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Abstract – This research aims toward collecting air and water samples over opportunistically selected locations to monitor pollutants 

distribution. To support precise sensor nodes deployment over a variety of terrains and changing conditions, not only appropriate sensor 

devices must be designed, but means for deployment must also be carefully studied, developed, and implemented. This paper investigates 

methodologies to efficiently distribute environment sensor nodes while maximizing space coverage, minimizing acquisition time, and 

leveraging the benefits of autonomous robotic agents to carry environmental sensors to strategic locations. The research contributes to 

fill existing gaps in local and global sensor networks for environment pollution monitoring by developing innovative technologies to 

dynamically deploy sensor nodes using mobile unmanned ground, air and water vehicles. The dispatch of dynamic sensor nodes on 

autonomous robotic agents to collect measurements on pollution can efficiently cover territories of different size, automatically detect 

areas where pollution varies significantly or reaches concerning levels, and strategically concentrate data acquisition over those regions 

to support the formation of more accurate data-centric pollutants dispersion models. 

 

Keywords: Environmental data collection; pollution monitoring; sensor nodes distribution; coordinated autonomous 

vehicles; dynamic replanning. 

 

 

1. Introduction 
The climate crisis impacting the planet motivates countries around the world to work toward environment sustainability 

and reduction of pollution. Atmospheric pollution has detrimental health consequences on the population, while water 

pollution is impacting ecosystems and threatens food production. Current methods to collect data and model pollutants 

concentration and dispersion often involve a combination of large-scale surveys with airborne remote sensing, and small-

scale local surveys where sensors are installed as static nodes. Environmental drones are used for even abatement at altitudes 

above ground level in a specific geographic region but obtain relatively low-density measurements. Fixed air quality 

monitoring stations impose limited geographical distribution, and involve high cost of installation and operation, which 

restrains broader deployment of sensor networks. Surface and underwater autonomous vehicles have been deployed 

sporadically to search for specific water body pollutant sources, while marine pollution monitoring is a fundamental 

component of current environmental legislation and aims to sustainably protect marine ecosystems. Remote sensing 

technologies along with machine learning algorithms play an increasingly important role in the accurate detection and 

monitoring of pollution in coastal waters like oil spill slicks or desalination outflows, assisting scientists in forecasting their 

trajectories, developing clean-up plans, taking timely and urgent actions, and applying effective treatments to contain and 

alleviate adverse effects [1-6]. However, machine learning-based approaches are intrinsically dependent on the availability 

of massive and accurate measurements which in turn involve efficient data collection processes. 

This research leverages the potential of autonomous robotic platforms, namely unmanned ground (UGV), aerial (UAV), 

and water (UWV) vehicles, equipped with specialized sensors to collect air or water samples, to optimally distribute sensor 

nodes in the environment [7], and to efficiently monitor pollution. While simply densifying samples collection can provide 
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large volume of data for mapping environmental pollution, data collection is time-consuming, and information can become 

redundant. Intuitively, areas where pollution distribution parameters vary deserve closer examination compared to areas 

where air or water quality is relatively uniform in order to understand and map pollutants distribution phenomena. Therefore, 

proactive sensing strategies are designed to accurately capture the variability of pollution distribution, support the on-going 

evolution toward data-centric and machine learning-based modeling approaches, and eventually lead to accurate models of 

the environment which will inform policy makers and guide environmental interventions.  

This paper proposes global sampling methodologies to conduct dynamic deployment of pollution sensor nodes in the 

environment and explores mobile platforms to demonstrate the potential of the approaches to fill the gap between fixed 

sensor nodes and large-scale airborne environment monitoring methods. 

