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Abstract—The dexterous manipulation of non-rigid objects by
robotic hands is a requirement for automating many delicate
or labour-intensive tasks in various industries. This includes the
ability to actively deform and shape objects to fit specifications,
which is an important skill that allows, e.g., to insert a soft foam
filter into a rigid enclosure. This work focuses on the in-hand
shaping of non-rigid objects, providing an original model-free
algorithm for automatically selecting the contact points between
the fingers and the object’s contour. This optimizes the initial
conditions of the shaping task, allowing the desired shape to
be approximated more efficiently with low degrees of freedom
in the applied forces. The algorithm is validated experimentally
with the Barrett hand and a variety of non-rigid objects.

Index Terms—robotic manipulation, deformable objects,
grasping points selection, visual servoing.

I. INTRODUCTION

In order for robotic manipulators to reach an increased level

of flexibility and gain the ability to perform varied tasks, it is

necessary for them to come closer to a human-like skillset.

To achieve this, an important issue that remains to be solved

is the appropriate handling of non-rigid objects. This includes

any objects that can change shape during or as a result of

the manipulation process, such as ropes and wires, sponges,

rubber, all cloth-like objects and other thin sheets, as well

as a variety of organic materials including organs and living

tissues. The dexterous handling of such objects will enable

the use of robotic manipulators to automate many delicate or

labour-intensive tasks for industrial assembly, food processing,

surgery and household chores.

As shown in recent surveys [1], [2], current research involv-

ing the manipulation of non-rigid objects is moving from the

handling of ropes and cloth to the often more computationally-

intensive tasks of precisely shaping 3D objects and their 2D

projections or contours. This work focuses on an important

subproblem of this task which has not yet received much

attention, namely the selection of the contact points between

the robotic hand manipulator(s) and the object in order to

optimize the shaping task while keeping a stable grasp and

avoiding slippage.

The rest of this paper is organized as follows: section II

provides an overview of the related literature while section

III describes the proposed algorithm both generally and for

a specific case with the Barrett robot hand. Finally, section

IV presents a sample of experimental results as well as a

discussion of real-time processing concerns and a highlight

of some of the limitations of the algorithm, while section V

provides concluding remarks and directions for future work.

II. RELATED LITERATURE

A. Grasp Synthesis

Grasp synthesis algorithms can be divided in two general

categories based on the relative dimensions of the manipulator

and of the object to grasp, i.e., one for large objects and one for

small objects (relative to the manipulator grasp size). The first

category involves selecting the areas to grasp on objects which

are much larger than the manipulator, without needing to

consider in-hand dynamics. For instance, an automated tissue

retraction system for robot-assisted surgery is presented by

Patil and Alterovitz [3]. The optimal grasping point and motion

path are selected by simulating the entire space of possible

paths starting from a sample of initial gripper configurations.

To select grasps for unfolding a shirt, Bersch et al. [4] rely

on the recognition of visible markers, selecting the optimal

area based on prior knowledge of the markers’ location on the

shirt. The validity and quality of the grasp is confirmed by

fitting a simplified gripper model around the 3D point cloud

of the selected area.

The second class of grasping strategies involve in-hand

grasping. In this case, the interaction between the hand and the

object is considered with the goal of optimizing the position

of each finger on the object. Generally, the fingers are not

rigidly attached to the object, causing the stability of the

grasp to become an important concern. This topic is well

researched for the case of rigid objects, and surveys of it

can be found in [5], [6]. Some simple strategies which could

be expanded to planar non-rigid objects include the work of

Morales et al. [7], [8] and Suarez et al. [9], who use different

heuristics to compute stable, force-closure grasps in a model-

free manner based on the observed contour of objects. The

work of Ciocarlie and Allen [10] is also of particular interest,

as it is based on optimizing the grasp in a low-dimensional

subspace of possible hand configurations, greatly reducing the

computation time without sacrificing the ability to generate

stable grasps.

