

[
4(t − 1) − 1 + e−4(t−1)

]

=
1

16
u(t − 1)

[
4t − 5 + e−4(t−1)

]
.

�

Ex. 6.12. Find the power series solutions of the equation y′′ − xy′ − y = 0.

Solution. Let

y(x) =

∞∑

m=0

amxm,

so

y′(x) =

∞∑

m=0

mamxm−1 and y′′(x) =

∞∑

m=0

m(m − 1)amxm−2.
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Then

y′′ − xy′′ − y =

∞∑

m=0

m(m − 1)amxm−2 − x

∞∑

m=0

mamxm−1 −
∞∑

m=0

amxm

=

∞∑

m=0

(m + 1)(m + 2)am+2x
m −

∞∑

m=0

mamxm −
∞∑

m=0

amxm

=

∞∑

m=0

[
(m + 1)(m + 2)am+2 − mamxm − am

]
xm

= 0, for all x,

so

(m + 1)(m + 2)am+2 − (m + 1)am = 0, for all m,

and the recurrence relation is

am+2 =
am

m + 2
.

So for even m,

a2 =
a0

2
, a4 =

a2

4
=

a0

2 · 4 , a6 =
a4

6
=

a0

2 · 4 · 6 , a8 =
a6

8
=

a0

2 · 4 · 6 · 8 =
a0

244!
.

Thus, the general pattern is

a2k =
a0

2kk!
.

For odd m, we have

a3 =
a1

3
, a5 =

a3

5
=

a1

3 · 5 , a7 =
a5

7
=

a1

5 · 5 · 7 ,

and the general pattern is

a2k+1 =
a1

1 · 3 · 5 · · · (2k + 1)
=

a12
kk!

1 · 3 · 5 · · · (2k + 1)2 · 4 · 6 · · · (2k)
=

2kk!a1

(2k + 1)!
.

The general solution is

y(x) =

∞∑

m=0

amxm =

∞∑

k=0

a2kx2k +

∞∑

k=0

a2k+1x
2k+1

= a0

∞∑

k=0

x2k

k!2k
+ a1

∞∑

k=0

2kk!

(2k + 1)!
x2k+1.

�

Ex. 6.31. Evaluate I =

∫ 1.5

0.2

e−x2

dx by the three-point Gaussian Quadra-

ture formula.

Solution. Use the substitution

x =
1

2
[0.2(1 − t) + 1.5(t + 1)] =

1

2
(1.3t + 1.7) = 0.65t + 0.85
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and dx = 0.65 dt to get the limits −1 and 1. Then
∫ 1.5

0.2

e−x2

dx =

∫ 1

−1

e−(0.65t+0.85)2(0.65) dt

≈ 0.65

3∑

j=1

wjf(tj)

= 0.65

[
5

9
e−(0.65(−0.774596 669 2)+0.85)2 +

8

9
e−(0.65t(0)+0.85)2

+
5

9
e−(0.65(0.774 596 669 2)+0.85)2

]

= 0.65

[
5

9
e−0.120 070 7 +

8

9
e−0.7225 +

5

9
e−1.831 929 2

]

= 0.65(0.492 698 7+ 0.431 588 3 + 0.088 946, 8)

= 0.658 602.

�

Solutions to Exercises from Chapter 7

Ex. 7.11. Sketch the function

f(x) = e−x − tanx

and compute a root of the equation f(x) = 0 to six decimals by means of Newton’s
method with x0 = 1.

Solution. We use the newton1_11 M-file

function f = newton1_11(x); % Exercise 1.11.

f = x - (exp(-x) - tan(x))/(-exp(-x) - sec(x)^2);

We iterate Newton’s method and monitor convergence to six decimal places.

>> xc = input(’Enter starting value:’); format long;

Enter starting value:1

>> xc = newton1_11(xc)

xc = 0.68642146135728

>> xc = newton1_11(xc)

xc = 0.54113009740473

>> xc = newton1_11(xc)

xc = 0.53141608691193

>> xc = newton1_11(xc)

xc = 0.53139085681581

>> xc = newton1_11(xc)

xc = 0.53139085665216

All the digits in the last value of xc are exact. Note the convergence of order 2.
Hence the root is xc = 0.531391 to six decimals.