 

2. State-of-the-Art Autonomous Agents Coordination for Environment Sensors Distribution 
Strategies for detecting and locating pollution sources can leverage modern data-centric representations and efficient 

coordination schemes to deploy sensor nodes while satisfying the operational constraints imposed by the environment, the 

scale of a given area for data collection and the characteristics of the pollution to be detected. Recent technological advances 

enable the development of multi-agent robotic systems to form distributed sensor networks capable to measure air and water 

quality and detect tiny amounts of particles therein. The coordination of sensor nodes builds upon multi-agent task allocation 

(MATA) mechanisms to dynamically determine which sensor agent should be deployed in what location, with the objective 

to achieve optimal overall data sampling performance. The literature offers various solutions to the MATA problem, from 

deterministic analytical methods that provide optimal navigation of agents at the price of computational complexity; bio-

inspired heuristic methods such as ant colony [8] and particle swarm that provide close to optimal solutions with improved 

computational efficiency; numerical and iterative market-based strategies [9] that rely on centralized auctioneer mechanisms 

with the goal to minimize overall cost; or even computational methods inspired by fuzzy logic, probabilistic theory or 

reinforcement learning. Intentional cooperation [10] explicitly assigns a specific task to each sensor node agent. The 

Hungarian algorithm [11] is useful when the requirement is to perform all sensing tasks by assigning exactly one agent to 

every task and exactly one task to every agent in such a way that the total cost is minimized. While these coordination 

schemes assume that all agents are equal, the latest allocation methods [12] rather consider specialized individual agents 

based on their respective embedded functionalities, such as the nature of sensors they carry. 

While task allocation entails identifying and matching sensing tasks to robotic agents in an optimal manner, such as 

sensor’s compatibility or cost minimization, task coordination entails facilitating the conduct of those tasks by agents in an 

effective and conflict-free manner. In the context of environmental sensing and monitoring, tasks are related to the dynamic 

deployment of sensor nodes over UGVs, UAVs or UWVs to collect air or water samples and measure contamination level 

at diverse locations. The collected information is then used to dynamically replan the navigation of autonomous vehicles 

carrying sensors and progressively direct them towards a source of pollution or opportunistically increase the sampling 

density over selected areas that are most representative of the natural pollutant dispersion process.  

Classical task allocation and coordination can be formulated as an extension of the traveling salesman problem [13]. 

Overall, these solutions seek to optimize some sort of objective function. Given a set of 𝑀 robotic agents, 𝑅 =
{𝑅𝑖|𝑖 = 1,2, … , 𝑀}, carrying sensor nodes, and 𝑁 tasks, 𝑇 = {𝑇𝑗|𝑗 = 1,2, … , 𝑁}, to conduct air or water sampling operations, 

the cost for sensor node 𝑖 to perform sample collection task 𝑗 is equal to 𝑐𝑖𝑗. This cost is a function, 𝑓(𝑅𝑖 , 𝑇𝑗), of the sensor 

node and the sample collection procedure. Assuming that 𝐴 = {𝐴𝑖|𝑖 = 1,2, … , 𝑀} defines the set of sample collection 

allocations in which 𝐴𝑖 is the set of samples assigned to sensor node 𝑖, 𝐴𝑖 = {𝑇𝑖𝑗|𝑗 = 1,2, … , 𝑁}, an optimal allocation, 𝐴𝑜𝑝𝑡, 

is the one in which as many sample collection tasks as possible are conducted by all agents while the cost is minimal. 
 

𝐴𝑜𝑝𝑡 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝐴
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To coordinate the robotic sensor nodes to their assigned sample collections effectively and without conflict, agents’ 

heterogeneity that involves differences between robotic agents and sensor nodes is advantageously leveraged for environment 

monitoring. For example, a UAV possesses different characteristics to that of a UWV on the areas it can reach in the 

environment (e.g., collecting air samples at altitudes versus water samples at sea). Conversely, a UAV can use its superior 

mobility and field of view to provide global information (e.g., detected oil spill over the water, or plastic waste accumulation 

over the shore) to a UWV or a UGV, which then can use their superior endurance and payload to carry heavier sensing 

equipment on-site, or traverse areas unreachable by other agents such as a river or lake. An example of such coordination is 

discussed in [14] in which a UAV provides aerial observation of a ground target to be investigated by a UGV. Such a dynamic 

optimization of data collection using heterogeneous mobile robotic agents as sensor nodes in environmental surveys can 

substantially increase knowledge about pollutant transport pathways and feed modern machine learning based environmental 

models that support the development of policies and methodologies to protect the environment.  

