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Abstract—The ability to intelligently manipulate non-rigid
objects with a robotic hand is a requirement for many tasks which
remain to be automated in domains such as agriculture, food
processing, or medicine. This ability includes the nontrivial skill
of controlling the shape of the object during the manipulation,
which normally requires advanced knowledge of the properties of
the object under manipulation as well as simulation capabilities.
This work proposes an efficient algorithm and control framework
that integrates RGB-D computer vision with a three-finger
robotic gripper in a systemic approach for selecting the initial
grasp points for a 2D shape control task through visual inspection
of the object and desired target shape contours.

Index Terms—grasp selection; shape control; non-rigid objects;
robotic manipulation;

I. INTRODUCTION

The intelligent manipulation of non-rigid objects by robotic
systems is a prerequisite for automating a variety of delicate
or labour-intensive tasks in industries such as agriculture, food
processing, medicine, and response to natural disasters. How-
ever, as shown in recent surveys [1, 2], robotic manipulation of
such objects has not progressed far beyond linear (ropes) and
planar (cloth) objects. In particular, most research considering
3D objects or their 2D projections (contours) starts with
predefined, rigid contacts between the manipulator(s) and the
object. This research improves and expands on our previous
work on grasp selection [3] by using a more accurate hand
model, improved contour tracking, and a formal validation of
force closure.

The manipulation task considered in this research is the
reshaping of a non-rigid object’s 2D contour so that it comes
as close as possible to an arbitrarily defined target contour.
While there are some immediate applications resembling this
task (such as inserting a foam filter in a rigid enclosure),
the main interest is to explore the fundamental issue of in-
hand shape control, which is involved to some extent in any
dexterous manipulation of non-rigid objects. In particular, the
problem addressed here is the selection of the grasp points
that will allow to complete the reshaping task efficiently while
respecting the constraints imposed by the robotic manipulator
and grasp stability. A simple approach to solve this would be
to sample all possible grasps and evaluate their quality in terms
of their stability and ability to complete the task. Depending on
the sampling factor and on the geometry of the selected robotic
hand, this could lead to a large number of grasps to evaluate

and may require a significant amount of time. In scenarios
where online grasp selection is required, it is justified to use
a more elaborate procedure to eliminate the grasps that do not
allow the desired reshaping or that are unstable as quickly as
possible.

The rest of this paper is organized as follows: section II
provides a brief overview of the related literature. Section
III details the proposed approach, including the experimental
setup (III-A), modeling of the robotic hand and camera (III-A1
and III-A2), system architecture (III-B), task definition (III-C)
as well as the proposed grasp selection algorithm (III-D to
III-F). Finally, section IV analyses a sample of results while
section V provides concluding remarks and future directions.

II. RELATED LITERATURE

The grasp selection problem may be described as the distri-
bution of the contact points between the robotic manipulator(s)
and the surface (or contour, in the 2D case) of the manipulated
object in a way that will create a stable grasp and allow
to complete the desired task while maintaining the object’s
structural integrity. While humans are able to intuitively select
such a grasp for a variety of objects and tasks, it is not a
trivial problem to solve for robotic systems, especially with
the additional complexity of non-rigid objects.

Generating a stable grasp is a well known topic for rigid
objects [4, 5], with the three main paradigms being model-
based, heuristic, and learning approaches. Model-based tech-
niques such as [6, 7] rely on a mathematical description of the
object to build an analytical description of all possible grasps.
This function is then optimized based on the mathematical
criteria imposed by the task to perform. Heuristic approaches
such as [8, 9] avoid the need for curve-fitting algorithms by
working directly with sensor data, such as a list of contour
points in an image. They perform a search along the object
contour to optimize some criteria related to grasp quality, such
as curvature or symmetry. Finally, many of the more recent
approaches such as [10–12] prefer to use machine learning
techniques with a database of objects and grasps to identify
which grasps are possible for a given object.