We plot the two functions and their difference. The x-coordinate of the point
of intersection of the two functions is the root of their difference.
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Figure 12.1. Graph of two functions and their difference for Exercise 8.11.

x=0:0.01:1.3;

subplot(2,2,1); plot(x,exp(-x),x,tan(x));

title(’Plot of exp(-x) and tan(x)’); xlabel(’x’); ylabel(’y(x)’);

subplot(2,2,2); plot(x,exp(-x)-tan(x),x,0);

title(’Plot of exp(-x)-tan(x)’); xlabel(’x’); ylabel(’y(x)’);

print -deps Fig9_2

�

Ex. 7.21. Compute a root of the equation f(x) = x − tanx with the secant
method with starting values x0 = 1 and x1 = 0.5. Find the order of convergence
to the root.

Solution. Since

f(0) = f ′(0) = f ′′(0) = 0, f ′′′(0) 6= 0,

x = 0 is a triple root.

x0 = 1; x1 = 0.5; % starting values

x = zeros(20,1);

x(1) = x0; x(2) = x1;

for n = 3:20

x(n) = x(n-1) -(x(n-1)-x(n-2)) ...

/(x(n-1)-tan(x(n-1))-x(n-2)+tan(x(n-2)))*(x(n-1)-tan(x(n-1)));

end

dx = abs(diff(x));

p = 1; % checking convergence of order 1

dxr = dx(2:19)./(dx(1:18).^p);

table = [[0:19]’ x [0; dx] [0; 0; dxr]]

table =

n x_n x_n - x_{n-1} |x_n - x_{n-1}|

/|x_{n-1} - x_{n-2}|

0 1.00000000000000

1 0.50000000000000 0.50000000000000

2 0.45470356524435 0.04529643475565 0.09059286951131
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3 0.32718945543123 0.12751410981312 2.81510256824784

4 0.25638399918811 0.07080545624312 0.55527546204022

5 0.19284144711319 0.06354255207491 0.89742451283310

6 0.14671560243705 0.04612584467614 0.72590481763723

7 0.11082587909404 0.03588972334302 0.77808273420254

8 0.08381567002072 0.02701020907332 0.75258894628889

9 0.06330169146740 0.02051397855331 0.75948980985777

10 0.04780894321090 0.01549274825651 0.75522884145761

11 0.03609714636358 0.01171179684732 0.75595347277403

12 0.02725293456160 0.00884421180198 0.75515413367179

13 0.02057409713542 0.00667883742618 0.75516479882196

14 0.01553163187404 0.00504246526138 0.75499146627099

15 0.01172476374403 0.00380686813002 0.75496169684658

16 0.00885088980844 0.00287387393559 0.75491817353192

17 0.00668139206035 0.00216949774809 0.75490358892216

18 0.00504365698583 0.00163773507452 0.75489134568691

19 0.00380735389990 0.00123630308593 0.75488588182657

Therefore, x19 = 0.0038 is an approximation to the triple root x = 0. Since
the ratio

|xn − xn−1|
|xn−1 − xn−2|

→ 0.75 ≈ constant

as n grows, we conclude that the method converges to order 1.
Convergence is slow to a triple root. In general, the secant method may not

converge at all to a multiple root. �

Solutions to Exercises for Chapter 8

Ex. 8.4. The three points

(0.1, 1.0100502), (0.2, 1.04081077), (0.4, 1.1735109)

lie on the graph of a certain function f(x). Use these points to estimate f(0.3).

Solution. We have

f [0.1, 0.2] =
1.04081077− 1.0100502

0.1
= 0.307606,

f [0.2, 0.4] =
1.1735109− 1.04081077

0.2
= 0.663501

and

f [0.1, 0.2, 0, 4] =
0.663501− 0.307606

0.3
= 1.18632.

Therefore,

p2(x) = 1.0100502 + (x − 0.1) × 0.307606 + (x − 0.1) (x − 0.2) × 1.18632

and
p2(0.3) = 1.0953. �

Ex. 8.12. Approximate f(0.65) using the data in Exercise 2.10

x 0.0 0.2 0.4 0.6 0.8
f(x) 1.00000 1.22140 1.49182 1.82212 2.22554

and Gregory–Newton’s backward interpolating polynomial of degree four.
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Solution. We construct the difference table.

f = [1 1.2214 1.49182 1.82212 2.22554];

ddt = [f’ [0 diff(f)]’ [0 0 diff(f,2)]’ [0 0 0 diff(f,3)]’ ...