The case of non-rigid objects has not yet been widely

addressed, especially in terms of selecting a grasp to optimize

the in-hand shape control of the object. A few works have,
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however, explored the topic of synthesizing stable grasps. Mira

et al. [11] studied cases where it is impossible to generate a

force closure grasp without deforming the object, such as a

sheet of paper or foam laying on a table. The grasp is generated

by using a learning system and a database of objects and tasks

with successful and unsuccessful grasps. Zaidi et al. [12], [13]

use a model-based approach to generate a stable grasp on non-

rigid objects with a multi-fingered hand. First, potential grasp

polygons are fitted around a model of the object to enforce

the constraints imposed by the force closure condition. Then,

the interaction between the object and the hand is simulated

in order to determine the forces to apply to achieve stability

while causing minimal deformation.

B. Contour Shaping

The robotic task considered in this research is the shaping

of the contour of a non-rigid object as it is projected on a

2D image. Works pertaining to this topic include that of Das

and Sarkar [14], who use multiple autonomous manipulators

to shape a large planar non-rigid object. This is achieved by

minimizing an energy-like criterion to find the location of

the contact points on the desired contour and mapping them

to their locations on the initial contour, using the distance

between the point on the current and desired contours as

the control error. Berenson et al. [15] estimate the shape

Jacobian relating the displacement of the grasp points to that

of the controlled feature points by relying on the concept of

diminishing rigidity. Simply stated, this is the idea that the

parts of the object near a grasp point will follow its motion

very closely, while areas that are further away will be less

affected.

Alonso-Mora et al. [16] control multiple mobile manipu-

lators carrying a large non-rigid object such as a bedsheet.

A centralized planner provides general task-level guidance

while delegating control to the individual robots. The object

is represented as the triangulation polygon of the grasp points,

such that a variety of contour shaping tasks may be defined.

Recently, Wang et al. [17] presented a controller to reach

and make initial contact with the object of interest before

deforming it, based on previous works such as [18]. However,

like most of the approaches described in the current literature

including the above examples, the grasping point or area must

be defined by the human operator.

C. Contour Tracking

It is also worthwhile to highlight a few strategies for object

segmentation that are particularly appropriate for tracking

the deformation of non-rigid objects. Cretu et al. [19] use

a growing neural gas network to identify background and

foreground objects in the initial frame before obtaining the

mean colour of the foreground in HSV space. This allows

for faster segmentation of subsequent frames by applying

colour thresholding and tuning a (now non-growing) neural

gas network to represent the contour.

Hui et al. [20] rely on a user-supplied “fixation point” near

the center of the foreground object to transform the image into

a log-polar representation. This causes the contour to become

a mostly vertical transition between two regions, allowing

the image to be processed only in the horizontal direction

and simplifying the registration between successive contours.

Navarro-Alarcon et al. [21] propose to represent the object’s

initial and desired contours based on a truncated Fourier series,

thereby improving the robustness of the system by ignoring

the noise introduced by image segmentation and hand-drawn

sketches.

Overall, the most important ideas upon which this work

builds are as follows. First, the principle of diminishing

rigidity [15] is used to identify potential grasp points on the

object contour. Then, the potential grasps are represented in

a low-dimensional space to simplify the planning procedure

[10]. Finally, registration between the different contours is

simplified by conversion to the polar domain [20].

III. SYSTEM DESCRIPTION

The grasp selection scheme presented in this paper relies on

finding a function D : P → R which describes the difference

between the desired contour Cd and the initial contour Ci
along a finger path P ∈ P , where P is the set of possible

robotic hand finger paths. In this work, which is mostly done

using image coordinates rather than an abstract mathematical

description, a contour is represented as the list of pixels that

correspond to the boundary of the object. In the case of the

Barrett Hand, taking a 2D view which is normal to the palm of

the hand allows for a convenient simplification, as the fingers

trace a straight line between the edge of the object and the cen-

ter of the palm, which is assumed to coincide with the center

of the object. Therefore, a conversion from Cartesian to polar

coordinates allows each finger path to be uniquely described

by a single angle, such that P = [0◦, 360◦), discretized to the

required level of precision. The rest of this section provides

a step-by-step descriptions of the grasp selection procedure,

initialization steps, and basic shape control loop.