 

3. Methodology and Experimental Validation 
To survey and analyze contamination levels in the environment, dense sampling provides ample measurements to 

generate accurate spatial pollution maps. However, deploying mobile sensor nodes at numerous locations sees a major 

increase in acquisition time, operational cost, and faces limitations on autonomous mobile agents’ autonomy, often imposed 

by battery life. Different optimization approaches are considered in this section, along with a description of the experimental 

testbed and early experimental results. 

 

3.1. Centralized Programmatic Control for Environment Sensor Nodes Coordination 
The optimization of sensor nodes distribution is first studied in a classical perspective by minimizing acquisition time 

and sampling effort while maximizing the coverage of the samples collection area for data-centric pollution distribution 

mapping and analysis. To support early development, UAVs are deployed in an indoor environment to automatically identify 

points of interest which are assigned to different UGV agents for data collection. A UAV equipped with a color camera uses 

its superior mobility and elevated point of observation to localize points of interest, identified via visual markers distributed 

on the ground as depicted in Figure 1. The UAV’s pose, estimated via embedded visual inertial odometry and external pose 

tracker sensors, is considered to determine the location of different points of interest, (𝑥𝑗, 𝑦𝑗), on the ground [15]. The latter 

are then allocated to individual robotic agents, 𝑅𝑖 with coordinates (𝑥𝑖 , 𝑦𝑖), either sequentially or simultaneously to distribute 

the environment sensing workload. Each UGV’s trajectory is planned to define a series of waypoints that serve to navigate 

the mobile sensor agents toward the locations where they perform air or water samples collection. 

 

       
Fig. 1: Locations of interest and waypoints determination from a UAV embedded vision sensor looking downward. 

 
In a first validation phase, waypoints assigned to each sensor node are selected such that the total travel distance for the 

entire group of mobile sensor nodes to conduct the environmental survey is minimized. A greedy algorithm [16] is used to 

calculate an optimal allocation, 𝐴𝑜𝑝𝑡, of waypoints for each agent. Through dynamic replanning, this approach calculates the 

locally optimal solution at each timestep, iterating through all waypoints until they are all assigned to robotic agents, or if 

constraints can no longer be satisfied. The cost function of Eq. (1) is defined based on Euclidean distance as: 
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As a refinement step, we also propose to minimize a global imbalance index, 𝑉, to promote even distribution of the air 

or water samples collection workload, where 𝑐𝑖 is the cost for agent 𝑅𝑖 to execute a given sample collection, and 𝐶 is the cost 

of all 𝑀 agents to execute all their assigned sample collection processes. 
 

𝑉 =  √∑ (𝑐𝑖 −
𝐶

𝑀
)

2𝑀

𝑖=1

 
(3) 

 

The greedy algorithm approach was initially tested in simulation. Figure 2 presents experimental results on one test case 

considering 3 robotic sensor agents (1-A, 2-B, 3-C) and 10 waypoints (0 to 9), respectively without imbalance index 

enforcement (Figure 2a), and with imbalance index enforcement (Figure 2b). The results of the simulation are detailed in 

Table 1, showing the distance travelled per sensor node in each case, the total travel distance, and the global imbalance index 

achieved. It can be observed that while the overall travel distance is less when the imbalance index is not enforced, the 

workload distribution among the different sensor nodes does not use every agent effectively, even leading to a single sensor 

node performing all sample collections sequentially along a complex path rather than sharing the samples collection process. 