[0 0 0 0 diff(f,4)]’]

The backward difference table is

n xn fn ∇fn ∇2fn ∇3fn ∇4fn

0 0.0 1.0000
0.22140

1 0.2 1.2214 0.04902
0.27042 0.01086

2 0.4 1.4918 0.05998 0.00238
0.33030 0.01324

3 0.6 1.8221 0.07312
0.40342

4 0.8 2.2255

s = (0.65-0.80)/0.2 % the variable s

s = -0.7500

format long

p4 = ddt(5,1) + s*ddt(5,2) + s*(s+1)*ddt(5,3)/2 ....

+ s*(s+1)*(s+2)*ddt(5,4)/6 + s*(s+1)*(s+2)*(s+3)*ddt(5,5)/24

p4 = 1.91555051757812

�

Solutions to Exercises for Chapter 10

The M-file exr5_25 for Exercises 10.3, 10.8, 10.13 and 10.25 is

function yprime = exr5_25(x,y); % Exercises 10.3, 10.8, 10.13 and 10.25.

yprime = x+cos(y);

Ex. 10.3. Use Euler’s method with h = 0.1 to obtain a four-decimal ap-
proximation for the initial value problem

y′ = x + cos y, y(0) = 0

on 0 ≤ x ≤ 1 and plot the numerical solution.

Solution. The Matlab numeric solution.— Euler’s method applied to
the given differential equation:

clear

h = 0.1; x0= 0; xf= 1; y0 = 0;

n = ceil((xf-x0)/h); % number of steps

%

count = 2; print_time = 1; % when to write to output

x = x0; y = y0; % initialize x and y

output1 = [0 x0 y0];

for i=1:n

z = y + h*exr5_25(x,y);

x = x + h;

if count > print_time
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output1 = [output1; i x z];

count = count - print_time;

end

y = z;

count = count + 1;

end

output1

save output1 %for printing the graph

The command output1 prints the values of n, x, and y.

n x y

0 0 0

1.00000000000000 0.10000000000000 0.10000000000000

2.00000000000000 0.20000000000000 0.20950041652780

3.00000000000000 0.30000000000000 0.32731391010682

4.00000000000000 0.40000000000000 0.45200484393704

5.00000000000000 0.50000000000000 0.58196216946658

6.00000000000000 0.60000000000000 0.71550074191996

7.00000000000000 0.70000000000000 0.85097722706339

8.00000000000000 0.80000000000000 0.98690209299587

9.00000000000000 0.90000000000000 1.12202980842386

10.00000000000000 1.00000000000000 1.25541526027779

�

Ex. 10.8. Use the improved Euler method with h = 0.1 to obtain a four-
decimal approximation for the initial value problem

y′ = x + cos y, y(0) = 0

on 0 ≤ x ≤ 1 and plot the numerical solution.

Solution. The Matlab numeric solution.— The improved Euler method
applied to the given differential equation:

clear

h = 0.1; x0= 0; xf= 1; y0 = 0;

n = ceil((xf-x0)/h); % number of steps

%

count = 2; print_time = 1; % when to write to output

x = x0; y = y0; % initialize x and y

output2 = [0 x0 y0];

for i=1:n

zp = y + h*exr5_25(x,y); % Euler’s method

z = y + (1/2)*h*(exr5_25(x,y)+exr5_25(x+h,zp));

x = x + h;

if count > print_time

output2 = [output2; i x z];

count = count - print_time;

end

y = z;

count = count + 1;
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end

output2

save output2 %for printing the graph

The command output2 prints the values of n, x, and y.

n x y

0 0 0

1.00000000000000 0.10000000000000 0.10475020826390

2.00000000000000 0.20000000000000 0.21833345972227

3.00000000000000 0.30000000000000 0.33935117091202

4.00000000000000 0.40000000000000 0.46622105817179

5.00000000000000 0.50000000000000 0.59727677538612

6.00000000000000 0.60000000000000 0.73088021271199

7.00000000000000 0.70000000000000 0.86552867523997

8.00000000000000 0.80000000000000 0.99994084307400

9.00000000000000 0.90000000000000 1.13311147003613

10.00000000000000 1.00000000000000 1.26433264384505

�

Ex. 10.13. Use the Runge–Kutta method of order 4 with h = 0.1 to obtain
a six-decimal approximation for the initial value problem

y′ = x + cos y, y(0) = 0

on 0 ≤ x ≤ 1 and plot the numerical solution.

