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Abstract—Dexterous robotic manipulation of complex non-
rigid objects is a requirement for automating many delicate tasks.
This work explores various sensing and modeling strategies for
tracking the 3D shape of objects during manipulation, allowing
for more accurate and responsive planning and control of robotic
manipulators. These approaches are evaluated in terms of their
ability to correctly capture the behaviour of non-rigid objects
as well as their computational complexity, which is strongly
constrained by the need for real-time control on robotic platforms
with limited computing power.

Keywords—RGB-D imaging, 3D sensing and modeling, non-
rigid deformable objects, robotic manipulation, force closure,
diminishing rigidity.

I. INTRODUCTION

Many delicate or labour-intensive tasks that have yet to
be automated in the contexts of food processing, surgery,
industrial assembly and household environments involve the
manipulation of objects which change their shape as a result
of the manipulation. In order for robots and automated systems
to perform these tasks, it is necessary that they become
able to handle such non-rigid objects in a safe, dexterous
manner. Much attention has been given so far to 1D (e.g. rope,
knotting) and 2D (e.g. clothes folding) non-rigid objects in the
scope of robotic manipulation. However, shape measurement
and deformation sensing has mostly been restricted to 2D
imaging [1], [2]. These approaches yielded interesting results
for the classification of objects and materials according to
their intrinsic elasticity, but revealed problematic for more
accurate dynamic shape tracking. Here, the sensing approach
is extended and aims to tackle a more comprehensive set of
measurements, targeting the full 3D reshaping of objects when
submitted to external forces. The use of 3D shape sensing will
lead to more accurate planning and control and allow a robotic
system to handle complex everyday objects which cannot
be correctly described with a 2D representation only. The
research is performed in the context of safe manipulation and
object reshaping with multi-finger robotic hands. Different 3D
representation techniques are investigated to experimentally
determine the most robust, while computationally tractable,
approaches for dynamic 3D shape representation from raw
RGB-D sensors. The context of development is illustrated with

experimental tests on deformable objects with various initial
shapes and elasticity properties.

II. STATE OF THE ART

Sensing strategies used to capture the deformation of 3D
non-rigid objects [3] mainly comprise depth sensors installed
either as standalone or as part of a multi-modal system, with
the aim of obtaining a 3D pointcloud which captures sufficient
information about the object. Similarly, the computational
representation of these 3D non-rigid objects is mainly ob-
tained by two classes of methods: those that use a formal
model and those that do not require a particular model and
instead perform online estimation techniques. Within model-
based methods, the most common approach is to use a
physics-based representation. However, these models require
the specification of physical properties of the object, which
are often unknown or difficult to estimate when dealing with
complex structures. On the other hand, model-free or learning
approaches are interesting alternatives because they provide
better generalization and scaling capabilities to handle more
complex structures without the problem of defining physical
properties beforehand.

As for robotic manipulation of non-rigid objects, most
recent approaches highlighted in [3], [4] focus on linear
(rope) and planar (cloth-like) objects. Some work has also
been performed regarding manipulations in a 2D environ-
ment, either in simulation or with relatively flat real scenes
observed through a simple 2D vision system. Even though
research efforts are slowly turning to 3D objects, they have
not yet received much attention. Capturing the behaviour of
deformable 3D objects requires more complex models than
for their 1D and 2D counterparts, which in turn require more
elaborate sensing setups and increased computing power, all of
which are challenging issues for robotic manipulation outside
of simulation environments.

III. DEFORMABLE OBJECT REPRESENTATION AND USE
FOR ROBOTIC MANIPULATION

In order to capture the deformation of complex objects
from real world scenes, a method to structure the sensor data



is needed. Typically, raw data taken from sensors (usually
a 3D pointcloud) is not suitable for representing objects
because these basic structures are formed as a set of unrelated
points non-uniformly distributed. Instead, objects should be
represented as a collection of points in which there exists some
relation between points around a neighborhood. In this way,
there is a mechanism to capture the deformation. Likewise, this
representation must also be active, in the sense that it should
be able to evaluate functions in such a way that it can predict
how the structure would change given certain input variables.
Given these constraints, two models that may prove suitable
for this problem are discussed. Growing Neural Gas (GNG)
and Particle Graph Networks (PGN) are architectures based
on graphs which demonstrate an object-relation (as nodes-
edges) interaction in addition to being defined as adaptable
models. In the following, both models are briefly described,
emphasizing their features and limitations as well as how they
can be applied to represent deformable objects.