Conversely, when the imbalance index, 𝑉, is enforced and minimized in the workload distribution process, all sensor nodes 

are put to contribution and share the data collection process by each performing a subset of the samples collection in parallel 

over the surveyed area, at the expense of a slightly increased total travel distance. Also, a significantly better balance in the 

workload distribution among the agents is achieved, which is reflected in a smaller global imbalance index, V, value. 

Moreover, since each sensor node is less solicited, the overall autonomy of the autonomous robotic agents that carry the 

sensors and the capability to pursue additional samples collection through an iterative process are significantly improved. 
 

 
a) b) 

Fig. 2: Simulation of atmospheric or water samples collection via dynamic waypoints allocation  

a) with distance minimization only, and b) with combined distance and global imbalance minimization. 

 

Table 1: Experimental evaluation of performance under two modes of waypoints allocation for samples collection. 
 

Imbalance index, V, not enforced (Figure 2a) Imbalance index, V, enforced (Figure 2b) 

Agent Travel Distance Imbalance Index Travel Distance Imbalance Index 

1-A 112.1 - - - 44.2 - - - 

2-B 0 - - - 53.6 - - - 

3-C 0 - - - 34.6 - - - 

Global 112.1 91.5 132.4 13.4 
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3.2. Experimental Autonomous Robotic Platforms for Sensor Nodes Deployment 
To experimentally validate the proposed dynamic environment sensors deployment methods beyond simulation, several 

robotic platforms equipped with specialized sensor nodes are developed. These include a quadcopter and a single-rotor UAV, 

a modified UGV and a UWV platform.  

An off-the-shelf RB5 quadcopter drone, shown in Figure 3a, equipped with PX4 autopilot firmware for flight control 

and a single board computer running Ubuntu 18.08 with robot operating system (ROS) Melodic version is experimentally 

evaluated. The UAV-embedded PX4 and ROS communicate with a central control computer through MAVROS using the 

MAVLink protocol, which enables programmatic flight control of the drone with limited intervention from the operator, as 

well as access to and recording of embedded sensor data through ROS topics. Equipped with an embedded color camera, it 

is used to detect points of interest on the ground, and for collecting air samples at various elevations. Alternatively, a custom 

single rotor unmanned aerial vehicle (SR-UAV), shown in Figure 3b, is also in the design phase to help with surveying the 

environment and detect points of interest. The design consists of a mechanical structure where a single rotor and four control 

fins are placed symmetrically in the lower part of the aircraft and directly below a propeller. The control fins are directly 

attached to servos, so that an angle of attack is obtained to produce a torque in each of the main axes [17]. The system 

involves up of 5 control outputs: one that comes from the thrust of the engine and four from the regulation of the movement 

of the control fins. The required torque is generated by using the four fin controls, to maintain both positive and negative 

angle of attack behaviour. The flight control system includes all the degrees of freedom of the SR-UAV, thus separating it 

into two controllers: one being the translational (x, y, z) and the other the attitude (φx, φy, φz). As such, the design provides 

the ability to move laterally and to fly forward. The prototype shown in Figure 3b was built with the aim of determining the 

best material and aerodynamics of the components. Benefits of a single-rotor UAV over a quadcopter include increased 

versatility and higher payload to accommodate embedded sensors due to lower structural weight involved by a single 

actuator, and the capability to custom design the platform to perform well in the considered environment. Moreover, various 

control schemes can be considered to ensure accurate trajectory control performance, which in turn leads to accurate sampling 

of pollution measurements. 
 

 

 

 

 
a) b) c) d) 

Fig. 3: UAVs for points of interest detection and sensor nodes deployment: a) RB5 quadcopter drone, b) single-rotor-unmanned aerial 

vehicle (SR-UAV); UGV and UWV for sensor nodes deployment: c) Turtlebot3 waffle, d) TrenchRover 110 ROV. 