Solution. The Matlab numeric solution.— The Runge–Kutta method
of order 4 applied to the given differential equation:

clear

h = 0.1; x0= 0; xf= 1; y0 = 0;

n = ceil((xf-x0)/h); % number of steps

%

count = 2; print_time = 1; % when to write to output

x = x0; y = y0; % initialize x and y

output3 = [0 x0 y0];

for i=1:n

k1 = h*exr5_25(x,y);

k2 = h*exr5_25(x+h/2,y+k1/2);

k3 = h*exr5_25(x+h/2,y+k2/2);

k4 = h*exr5_25(x+h,y+k3);

z = y + (1/6)*(k1+2*k2+2*k3+k4);

x = x + h;

if count > print_time

output3 = [output3; i x z];

count = count - print_time;

end

y = z;

count = count + 1;

end

output3
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save output3 % for printing the graph

The command output3 prints the values of n, x, and y.

n x y

0 0 0

1.00000000000000 0.10000000000000 0.10482097362427

2.00000000000000 0.20000000000000 0.21847505355285

3.00000000000000 0.30000000000000 0.33956414151249

4.00000000000000 0.40000000000000 0.46650622608728

5.00000000000000 0.50000000000000 0.59763447559658

6.00000000000000 0.60000000000000 0.73130914485224

7.00000000000000 0.70000000000000 0.86602471267959

8.00000000000000 0.80000000000000 1.00049620051241

9.00000000000000 0.90000000000000 1.13371450064800

10.00000000000000 1.00000000000000 1.26496830711844

�

Ex. 10.25. Use the Adams–Bashforth–Moulton four-step predictor-corrector
method with h = 0.1 to obtain a six-decimal approximation for the initial value
problem

y′ = x + cos y, y(0) = 0

on 0 ≤ x ≤ 1, estimate the local error at x = 0.5, and plot the numerical solution.

Solution. The Matlab numeric solution.— The initial conditions and
the Runge–Kutta method of order 4 are used to obtain the four starting values
for the ABM four-step method.

clear

h = 0.1; x0= 0; xf= 1; y0 = 0;

n = ceil((xf-x0)/h); % number of steps

%

count = 2; print_time = 1; % when to write to output

x = x0; y = y0; % initialize x and y

output4 = [0 x0 y0 0];

%RK4

for i=1:3

k1 = h*exr5_25(x,y);

k2 = h*exr5_25(x+h/2,y+k1/2);

k3 = h*exr5_25(x+h/2,y+k2/2);

k4 = h*exr5_25(x+h,y+k3);

z = y + (1/6)*(k1+2*k2+2*k3+k4);

x = x + h;

if count > print_time

output4 = [output4; i x z 0];

count = count - print_time;

end

y = z;

count = count + 1;

end
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% ABM4

for i=4:n

zp = y + (h/24)*(55*exr5_25(output4(i,2),output4(i,3))-...

59*exr5_25(output4(i-1,2),output4(i-1,3))+...

37*exr5_25(output4(i-2,2),output4(i-2,3))-...

9*exr5_25(output4(i-3,2),output4(i-3,3)) );

z = y + (h/24)*( 9*exr5_25(x+h,zp)+...

19*exr5_25(output4(i,2),output4(i,3))-...