A. Growing Neural Gas

Growing Neural Gas (GNG), originally presented in [5], is
a type of unsupervised learning algorithm derived as a vector
quantization technique, but that has also shown interesting
capabilities for structure representation. In essence, GNG
learns a topological representation of some data distribution
as a dynamic undirected graph G = 〈A,N〉, where A = {ai}
is the set of nodes (or neurons) and N = {nk} is the set of
edges. Also, each node ai = {wi} has an associated weight
vector wi ∈ Rn of the same dimension as the input space n.
The network is seen as dynamic since the nodes A are not fixed
but rather added incrementally and edges N are also changing
over time according to some criterion (e.g., threshold distance).
This adaptability coupled with intrinsic signal filtering prop-
erties, such as denoising and downsampling [6], makes GNG
particularly suitable to represent complex changing structures
in an efficient manner while maintaining robustness against
noisy data coming from sensors.

B. Particle Graph Network

Particle Graph Network (PGN) [7], [8] is a novel represen-
tation that takes inspiration from physics simulation models
used in computer graphics, in the way of how particles can
be associated to represent more complex entities. However,
unlike the graphics model, PGN represents each entity as a
graph neural network which has the ability to predict the
dynamics of the system by learning parameters from data.
Many architectures have been proposed for this representation,
but in essence PGN is defined as a directed graph G = 〈O,R〉
where O = {oi} is the set of nodes (or objects) and R = {rk}
is the set of edges (or relations). Each node is described as
oi = {xi, a

o
i }, where xi = {qi, q̇i} and aoi corresponds to

the state (e.g, position, velocity) and features (e.g, stiffness,
radius) of node i, respectively. Moreover, each relation is
described as rk = 〈uk, vk, a

r
k〉, where uk is the node receiver,

vk the node sender, whereas ark corresponds to the features
(e.g, connections) of relation k. Afterwards, the updated graph

G at time t + 1 is obtained by predicting the next state
of each object oi,t+1 = fO (oi,t, ek,t) which evaluates a
function over the current object state and its relation effect.
In turn, the next relation effect ek,t+1 = fR (ouk,t, ovk,t, a

r
k)

evaluates a function over each relation and its corresponding
nodes. Functions fO and fR are normally approximated using
artificial neural networks.

This model, as opposed to GNG, does not include the
unsupervised construction of a graph structure from raw data.
However, PGN is able to predict the dynamics of a system,
which is something that GNG cannot achieve. Therefore, the
direction for this work focuses on analyzing GNG initially
as a structure representation method and then include PGN
as a structure predictor method. Thus, a complete forward
simulation of the deformation can be obtained which is trained
end-to-end from real world observations.

C. Robotic Manipulation Guided by Shape Tracking
Robotic manipulation presents many issues which are in-

herently dependent on the quality of the representation of the
object to manipulate. In the case of non-rigid objects, the
situation is complicated by the need to track the shape of the
object in real-time to ensure the safety and accuracy of the
manipulation. In the initial planning stages, it is useful to have
a representation of the object which is as complete as possible
in order to select the contact points and manipulator paths that
will optimize the manipulation task while ensuring the object’s
stability [2]. The main criteria for stability is the ability to
compensate all internal and external forces, a situation known
as force closure [9], [10]. In the case of non-rigid objects,
this condition must be verified throughout the manipulation to
account for changes in the shape of the object. Simulation-
based planning approaches such as [11], [12] provide good
results, but they are computationally expensive, which makes
it difficult to adapt to unexpected changes in the object’s
shape or behaviour. Other approaches rely on heuristics such
as diminishing rigidity [13] to estimate the behaviour of
an unknown object, allowing for real-time control without
requiring expensive simulations.

IV. FEASIBILITY ANALYSIS

In addition to the accuracy of the sensing setup and the
ability of the model to capture the behavior of the object,
robotic manipulation of non-rigid objects imposes constraints
on the computational complexity of the selected representa-
tion, especially if real-time control is desired. This requirement
is even greater if the system is to be integrated into a mobile
robotic platform with limited computing power and battery
life. Based on our recent experiments in [2], it was found
that a processing speed of about two frames per second was
sufficient to match the speed at which the Barrett hand [14]
(considered in this research) moves, which is thus used as the
target for “real-time” processing.