A. Initialization

The experimental setup consists of a BH-262 Barrett robot

hand which is installed on a table with the palm facing up.

The object to deform is placed on the palm of the hand,

using cardboard blocks to lift it to a height which allows the

fingertips to make contact with the sides of the object. Images

are acquired with a Microsoft Kinect (Xbox 360 version)

mounted on a tripod and positioned to obtain a nearly vertical

view of the palm of the hand. This setup is shown in Fig. 1

and allows to simulate the case where a robotic arm is used to

maintain the hand at a proper height to grasp the sides of the

object, while the “inverted” view simplifies contour tracking

by reducing occlusions.

In order to properly define the shaping task, some user

interaction is required. First, in order to reduce processing time

and minimize the inclusion of background objects, the image

captured from the Kinect is cropped to contain only the region

of interest (the hand-object system), the bounds of which are

supplied by the user. Similarly, the user must select the object
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Fig. 1. Picture of the experimental setup.

to deform, which is done by selecting a point anywhere on

said object.

The cropped image is then converted to the HSV colour

space, and the foreground object is segmented from the rest

of the scene by selecting all pixels which have a colour

similar to that of the user-supplied reference point. Then, the

initial object contour Ci and centroid (x0, y0) are extracted

using built-in functions of standard image processing libraries

(OpenCV).

The final initialization step which requires user interaction

is the definition of the desired contour Cd. This is done by

drawing the desired contour on the initial frame, examples of

which are shown in Fig. 5. Note that it could also be selected

(with the appropriate pose adjustments) from a preexisting

database of shapes or by identifying an enclosure in the scene.

B. Grasp Selection

Knowing the initial and desired contours, it is possible to

build a function which describes their difference along the

possible finger paths. Based on the geometry of the Barrett

hand, converting the contours to polar forms C̃i and C̃d greatly

simplifies this task. The centre of the object, (x0, y0), is used

as the centre point of the transformation shown in (1), as it is

assumed to coincide with the centre of the hand.

C̃i = {(r, θ)|r =
√

(x− x0)2 + (y − y0)2,

θ = arctan

(

y − y0

x− x0

)

, (x, y) ∈ Ci}
(1)

The sets of polar points C̃i and C̃d can be converted to

discrete functions Ci(θ) = r, taking the mapping from the

corresponding (r, θ) point in C̃i, and Cd(θ) = r, which is

mapped from the (r, θ) points in C̃d. It may also be required

to discard all points except the one with the largest r for each

θ value considered as the contour may be noisy, introducing

concavities and overlapping points when θ is discretized. Note

that large concavities which cause the contour to break the line

of sight from the center of the transformation multiple times

will introduce large discontinuities, reducing the usefulness

of the polar-domain contours for driving the finger motions.

Similarly, r values for θs that are part of the discretized

[0, 360) interval P but that do not appear in C̃i or C̃d (as

appropriate) are filled in by linear interpolation. Thus, it is

possible to construct the contour difference function D as per

(2).

D(θ) = Ci(θ)− Cd(θ) (2)

Based on the principle of diminishing rigidity, each con-

tact point will be the area where the corresponding finger’s

influence on the shape of the object will be the greatest. It

is therefore sensible to place the fingers in the areas where

the difference between the initial and desired contours is the

greatest. These areas are shown in the peaks of D(θ) (see Fig.