The selection of a stable grasp for in-hand manipulation
of non-rigid objects has not yet been widely addressed. Some
works on this topic include Gopalakrishnan and Goldberg [13],
who discuss the concept of “deform closure” in the 2D case,



a scenario which is equivalent to holding a similarly-shaped
rigid object in form closure with contact points in concavities.
Mira et al. [14] study the scenario where it is impossible
to form a force closure grasp without deforming the object,
such as a sheet of paper lying on a table. They generate
grasps with a learning system and a database of objects with
successful and failed grasps. Zaidi et al. [15, 16] use a model-
based approach to generate stable grasps on non-rigid objects
with a three-fingered robotic hand. They accomplish this by
fitting grasp polygons around the object model to validate
the force closure constraints before simulating the hand-object
interaction to determine the forces necessary to reach stability
while minimizing object deformation.

III. GRASP SELECTION

A. Experimental Setup

The experimental setup used in this research is shown in
Fig. 1 and consists of a Microsoft Kinect v1 for XBox 360
mounted to obtain a view that is normal to the palm of a
BH8-262 Barrett hand [17], which is placed on a table. The
object to deform is placed on the hand alongside outlines of
the desired target shapes toward which the reshaped object
should converge. This experimental setup and the contour
detection technique used require a few constraints on the
experiment. The main requirements are that the object is
sufficiently different in colour and texture from the background
to be distinguished, and that it is well represented by its 2D
projection (i.e., no significant protrusions or indentations at
different depths). While it is not a hard requirement, the grasp
selection algorithm also considers that the centre of the object
is aligned with the centre of the hand. In order to compute
the direction of the applied forces in the 2D plane as well as
the pixels-to-mm conversion factor, it is necessary to construct
simplified models of the Barrett hand and Kinect, which are
formulated as follows:

1) Barrett hand: The BH8-262 Barrett hand is built with
three identical fingers, one of which (F3) is in a fixed ori-
entation while the two others can rotate around the palm,
with an identical angle φ between F3 and each of F1 and
F2. In a 2D view which is normal to the palm, the paths of
the fingers form straight lines which converge near the centre
of the palm. However, there is a 25 mm offset between the
center of the palm and the pivot points of fingers F1 and
F2, which causes the convergence point of the finger paths
to move colinearly with the path of F3 as the angle φ varies.
This situation is illustrated in Fig. 2. In order to accurately
compute the directions of the forces applied by the fingers, it
is necessary to know the location of the convergence point of
the finger paths with respect to the centre of the palm. Given
the angles ψ1 and ψ2 defined in Fig. 2, we look for y(φ), the
distance along the path of F3 between the centre of the palm
and the convergence point.
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Fig. 1. (a) Experimental setup and (b) resulting view
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Fig. 2. The convergence point of the finger paths varies with φ

tan(ψ2) =
y(φ)

25 mm
ψ2 = 90◦ − ψ1

ψ1 = 180◦ − φ

(1)

Therefore,

y(φ) = 25 mm · tan(φ− 90◦) (2)
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Fig. 3. Non-inverting pinhole camera model

2) Kinect: We use the classical non-inverting pinhole cam-
era model shown in Fig. 3, where (xi, yi) are the coordinates
of a point in the image plane and (x, y, z) are its coordinates
with respect to the camera. Given that z is measured by the
Kinect and that its field of view (FOV) and image size are
known (48.6◦ by 62◦ and 480 px by 640 px, vertically and
horizontally [18]), it is possible to geometrically compute the
position of a point in the world from its position in the image,
as well as γ(z), the conversion factor between pixels and
millimetres. The development of (3) is identical in the x and
y directions, which both lead to the same value of γ(z).

γ(z) mm/px =
z mm
f px

=
z mm
h px

2 tan(FOV
2 )

=
z

532
mm/px (3)

B. System Architecture

Because the shape and behaviour of non-rigid objects are
not fixed but instead evolve during the manipulation, it is
essential that their dexterous manipulation is done through a
systemic approach that enables the integration and sharing of
information between the different manipulation phases. Fig.
4 presents the robotic manipulation system that is developed
in this research. It consists of three main steps/algorithms,
namely the initialization, grasp selection, and shape control
phases. These interact with three custom software modules
that enable the interaction with the Kinect and Barrett hand
and provide contour detection capabilities. While this paper
focuses on the second phase, grasp selection, which is com-
pletely automated, some user interaction is required to identify
the object and target shape in the initialization phase, as well
as to align the hand with the selected grasp due to the absence
of a mechanical wrist in the shape control phase.