5*exr5_25(output4(i-1,2),output4(i-1,3))+...

exr5_25(output4(i-2,2),output4(i-2,3)) );

x = x + h;

if count > print_time

errest = -(19/270)*(z-zp);

output4 = [output4; i x z errest];

count = count - print_time;

end

y = z;

count = count + 1;

end

output4

save output4 %for printing the grap

The command output4 prints the values of n, x, and y.

n x y Error estimate

0 0 0 0

1.00000000000000 0.10000000000000 0.10482097362427 0

2.00000000000000 0.20000000000000 0.21847505355285 0

3.00000000000000 0.30000000000000 0.33956414151249 0

4.00000000000000 0.40000000000000 0.46650952510670 -0.00000234408483

5.00000000000000 0.50000000000000 0.59764142006542 -0.00000292485029

6.00000000000000 0.60000000000000 0.73131943222018 -0.00000304450366

7.00000000000000 0.70000000000000 0.86603741396612 -0.00000269077058

8.00000000000000 0.80000000000000 1.00050998975914 -0.00000195879670

9.00000000000000 0.90000000000000 1.13372798977088 -0.00000104794662

10.00000000000000 1.00000000000000 1.26498035231682 -0.00000017019624

�

The numerical solutions for Exercises 10.3, 10.8, 10.13 and 10.25 are plotted
by the commands:

load output1; load output2; load output3; load output4;

subplot(2,2,1); plot(output1(:,2),output1(:,3));

title(’Plot of solution y_n for Exercise 10.3’);

xlabel(’x_n’); ylabel(’y_n’);

subplot(2,2,2); plot(output2(:,2),output2(:,3));

title(’Plot of solution y_n for Exercise 10.8’);

xlabel(’x_n’); ylabel(’y_n’);

subplot(2,2,3); plot(output3(:,2),output3(:,3));



300 SOLUTIONS TO STARRED EXERCISES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Plot of solution y
n
 for Exercise 5.3

x
n

y n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Plot of solution y
n
 for Exercise 5.8

x
n

y n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Plot of solution y
n
 for Exercise 5.13

x
n

y n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Plot of solution y
n
 for Exercise 5.25

x
n

y n

Figure 12.2. Graph of numerical solutions of Exercises 10.3
(Euler), 10.8 (improved Euler), 10.13 (RK4) and 10.25 (ABM4).

title(’Plot of solution y_n for Exercise 10.13’);

xlabel(’x_n’); ylabel(’y_n’);

subplot(2,2,4); plot(output4(:,2),output4(:,3));

title(’Plot of solution y_n for Exercise 10.25’);

xlabel(’x_n’); ylabel(’y_n’);

print -deps Fig9_3



Part 4

Formulas and Tables





CHAPTER 13

Formulas and Tables

13.1. Integrating Factor of M(x, y) dx + N(x, y) dy = 0

Consider the first-order homogeneous differential equation

M(x, y) dx + N(x, y) dy = 0. (13.1)

If
1

N

(
∂M

∂y
− ∂N

∂x

)
= f(x)

is a function of x only, then

µ(x) = e
R

f(x) dx

is an integrating factor of (13.1).
If

1

M

(
∂M

∂y
− ∂N

∂x

)
= g(y)

is a function of y only, then

µ(y) = e−
R

g(y) dy

is an integrating factor of (13.1).

13.2. Solution of First-Order Linear Differential Equations

The solution of the first order-linear differential equation

y′ + f(x)y = r(x)

is given by the formula

y(x) = e−
R

f(x) dx

[∫
e

R

f(x)dxr(x) dx + c

]
.

13.3. Laguerre Polynomials on 0 ≤ x < ∞
Laguerre polynomials on 0 ≤ x < ∞ are defined by the expression

Ln(x) =
ex

n!

dn(xne−x)

dxn
, n = 0, 1, . . .

The first four Laguerre polynomials are (see figure 13.1)

L0(x) = 1, L1(x) = 1 − x,

L2(x) = 1 − 2x +
1

2
x2, L3(x) = 1 − 3x +

3

2
x2 − 1

6
x3.

The Ln(x) can be obtained by the three-point recurrence formula

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x).
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Figure 13.1. Plot of the first four Laguerre polynomials.

The Ln(x) are solutions of the differential equation

xy′′ + (1 − x)y′ + ny = 0

and satisfy the orthogonality relations with weight p(x) = e−x

∫ ∞

0

e−xLm(x)Ln(x) dx =

{
0, m 6= n,

1, m = n.

13.4. Legendre Polynomials Pn(x) on [−1, 1]

1. The Legendre differential equation is

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0, −1 ≤ x ≤ 1.