4 for an example). Since the fingers are not rigidly attached

to the object, they can only apply forces towards the centre

and not away from it. This matches the case where C̃i has a

larger r than C̃d for a given θ, i.e., the positive parts of D(θ).
Given a circular indexing of D(θ) and discretization step

δθ for θ ∈ P , the local maxima of D(θ) may be extracted

as per (3). Since the contours are not smoothly defined, two

passes are required to remove noise and find the true peaks.

That is, in (3), M′ is constructed to contain the local maxima

of D(θ). Given the large amount of local maxima introduced

by noise in the contour, M is built to contain only the points

of M′ with a larger ∆r than their neighbours when sorted by

θ.

M′ = {(θ,∆r)|∆r = D(θ) if

D(θ − δθ) ≤ D(θ) > D(θ + δθ), θ ∈ P}

M = {(θi,∆ri) ∈M
′|

∆ri−1 ≤ ∆ri > ∆ri+1, θi < θi+1}

(3)

Thus, M is the set of points which corresponds to the larger

peaks of D(θ). Each point (θ,∆r) ∈ M can be seen as

a finger path (θ) annotated with the distance (∆r) between

the initial and desired contours along this path. Applying the

idea of diminishing rigidity, it desirable to place the fingers

where ∆r is the largest, making it a good indicator of the

quality of the associated grasp path. From this, it is possible

to generate T , a set of potential 3-finger grasps, by taking

all 3-combinations of M. Given the path triplets in T , it is

necessary to find those that form valid grasps. That is, those

which respect the constraints introduced by the mechanical

properties of the hand as well as the requirements for grasp

stability.

The Barrett hand is built with a central finger (F3 in Fig. 2)

which remains at a fixed angle while the two others (F1 and

F2 in Fig. 2) may be rotated around the palm. However, its

mechanism is such that the angles between the fingers may not

be adjusted individually. In fact, the angles between the central

finger and the two other fingers must be identical. Candidate

path triplets are identified by the general procedure described

in Algorithm 1 (illustrated in Fig. 3) which verifies that at

least two of the internal angles φij are identical. The path
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φ < 90
◦

φ < 90
◦

F3(θc)

F2(θc − φ)
F1(θc + φ)

(a)

φ > 90
◦

φ > 90
◦

F3(θc)

F2(θc − φ)
F1(θc + φ)

(b)

Fig. 2. Three-finger grasps respecting the Barrett hand constraints (identical
angle φ on both sides of F3) on an arbitrary object. The grasp in (a) is less
likely to be successful than the one in (b) as it will push the object out of the
hand.

θ1

θ2

θ3

φ12

φ23 φ13

Fig. 3. Candidate finger paths in polar space represented by a triplet of angles,
(θ1, θ2, θ3) ∈ T , with black lines being interchangeably associated with the
central finger, F3. This represents a valid grasp for the Barrett hand only if
at least two of the three internal angles φij are identical.

triplets which meet this condition and therefore respect the

constraints of the Barrett hand form the set of valid grasps G.

For each valid grasp, the central angle θc and the difference φ

between θc and the other angles are also recorded to support

the mapping between the angles and the Barett hand’s fingers

in section III-C.

In terms of grasp stability, the main concern is the ability

of the selected grasp to compensate all internal and external

forces so that the object is not dropped. There exist a few

general formulations of this constraint, namely force closure,

form closure, and deform closure (see [7], [22]). In the specific

case of the Barrett hand, however, a good rule-of-thumb may

be derived by observing Fig. 2, which shows that grasps where

φ > 90◦ are more likely to succeed. Therefore, those with

φ < 90◦ are removed from G.

Once the set of valid, stable grasps is known, all that remains

is to select an appropriate one for shaping the object. Since

the goal is to control the points where D(θ) is the largest, the

total ∆r of the grasp is used as a ranking criteria, and the

grasp for which it is maximal is selected.

C. Shape Control

The selected grasp consists of three angles, namely θc, θc+φ

and θc − φ. These are mapped to the central ‘fixed’ finger of

the Barrett hand and to the two ‘mobile’ fingers, respectively.