C. Manipulation Task Identification

The contour identification and tracking technique used in
this research is the fast level-set algorithm in the log-polar
domain [19]. As shown in Fig. 5a, the primary advantage of
the log-polar transformation is that the object contour separates
the image vertically while ensuring that the object occupies
a larger portion of the image than the background. These
properties accelerate the convergence of the fast level-set
algorithm, which relies on the permutation of pixels between
the “inside” and “outside” of the object based on their colour
statistics.
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Fig. 4. Overview of the robotic manipulation system

0 50 100 150 200
u

0

50

100

150

200

250

300

v

(a) (b)

Fig. 5. (a) Log-polar image transform on the red sponge shown in Fig. 1b and
(b) definition of the reshaping task: the initial object contour (blue) should be
deformed to match the target contour (gold) as closely as possible

In this work, the initial depth-filtering of the point cloud
proposed in [19] is replaced by a simpler approach to locate
the object. Initially, the input picture is converted to the log-
polar domain with a very low sampling rate, which allows
to quickly execute the fast level-set algorithm to identify the
boundaries of the object. The input image may then be cropped
to these boundaries, reducing the number of points to process
when applying the algorithm to a high-resolution image to find
and track the precise object contour.

Given the initial view shown in Fig. 1b, the reshaping task
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Fig. 6. Visualization of the distance between the initial and target contours
shown in Fig. 5b as (a) a map projected on the target contour, and (b) a graph
with its mean µ and standard deviation σ

to perform is defined by selecting a point on the object and a
point inside one of the target contours. These are used as focal
points for the log-polar fast level-set algorithm which allows
to identify both contours. Image moment analysis [20] is then
used on the binary images corresponding to the filled contours
to identify the centroid and main axis of both the object and
target. These parameters are used to automatically align the
target contour over the object, thereby defining the reshaping
task as shown in Fig. 5b. We note that the target contour must
also be scaled by a factor of γobject

γtarget
to compensate for the

height difference between where the object and target shapes
are imaged.

D. Grasp Regions Identification

According to the principle of diminishing rigidity [21], the
influence of the forces applied by a robotic hand on the ma-
nipulated object is maximal at the contact points between the
object and fingers, and this influence diminishes as the distance
between a considered point and the contact point increases. It
follows that the contact points should be positioned in the areas
where the influence of the applied forces is to be maximized.
In the context of 2D shape control of a non-rigid object, these
are the areas where there is a large distance between the initial
contour of the object and the desired target contour. Fig. 6
shows, for a sample reshaping task, the distance between the
initial and desired contours, projected on the desired contour.

Empirically, an appropriate threshold for selecting contact
points is the mean of the initial distance. That is, only the
regions where the distance between the initial and target
contours is larger than the mean are considered for grasping.
These regions are then subdivided in continuous sub-regions,
identified with different colours in Fig. 7a, that match the
width of the robotic fingers.

Since the grasping regions have been identified on the
target contour only, it is necessary to associate them with the
corresponding regions on the initial object contour. Because
the general direction of the finger motion is towards the
centre of the hand, it is possible to take advantage of polar
coordinates to simplify this task. The initial and target contours
are converted to a polar coordinate system centred on the
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(c) Association of regions be-
tween the target and initial con-
tours, in polar coordinates

(d) Association of regions be-
tween the target and initial con-
tours, in Cartesian coordinates

Fig. 7. Association of regions between the target and initial contours. Each
“initial” region is set to the same colour as its matching “target” region. In
the circled regions, the target contour is further from the centre of the hand
than the initial contour. These are therefore ignored for grasp selection

centre of the palm. In this representation, all regions span a
different interval of angles, such that the association may be
completed by simply selecting the points of the initial contour
that span the same interval of angles. Fig. 7b and Fig. 7c
illustrate this process. As the fingers are not rigidly attached to
the object, it is only possible to push on the contour to bring it
closer to the centre of the hand. Because of this constraint, the
regions where the target contour is further from the centre of
the hand than the initial contour (i.e., it would be necessary to
pull on the object) are eliminated from the process. The result
is shown in the Cartesian domain in Fig. 7d.