2. The solution y(x) = Pn(x) is given by the series

Pn(x) =
1

2n

[n/2]∑

m=0

(−1)m

(
n
m

)(
2n − 2m

n

)
xn−2m,

where [n/2] denotes the greatest integer smaller than or equal to n/2.
3. The three-point recurrence relation is

(n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x).

4. The standardization is

Pn(1) = 1.

5. The square of the norm of Pn(x) is
∫ 1

−1

[Pn(x)]2 dx =
2

2n + 1
.
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Figure 13.2. Plot of the first five Legendre polynomials.

6. Rodrigues’s formula is

Pn(x) =
(−1)n

2nn!

dn

dxn

[(
1 − x2

)n]
.

7. The generating function is

1√
1 − 2xt + t2

=
∞∑

n=0

Pn(x)tn, −1 < x < 1, |t| < 1.

8. The Pn(x) satisfy the inequality

|Pn(x)| ≤ 1, −1 ≤ x ≤ 1.

9. The first six Legendre polynomials are:

P0(x) = 1, P1(x) = x,

P2(x) =
1

2

(
3x2 − 1

)
, P3(x) =

1

2

(
5x3 − 3x

)
,

P4(x) =
1

8

(
35x4 − 30x2 + 3

)
, P5(x) =

1

8

(
63x5 − 70x3 + 15x

)
.

The graphs of the first five Pn(x) are shown in Fig. 13.2.

13.5. Fourier–Legendre Series Expansion

The Fourier-Legendre series expansion of a function f(x) on [−1, 1] is

f(x) =

∞∑

n=0

anPn(x), −1 ≤ x ≤ 1,

where

an =
2n + 1

2

∫ 1

−1

f(x)Pn(x) dx, n = 0, 1, 2, . . .
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This expansion follows from the orthogonality relations
∫ 1

−1

Pm(x)Pn(x) dx =

{
0, m 6= n,

2
2n+1 , m = n.

13.6. Table of Integrals

Table 13.1. Table of integrals.

1.
∫

tan u du = ln | secu| + c

2.
∫

cotu du = ln | sin u| + c

3.
∫

sec u du = ln | sec u + tanu| + c

4.
∫

csc u du = ln | csc u − cotu| + c

5.
∫

tanhu du = ln coshu + c

6.
∫

coth u du = ln sinhu + c

7.

∫
du√

a2 − u2
= arcsin

u

a
+ c

8.

∫
du√

a2 + u2
= ln

(
u +

√
u2 + a2

)
+ c = arcsinh

u

a
+ c

9.

∫
du√

u2 − a2
= ln

(
u +

√
u2 − a2

)
+ c = arccosh

u

a
+ c

10.

∫
du

a2 + u2
=

1

a
arctan

u

a
+ c

11.

∫
du

u2 − a2
=

1

2a
ln

∣∣∣∣
u − a

u + a

∣∣∣∣+ c

12.

∫
du

a2 − u2
=

1

2a
ln

∣∣∣∣
u + a

u − a

∣∣∣∣+ c

13.

∫
du

u(a + bu)
=

1

a
ln

∣∣∣∣
u

a + bu

∣∣∣∣+ c

14.

∫
du

u2(a + bu)
= − 1

au
+

b

a2
ln

∣∣∣∣
a + bu

u

∣∣∣∣+ c

15.

∫
du

u(a + bu)2
=

1

a(a + bu)
− 1

a2
ln

∣∣∣∣
a + bu

u

∣∣∣∣+ c

16.

∫
xn ln ax dx =

xn+1

n + 1
ln ax − xn+1

(n + 1)2
+ c

13.7. Table of Laplace Transforms

L{f(t)} =

∫ ∞

0

e−stf(t) dt = F (s)
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Table 13.2. Table of Laplace transforms.

F (s) = L{f(t)} f(t)

1. F (s − a) eatf(t)

2. F (as + b)
1

a
e−bt/af

(
t

a

)

3.
1

s
e−cs, c > 0 u(t − c) :=

{
0, 0 ≤ t < c

1, t ≥ c

4. e−csF (s), c > 0 f(t − c)u(t − c)

5. F1(s)F2(s)

∫ t

0

f1(τ)f2(t − τ) dτ

6.
1

s
1

7.
1

sn+1

tn

n!