Setting the spread to φ, the entire hand is physically rotated

by the user (due to the absence of a wrist) so that the fingers

align with the selected angles. A PID controller is then used

to drive the closing of the fingers so that the selected contact

points are moved from their position on Ci to their position

Algorithm 1 Identifying valid grasps for the Barrett hand

Input: (θ1, θ2, θ3) ∈ T in degrees: a potential grasp, and t: a

tolerance

Output: θc: the central angle and φ: the difference if the grasp

is valid, false otherwise

θc = 0
φ = 0
for i = 1 to 3 do

for j = i to 3 do

φij ← |θi − θj |
if φ > 180◦ then

φij ← 360◦ − φij

if |φ12 − φ13| < t then

θc ← θ1
φ← φ12

else if |φ12 − φ23| < t then

θc ← θ2
φ← φ12

else if |φ23 − φ13| < t then

θc ← θ3
φ← φ23

else

return false

return θc, φ

on Cd, driving the difference between the current and desired

contours toward 0 along the three selected θ values. While this

is unlikely to achieve D(θ) = 0 ∀θ due to considering only

three contact points, the goal is to reach as close as possible

to D(θc) ≈ 0, D(θc + φ) ≈ 0 and D(θc − φ) ≈ 0 within the

accuracy of the contour extraction and hand alignment and

under the mechanical constraints imposed by the object.

IV. RESULTS

The proposed system was tested with a variety of non-

rigid objects and desired contours, showing acceptable results

given the simplicity of the implemented contour detection

and control schemes. This section presents a sample of these

results, namely a successful shaping operation on a soft sponge

and a less successful operation on a stiff foam ball.

Fig. 4 shows the polar-domain transformation of the initial

and desired contours obtained at the end of the initialisation

(section III-A), as well as their difference. As described in

section III-B, peaks in the difference curve show angles where

the influence of the fingers should be maximized to shape the

object, therefore being good candidates for the contact points.

Fig. 5 shows, in order, the candidate grasp angles (i.e., θ

values inM), the selected grasp before reorienting the Barrett

hand fingers, and images at different times of the manipulation

sequence. They are annotated with the initial contour Ci, the

desired contour Cd, as well as the contour at the current time,

CT . Fig. 6 and Fig. 7 show the control and global errors for

shaping the sponge and ball, respectively. The control error for

each finger is selected as the difference between the point on

the current contour CT (θ) and on the desired contour Cd(θ)
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for the chosen angle, while the global error is the mean square

error (MSE) of the entire contour, as per (4).

E(θ) = CT (θ)− Cd(θ)

Eg =
1

|P|

∑

θ∈P

E(θ)2 (4)

In the case of the sponge, the finger control errors are

minimized to a stable value, with fingers 1 and 3 reaching

near 0. Finger 2 could not be precisely aligned with its selected

grasp line, as shown in the later images of Fig. 5a. The global

error is also reduced to a stable value, even though the object

is not perfectly fitted to the desired contour due to the small

number of control points. This is expected behaviour, as a

larger number of control points should allow for more accurate

shaping of the object as per [14].

The ball was made of stiffer foam than the sponge which,

combined with its spherical shape, made it more difficult to

control. Nevertheless, the errors of fingers 1 and 2 were still

reduced while finger 3 was not correctly aligned, causing the

ball to be pushed away from the centre during the manipula-

tion, as it can be observed in the location of the current contour

with respect to the centre of projection in Fig. 5b. This caused

the global error to increase as the ball was pushed away from

the desired contour.