The second step of grasp selection is to generate potential
grasps based on the identified regions. In this step, two of
the Barrett hand constraints are considered: the number of
fingers and the necessity to have an identical angle (φ in
Fig. 2) between F3 and the two other fingers. Therefore, for
every combination of three identified regions from the target
contour, we must verify that it is possible to place a finger
in each region while ensuring that the angle between one of
them (F3) and the two others are similar. In order to validate
this condition, the centre of the hand is once again used as
an approximation for the convergence of the finger paths and
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Fig. 8. Potential finger paths towards the object centre defined by the
angles (θ1, θ2, θ3) in a polar representation. Black lines are interchangeably
associated with the central finger F3. This is a valid grasp for the Barrett hand
only if at least two of the internal φij angles are identical

the three regions are converted to a polar coordinate system
centred on this point. With θ1, θ2, θ3 as the central angles
of the three regions considered and τ as half of the angle
range of the largest region, Algorithm 1, which is illustrated
by Fig. 8, verifies the Barrett hand constraints and outputs
Θc, the direction of the central finger, and φ, the grasp angle
between F3 and the other two fingers. Thus, F3 is associated
to the contour region containing Θc, F1 is associated to the
contour region containing Θc − φ, and F2 is associated to
the contour region containing Θc + φ. The combination of
Θc, φ and the convergence point of the finger paths (which is
for the moment approximated as the centre of the object) is
sufficient to completely define a grasp with the Barrett hand
in the context of shape control in a 2D space.

Algorithm 1 Identifying valid grasps for the Barrett hand
Input: T = (θ1, θ2, θ3), angles describing potential finger

paths; τ , the tolerance for internal angles equality
Output: Θcidx, the central angle; φ, the difference between

the central angle and the two others if the grasp is valid,
false otherwise.
for i← 1 . . . 3 do

for j ← i . . . 3 do
φij ← |θi − θj |
if φij > 180◦ then

φij ← 360◦ − φij
Φ′ ← (|φ12 − φ13|, |φ12 − φ23|, |φ13 − φ23|)
Θcidx ← ARGMIN(Φ′)
if Φ′Θcidx

< τ then
if Θcidx = 1 then

φ← MEAN(φ12, φ13)
else if Θcidx = 2 then

φ← MEAN(φ12, φ23)
else if Θcidx = 3 then

φ← MEAN(φ13, φ23)
else

return false
Θc ← TΘcidx

return Θc, φ
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Fig. 9. Curvature by best-fit straight line: The curvature at point Pi is the
mean of distances l between the contour and the blue straight line

E. Stability Validation

The stability of a grasp is validated in three steps, each
evaluating a different criterion from simplest to most complex.
First, grasps where φ < 90◦ do not respect the “vector closure”
component of the force closure constraint. That is, the applied
forces cannot have a sum of 0 with positive amplitudes, and
therefore risk pushing the object out of the hand. Such grasps
are considered unstable and eliminated from the process.

The second concern regarding grasp stability is minimizing
the impact of finger positioning errors. As noted in [22], a
stable grasp in a real-world manipulation scenario should be
resistant to finger positioning errors. Indeed, while it is highly
unlikely that the robotic fingers can be positioned exactly at the
selected contact points due to limited mechanical and sensing
accuracy, including the need for integer “pixel” coordinates
throughout the process, such inaccuracies should not have a
disproportionate impact on the stability and result of the grasp.
One approach to ensure robustness is to avoid areas where the
curvature of the object is significant [22, 23]. This is based on
the observation that grasp points near sharp corners must be
positioned more accurately than those in flatter areas in order
to avoid errors. In this work, the technique used to compute the
curvature of a grasp region is inspired by [9], who approximate
the contour of the object by a series of straight lines. Here, the
curvature around a point Pi is defined as the mean distance
between all points from Pi−k to Pi+k and the best-fit straight
line through those points (Fig. 9). Since the grasp regions are
already defined to match the width of the robotic finger, the
curvature is only evaluated at the central point of each region,
taking the first and last points of the region as Pi−k and Pi+k,
respectively. For each potential grasp, the curvature of the three
grasp regions on the initial contour is evaluated and, if one
of the curvatures is greater than an empirically determined
threshold, the grasp is considered unstable and eliminated from
the process. The sum of the three region curvatures of a grasp
is used as a measure of the quality of the grasp.