8.
1

sa+1

ta

Γ(a + 1)

9.
1√
s

1√
πt

10.
1

s + a
e−at

11.
1

(s + a)n+1

tn e−at

n!

12.
k

s2 + k2
sinkt

13.
s

s2 + k2
cos kt

14.
k

s2 − k2
sinh kt

15.
s

s2 − k2
coshkt

16.
2k3

(s2 + k2)2
sinkt − kt coskt

17.
2ks

(s2 + k2)2
t sinkt

18.
1

1 − e−ps

∫ p

0

e−stf(t) dt f(t + p) = f(t), for all t

19. e−as δ(t − a)
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composite integration rule
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trapezoidal, 208
consistent method for ODE, 230
convergence criterion of Cauchy, 135
convergence criterion of d’Alembert, 135
convergence of series

uniform, 133
convergence of series s

absolute, 133
convergent method for ODE, 230
corrector, 242
cubic spline, 195

divided difference
kth, 188
first, 186

divided difference table, 188
Dormand–Prince pair

seven-stage, 236
DP(5,4)7M, 236

error, 155

Euler’s method, 218
exact solution of ODE, 217
existence of analytic solution, 137

explicit multistep method, 240, 250
extreme value theorem, 158

first forward difference, 189
first-order initial value problem, 217
fixed point, 162

attractive, 162
indifferent, 162
repulsive, 162

floating point number, 155
forward difference

kth, 189
second, 189

Fourier-Legendre series, 145

free boundary, 195
function of order p, 217

Gaussian Quadrature, 148, 215

three-point, 148, 215
two-point, 148, 215

generating function
for Pn(x), 144

global Newton-bisection method, 173

Hermite interpolating polynomial, 192
Heun’s method

of order 2, 223

Horner’s method, 177

implicit multistep method, 251

improved Euler’s method, 221
intermediate value theorem, 158
interpolating polynomial

Gregory–Newton
backward-difference, 192
forward-difference , 190

Müller’s method, 179
Newton divided difference, 185
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parabola method, 179
interval of absolute stability, 231

Lagrange basis, 183
Lagrange interpolating polynomial, 183
Legendre equation, 139
Legendre polynomial Pn(x), 304

Lipschitz condition, 217
local approximation, 242
local error of method for ODE, 230
local extrapolation, 236
local truncation error, 218, 219, 230

Matlab

fzero function, 175
ode113, 252

ode15s, 260
ode23, 234
ode23s, 260
ode23t, 260
ode23tb, 260

matrix

companion, 50
mean value theorem, 158

for integral, 158
for sum, 158

method of false position, 172
method of order p, 231

midpoint rule, 204
multistep method, 240

natural boundary, 195

natural spline, 195
NDF (numerical differentiation formula,

254
Newton’s method, 167

modified, 170
Newton–Raphson method, 167
numerical differentiation formula, 254

numerical solution of ODE, 217

order of an iterative method, 167
orthogonality relation

for Pn(x), 142
of Ln(x), 122

PECE mode, 242
PECLE mode, 242
period, 40
phenomenon of stiffness, 253
polynial

Legendre Pn(x), 145

polynomial
Legendre Pn(x), 141

predictor, 242

radius of convergence of a series s, 134
rate of convergence, 167
Ratio Test, 135
rational function, 132

region of absolute stability, 231
regula falsi, 172
relaltive error, 155
Richardson’s extrapolation, 202
RKF(4,5), 238
RKV(5,6), 239
Rodrigues’ formula

for Pn(x), 142
Root Test, 135
roundoff error, 155, 199, 220
Runge–Kutta method

four-stage, 224
fourth-order, 224
second-order, 223
third-order, 223

Runge–Kutta–Fehlberg pair
six-stage, 238

Runge–Kutta–Verner pair
eight-stage, 239

secant method, 171
signum function sign, 157
Simpson’s rule, 205
stability function, 232
stiff system, 252

in an interval, 253
stiffness ratio, 253
stopping criterion, 166

three-point formula for f ′(x), 198
trapezoidal rule, 204
truncation error, 155
truncation error of a method, 220
two-point formula for f ′(x), 197

well-posed problem, 217

zero-stable method for ODE, 230
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