 

For the purpose of testing deployment algorithms, an off-the-shelf Turtlebot3 waffle UGV, shown in Figure 3c, was 

considered given its rapid integration capability under ROS. The Turtlebot3 waffle is a differential drive robot. It embeds a 

microcontroller connected to a Raspberry Pi minicomputer which runs Ubuntu 20.04 with ROS Noetic, also enabling 

programmatic control and access to sensor data via ROS topics.  

To support pollution samples collection in the water, a Thor Robotics TrenchRover 110 ROV designed for underwater 

research is used, as shown in Figure 3d. A custom microfluidic sensor device [18] is embedded on the UWV to measure 

nitrate concentration in the water. The compact robotic platform (360x200x200 mm) has four vector propellers, arranged in 

such a way that there are two horizontal and two perpendicular control axes for manoeuvrability. The robot carries a frontal 

camera and two frontal LED spotlights. It operates through a AT9S Pro remote controller. Since electromagnetic waves fade 

very quickly in water, this vehicle uses a tether cable to connect the vehicle and the remote control. The compact size of the 

vehicle permits a small impact on the aquatic environment but has the disadvantage of a reduced payload. Hence, for the 

integration of the microfluidic device, the required hardware must be attached as appendages to the vehicle. Other important 
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parameters are the energy source and the time required for taking a measurement with the microfluidic device as they 

condition the autonomy of the vehicle. Having an external power source connected through the tether cable handles the 

power issue and allows this research to focus on the sampling rate of the microfluidic sensor device. 

 

3.3. Optimization with Opportunistic Distribution of Sensor Nodes 
Beyond minimizing travel distance as in Section 3.1, increased efficiency on samples collection can be achieved by 

leveraging opportunistic sensing strategies. An algorithm which was introduced for 3D range data acquisition [19] formulates 

an estimated improvement measure to automatically define the areas where additional data sample collection leads to optimal 

knowledge acquisition about the environment. It is here considered as a method to efficiently distribute the environmental 

sensor nodes carried by air, water or ground robotic agents working in collaboration. The methodology aims to collect only 

sparse samples where environment pollution distribution is relatively uniform, while dynamically densifying the distribution 

of sensor nodes over regions where the contamination parameters vary more extensively.  

The proposed pipeline for opportunistic distribution of sensor node agents is shown in Figure 4. Initially, sensor nodes 

are uniformly but sparsely distributed, which enables a rapid collection of samples over a wide area and coarse pollution 

mapping to support future data sampling runs. Any area where measured pollution parameters vary becomes a region of 

interest (ROI), over which the sensor nodes will be dynamically redeployed to collect additional samples that will increase 

the knowledge cumulated in an environment pollution map. The method to determine the optimal locations for subsequent 

selective data acquisition builds upon ordinary kriging [20], which computes spatial autocorrelation among available samples 

to estimate the measurements and variance expected at unsampled locations. Among those locations, those with highest 

kriging variance, which corresponds to the highest uncertainty on the measurements, are selected as the next locations to 

visit for sensor nodes to collect samples. The process is repeated iteratively, forming a series of unsampled locations whose 

coordinates are defined as waypoints for navigating the sensor nodes with autonomous robotic agents and collecting 

additional measurements. The opportunistically collected samples supplement the initial sparsely distributed measurements, 

enabling the creation of spatial pollution maps with rich information while minimizing the number of data samples collected.  
 

 
Fig. 4: Block diagram of proposed opportunistic sensor nodes distribution and samples collection. 