The final step for validating grasp stability is to ensure that
the fingers will not slip on the object. A practical approach
to verify this condition is proposed by Morales et al. [8, 22]
based on a model from Park and Starr [24]. This approach is
based on the idea of “friction cones” created by the applied
forces. To avoid slippage, it is necessary that the convergence
point of the applied forces lie within the intersection of said
friction cones. As shown in Fig. 10, this criteria may be
simplified by verifying that the angle β between the applied
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Fig. 10. To avoid slippage, the angle βi between the applied force and the
normal vector must be smaller than α
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Fig. 11. Computing φ from the path of F3 (Θc) and the position of another
finger (target point)

force and the surface normal at the contact point is smaller
than some parameter α. This parameter could be computed
with knowledge of the friction coefficient between the finger
and the object or determined experimentally. In this work, a
value of α = 45◦ was found to be sufficient.

In order to accurately validate the stability, it is necessary
to compute the precise direction of the applied forces as
well as their point of convergence, which was until now
approximated as the centre of the object. Given an approximate
grasp specified as three grasping regions, it is possible to take
advantage of polar coordinates to compute both the proper
spread angle φ and the location of the forces convergence
point from the direction of the central finger, Θc, and a target
point (in polar coordinates) on one of the two other regions. In
a polar coordinates system centred on the centre of the hand,
the contact point of F3 is defined as (rc,Θc) and the “target”
point for the contact of F1 is (r1, θ1). Thus, the spread angle
between the paths of F3 and F1 measured from the centre of
the hand is also known as φ′ = Θc − θ1. However, to match
the geometry of the Barrett hand, this angle must be measured
from the convergence point of the finger paths. This yields the
geometry of Fig. 11, where we seek φ and y(φ).

From Fig. 11, we know that

φ′ − 90◦ = arctan
(v1

d

)
(4)

φ− 90◦ = arctan

(
v1 + y(φ)

d

)
(5)

Taking y(φ) from (2) and applying the appropriate substitu-
tions,

φ− 90◦ = arctan

(
v1 + 25 mm · tan(φ− 90◦)

d

)
d tan(φ− 90◦) = v1 + 25 mm · tan(φ− 90◦)

v1 = (d− 25 mm) tan(φ− 90◦)

φ− 90◦ = arctan

(
v1

d− 25 mm

) (6)

Since

d = r1 cos(φ′ − 90◦) (7)
v1 = r1 sin(φ′ − 90◦) (8)

it is then possible to compute the correct φ and y(φ) based
on the angle of finger F3 and a point in the grasp region of
F1. For each combination of angle Θc in the region associated
with F3 and point in the region associated with F1, the above
results are used to generate an accurate grasp for which to
validate force closure.

Before computing the force closure condition, however, it
is necessary to verify that the generated “accurate” grasp is
still valid, i.e., that the finger paths intersect with the object
contour. This verification is trivial in a polar coordinates
system centred on the convergence point: we only need to
verify that Θc − φ is in the angle interval of the grasp region
associated with F1 and that Θc+φ is in the interval associated
with F2. Note that since the displacement of the convergence
point is colinear with the path of F3, its intersection with the
contour is not affected. Moreover, this is only computed for
the initial object contour, as the change from approximate to
accurate convergence point rarely preserves the intersections
with the target contour, which is much closer to the centre
of the polar projection. However, this does not seem to affect
grasp stability. Once the validity of the grasp is confirmed,
the force closure verification is completed by computing the
angle between the applied force and the contour normal at
the contact point. This normal is computed as a perpendicular
vector to the best-fit straight line through the grasp region
while the applied force is computed as the vector going from
the intersection of the finger path and initial contour to the
convergence point of the finger paths.

F. Selecting the Best Grasp

After the procedure detailed above, we obtain a list of
stable grasps which respect the constraints of the Barrett hand
while positioning the contact points in regions where there
is a large distance between the initial and target contours.
The final step of grasp selection is therefore to identify the
grasp which best fulfills the different conditions detailed in
this section. The principal criterion for selecting the preferred
grasp is the positioning of the fingers in regions where the
initial distance between the contours is large, thus we favour
the grasp with the largest total distance between the initial and
target contours (which the manipulation seeks to minimize).
The secondary criteria are the mean angle between the applied



force and surface normal at the contact points on the initial
and target contours (related to the quality of force closure),
the total curvature of the grasp regions, and the mean distance
between each contact point and the centre of the associated
grasp region (to minimize the impact of positioning errors).
These are used to break ties and avoid extreme cases.