A. Time Constraints

The execution time of the various selection and manipula-

tion steps were timed informally to validate the suitability of

this approach for applications which require real-time process-

ing. Implemented in python on a 2.4 GHz processor with a

few other tasks running, the grasp selection sequence required

between 5 and 7 seconds of wall time depending on the

number of peaks in the contour difference function, although

this includes the generation of some “helper” images which

are not strictly necessary for the automated selection of the

grasp. Although this is hardly “real-time”, it remains relatively

fast, and it is expected that an optimized implementation

would provide a significant reduction of this delay. On the

other hand, the simple control loop implemented was able

to process about 20 frames per second without moving the

fingers. However, waiting for the motion to be completed

between each frame requires processing only about two frames

per second. There is therefore ample room for a more complex

control scheme to be implemented while remaining within

real-time constraints. The other steps of the algorithm, such

as the initialization, selection of the desired contour, and

hand alignment all required human interaction. Therefore, the

measured times would be more indicative of the human’s speed

than of the algorithm’s efficiency.

B. Limitations

The presented results highlight a few limitations in the

proposed algorithm. First and foremost, it is clear that the

quality of the results is extremely dependant on the quality

and reliability of the contour detection algorithm, which was

simplified in the current implementation. A similar observation
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Fig. 4. Polar representation of the initial contour Ci(θ), desired contour
Cd(θ), as well as their difference D(θ) for both objects. Vertical lines show
the approximate positions of the selected grasp points, with θ1 in blue, θ2 in
red and θ3 = θc in green.

can be made with respect to the implemented control loop, as

it is expected that an algorithm which considers the entire

contour would provide better minimization of the global error

that one that considers only the contact points. The case

of the ball being pushed off the hand also illustrated the

importance of ensuring proper force closure, which was not

considered here. Finally, the use of a polar transformation to

perform the registration between the different contours limits

the possibilities for the definition of the desired contour, as the

origin of the transformation must remain inside both contours.

V. CONCLUSION

In conclusion, this work provides an original algorithm to

select an optimal grasp for controlling the shape of a non-rigid

object, an important task for which few automated procedures

currently exist. Overall and despite some limitations, the

proposed system provides a good basis for selecting grasps

which aim to control the shape of a non-rigid object in addition

to allowing for stable manipulation. Moreover, it does not

require a prior model of the object and does not rely on

computationally expensive simulations or learning systems,
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T=0Selected Grasp T=20 T=40 T=80Candidate Grasp Angles

(a)

Selected Grasp T=0 T=5 T=10 T=20Candidate Grasp Angles

(b)

Fig. 5. Image sequences for shaping (a) the sponge, and (b) the ball. The initial contour is shown in blue, the desired contour in green and the current contour
in red. Angles corresponding to peaks in D(θ) are shown in the first frame, with the length of the line being proportional to D(θ). In subsequent images,
the lines show the reference angles used for the grasp with blue for θ1 (finger 1), red for θ2 (finger 2) and green for θ3 = θc (finger 3). The centre of the
polar transformation is marked by a blue cross.
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Fig. 6. Contour shaping error for the soft sponge. (a): Contour difference for
the control point associated with each finger, (b): Global mean-squared error
of the contour.
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Fig. 7. Contour shaping error for the stiff ball. (a): Contour difference for
the control point associated with each finger, (b): Global mean-squared error
of the contour. The increase in global error is due to the ball being pushed
off the hand.
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making it suitable for implementation in robotic systems with

limited computing power.

Generalizing this algorithm to different platforms requires

finding a set of possible finger paths P based on the mechan-

ical and geometrical properties of that platform. Then, it is

possible to evaluate the contour difference along these paths

to select the optimal ones.

Future work should focus on addressing the limitations

of the system, namely by integrating more robust contour

tracking and shape control algorithms, including a smoother

contour representation [19], [21]. More accurate considera-

tions for ensuring that the grasp achieves force closure and

proper alignment of the hand are also required. Moreover, it

would be of interest to experiment with a wider variety of

objects, including some made of non-homogeneous materials.

In addition, the variety of grasping configurations could be

expanded by exploring different positions for the centre of

the hand instead of constraining it to the centre of the object.

Finally, this algorithm could also be expanded to handle the

deformation of objects in 3D space.
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