 

Experiments were conducted to validate the feasibility of the proposed sensor nodes deployment method. A dataset of 

900 samples was simulated with spatial location and value to form a high-density ground truth data representation, shown in 

Figure 5a, where colors represent environmental parameter values. Figure 5b depicts the corresponding spatial map of 

estimated values using ordinary kriging. Then the procedure described in Figure 4 is implemented. Sparse sampling extracts 

uniformly distributed points from the ground truth map at a given density, here 100 samples (Figure 5c). A new map of 

measurements is formed with the sparsely subsampled dataset (Figure 5d). Regions where values significantly vary become 

ROIs for opportunistic data collection and candidate sampling locations are introduced. Estimates of the measurement value 

and corresponding variance on each candidate are calculated with ordinary kriging. Candidates with the highest kriging 

variance then define the waypoints for robots to strategically distribute sensor nodes at the next sampling iteration (Figure 

5e). The spatial map is updated with opportunistically collected measurement values (Figure 5f). The root mean square error 

(RMSE) between the ground truth spatial map and the estimated spatial map is used as a performance metrics. To validate 
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the proposed method, performance is monitored over cases with different initial sparse sampling density. Table 2 reports for 

cases where initial subsampling involves respectively 36, 100, or 225 data collection locations. 
 

      
a) b) c) d) e) f) 

Fig. 5: Opportunistic selection of sensor node locations: a-b) ground truth data with 900 samples, and corresponding spatial 

measurements map; c-d) location of initial 100 uniformly distributed sparse samples, and corresponding measurements map; e-f) 

opportunistically expanded data sampling in ROI, and corresponding measurements map. 

 

Table 2: RMSE comparison on estimated spatial maps with uniform sparse samples only versus opportunistically selected samples. 

 36 uniform 

samples 

with opportunistic 

samples 

100 uniform 

samples 

with opportunistic 

samples 

225 uniform 

samples 

with opportunistic 

samples 

RMSE 1.0992 0.9004 1.1204 0.8460 1.1063 0.8438 

 

Based on achieved RMSE against ground truth data, the spatial map of measurements generated with opportunistically 

selected sample locations improves in accuracy over the one relying on uniformly distributed sparse samples only. As 

selected samples are collected where uncertainty is higher, they contribute to increase knowledge over those regions. 

 

3.4. Data-Centric Environmental Pollution Modeling 
As an example of application in pollution monitoring to predict oil pollution concentration in the marine environment 

[3], the multilayer perceptron (MLP) method, a feedforward backpropagation artificial neural network, is employed. The 

developed model receives spatial data of oil pollution concentration in the water body and applies MLP on the dataset to 

train the model [4]. After validation, the trained model can be used to predict oil pollution distribution in the case of an oil 

spill event, which in turn can guide the deployment of sensor nodes embedded on UWVs to conduct additional data sampling 

over critical areas as pollutants keep dispersing. 

The data used for initial training of the model are obtained from simulation due to the lack of substantial and publicly 

available datasets on oil pollution in the water. Considering a simulation-to-real knowledge transfer development strategy 

and building upon the proposed dynamic sensor nodes deployment approaches introduced in previous sections, the next step 

consists of dynamically deploying sensor nodes, to collect water samples in an opportunistic manner and where most needed 

to maximize knowledge acquisition, rather than relying only on simulation data or on human manual selection of the preferred 

sample collection locations. The overall objective of the optimized data sampling process supported by dynamically 

distributed sensor nodes is to feed pollution dispersion models with the most relevant information, which eventually improves 

the accuracy of the modeling and provides a better prediction of pollutants dispersion.   

        

4. Conclusion 
This paper introduces key concepts for an automated selection of optimal locations to conduct data samples collection 

in the environment with the goal to accurately but efficiently monitor and model air or water pollution. To achieve this 

objective, innovative approaches to dynamically deploy specialized sensor nodes over air, ground or water autonomous 

vehicles are presented. The research contributes to the emergence of a next generation of environmental survey mechanisms 

and data-centric pollution models that prove critical for informing policy makers and guiding interventions in the 

environment. Future work will involve continuous development of the robotic platforms as sensors carriers, improve 

scalability and integration with specialized sensor devices, and further refine and experimentally validate the design of 

optimal task allocation and coordination strategies for sensor nodes distribution in the environment. 
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