Since grasp selection is highly dependant on the task at
hand, it is useful to keep in mind that the goal of the
manipulation is to deform the initial shape of object such that
its contour comes as close as possible to the target shape.
Therefore, the selected grasp will be much different than
the one that would be selected to simply move the object
(without considering its shape) or to perform some other tasks.
Moreover, we note that the goal is not to select the optimal
grasp in the strictest sense of the term, which would require a
complete knowledge and simulation of the problem. It is rather
to come close to the grasp that a human would intuitively select
to perform the specified reshaping task given the constraints
of the robotic hand.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was tested in over 20 scenarios
involving a variety of non-rigid objects and target shapes [25].
Fig. 12 presents a sample of selected grasps and the final
deformed contours obtained with a controller based on the
principle of diminishing rigidity [21] with real-time visual
feedback. While this controller is not optimal for a 2D shape
control task, it shows that the grasp remains stable and is able
to bring the object’s contour closer to the desired shape. In
general, we note that the selected grasp is close to the one that
would be intuitively selected by a human given the detected
contours, which may have artifacts and inaccuracies due to
the reliance on contrast between the object and background
for their detection. In Fig. 12a, we note a tendency to align
the contours by the corners instead of by the sides, leading
to a slight offset from the intuitive grasp (which would be
perpendicular to the shortest sides of the sponge). We also note
that the heart target shape in Fig. 12b is particularly interesting
for testing and evaluating the grasp selection algorithm, as its
well-defined concavity creates an area with a large distance
from the more convex objects and naturally draws a contact
point towards it, in addition to providing an easily recognizable
“intuitive” grasp. Fig. 12c shows the case where the target
shape is larger than the object in one dimension and smaller
in the other. The invalidity of contact points on the long ends
of the target leads to a grasp which is mostly perpendicular to
the longer dimension of the target.

In terms of execution time, the grasp selection procedure
takes on average 5.19 seconds without user interaction in
an unoptimized python implementation, including the time
necessary to create and save multiple figures. Given that the
time required for the initialization phase also takes about five
seconds, it is reasonable to expect that the manipulation may
start within ten seconds from the task definition.

(a) Sponge to Square

(b) Sponge to Heart

(c) Ball to Rectangle

Fig. 12. Sample of results for grasp selection (left) and for the final deformed
contour (right), with detected initial object contour in blue, target shape in
gold, and final contour in purple. F1 follows the blue line, F2 the red one, and
F3 follows the green line from the side where the three lines are the closest
((a) and (c)), or opposite to the red and blue lines (b)

V. CONCLUSION

This work proposes an efficient system that integrates RGB-
D computer vision with a three-finger robotic gripper for the
initial selection of grasping points and 2D shape control of an
unknown non-rigid object. By making appropriate use of polar
coordinates and various heuristics related to grasp quality and
stability, the planner is able to quickly drive the search towards
the regions which provide stable grasps that respect the
selected robotic hand’s mechanical constraints and facilitate
the reshaping task. The resulting algorithm therefore combines
the efficiency of a heuristic planner with the accuracy and
exhaustivity of a sampling-based one, all without machine
learning or formal modelling and simulation of the object. The
selected grasp is then combined with real-time object shape
tracking and control of the robotic hand to bring the object’s
contour closer to the target shape.

Although grasp selection is heavily dependant on the ge-
ometry of the robotic hand being used, such that no algorithm
can be expected to work for all hand models, the proposed ap-
proach eases the transition to other hand geometries by provid-
ing general steps that could be reused with little modification.
In particular, the identification of regions with a large distance
between the contours and the curvature test for stability could
be used as-is, while the force closure validation would require
some modification to accurately compute the direction of the



applied forces based on the new hand geometry. As long
as the fingers close roughly towards the centre of the hand,
the simplifications made by using polar coordinates are also
expected to work as-is for other hands.

Future directions for this work include validating the se-
lected grasp with a variety of shape control algorithms or
building an experimental protocol to better identify the human
“intuitive” grasp to use as a benchmark for such reshaping
tasks. The system’s flexibility is also expected to be improved
by the integration of a robotic arm to control the hand position.
In addition, even though the proposed algorithm is reasonably
fast and has low requirements in terms of computing power, it
is likely that many industrial applications would benefit from
increased speed, thus warranting further optimizations.
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