A. Deformable Object Representation
GNG, as described in section III is analyzed in the context

of structure representation. Within this scope, it is observed



TABLE I: GNG processing time for various inputs.

Input Data Compression CPU
Points Ratio Time(s)

RGB 480x640 370,200 92:1 168.89
RGB 320x240 76,800 20:1 33.22
RGB 128x128 16384 8:1 6.35
RGB 64x64 4096 3:1 1.45

Depth frame 1 3769 125:1 27.10
Depth frame 2 3766 125:1 1.27
Depth frame 10 3609 120:1 1.13
Depth frame 30 3279 109:1 0.94

that GNG can properly describe unstructured noisy data such
as the pointclouds obtained from a commercial Kinect sensor.
This idea is supported by study cases such as object segmenta-
tion in complex environments [15] and their subsequent shape
tracking [16]. While it may be said that GNG is a model that
can represent changing structures, our experiments have shown
that is not well optimized to perform real-time processing.
Table I shows the time to reach a quantization error of 2
pixel units for RGB images (such as Fig. 1) and 5mm for
depth filtered pointclouds (as in Fig. 2). In order to respect
time constraints, still images require increasing the number
of GNG nodes, and therefore reducing the compression ratio,
to achieve a similar performance as if the model was reused
between frames [16]. In both cases, reaching an average
processing speed of two frames per second would require a
very small number of input points, thus significantly degrading
the accuracy of 3D shape estimation. Such large requirements
in terms of computing time and power deter from using GNG
as an online model for real-time control. However, there is
evidence [6] suggesting that an optimized version of GNG
can handle sequences of pointclouds in real time.

Early results with PGNs demonstrate how this model is able
to predict the physics of complex scenes in which liquids,
deformable objects and collisions are present [8]. However,
this model is trained mostly using simulation engines, so
its ability to work based on real sensor data is not yet
fully explored. Therefore, it is justified to consider that the
robust structure representation obtained from GNG could be
beneficial to clean and compress the raw data that would
then be use by PGN. This combination of approaches allows
to build a system with the ability to predict the physics of
deformable objects from real world observations.

B. Robotic Manipulation Guided by Shape Tracking

The safe manipulation and reshaping of deformable objects
with initially unknown shape and elasticity must rely on some
form of real-time tracking of the objects shape in order to
ensure the success of the operation and to react to changes
in the object behaviour. In the absence of depth information,
the contour of the object can be tracked through color-based
approaches, such as in [1], [2], [17]. While this leads to fast
and efficient shape tracking, it constrains the manipulation
to objects with a high contrast and relatively even color.
Moreover, recent experiments based on the work performed

Fig. 1: A 2D view is not suitable for handling spherical non-
rigid objects, as the fingers can easily slip in the vertical
direction. The manipulation shown is an attempt to deform a
balloon from its initial shape (blue contour) to a target shape
(green contour) by applying forces along the radial lines. The
current detected contour is in yellow.

Fig. 2: Deformable rectangular surface (green) manipulated by
a three fingered robotic hand (red) and its corresponding graph
representation (blue) obtained using GNG.

in [2] have shown that while taking a 2D view is suitable
for many objects, it may lead to failure in cases where the
manipulated object does not have a straight profile in the
direction normal to the 2D plane (Fig. 1). The use of 3D
sensing and modelling allows for more accurate planning of
the vertical position of the fingers and enables the tracking of
objects with more varied colors.

V. CONCLUSION

This work explores the ability of GNG to represent complex
changing structures in the context of non-rigid object manip-
ulation. It was found that its most important limitations for
this task were in terms of the computing power required to
perform real-time tracking with this architecture. Moreover, it
highlights the need for highly accurate sensing and modelling
techniques with low computational cost to support the real-
time tracking of non-rigid objects during robotic manipulation.
A promising direction for overcoming this issue is to optimize
GNG so that it can be used in conjunction with PGN to predict
the shape of deformable objects from real world observations.
Future works expanding on this topic will experiment with
higher accuracy sensors with real-time acquisition capability.
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