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Abstract—The Self-Organizing Contextual Map (SOCM) is 

applied to address the task allocation problem in the context of 

multi-robot heterogeneous systems. Inter-variability and 

overlap of common capabilities (sensors, actuators, and 

descriptors) exist between robotic agents. As a starting point, a 

range of search-and-rescue tasks are used to form a set of 

binary symbol codes that identify selected tasks. Binary vectors 

are then predefined to represent factitious features (task 

requirements) to solve these search-and-rescue tasks, forming 

the attribute codes. The combination of these vectors is used to 

form associations between the features of a task (requirements) 

and a robotic agent’s capabilities. Using a recursive stepwise 

approximation and calculating the Euclidean distance, feature 

and contextual maps are formed to differentiate between tasks. 

Then similar predefined binary vectors are used that represent 

the robotic agent’s capabilities. Using this information, nested 

domains are created on top of the contextual map that form 

allocation regions for all learned tasks. Three generalization 

tests are then performed to assess the SOCM’s robustness and 

task allocation abilities. Overall, the results suggest that the 

applied SOCM encapsulates a true heterogeneous system for 

addressing a simplified version of the task allocation problem. 

Keywords—Task allocation, multi-robot systems, hetero-

geneous systems, self-organizing contextual map (SOCM), 

search and rescue. 

I. INTRODUCTION

Multi-agent systems have emerged as a significant topic 
of interest within robotics due to their potential benefits for a 
large range of real-world applications, such as search and 
rescue tasks [1]. These larger tasks are typically divided into 
smaller subtasks that can be worked on by individual robotic 
agents or cooperative teams. However determining which 
robotic agents are suitable/capable of solving a given task 
can be challenging and is known as the task allocation 
problem [1], [2].  

Task allocation is dependent on the characteristics of the 
robotic agents involved; they can either be homogeneous or 
heterogeneous [1], [3], [4]. Homogeneous systems comprise 
of identical agents with the same capabilities, sensors, and 
actuators. Within these systems, task allocation is typically 
not based on agent capability, but rather on additional factors 
like remaining battery or location [3]. This type of system is 
common when addressing the task allocation problem and 
has been applied in numerous ways. Some of these include 
market-based strategies, where task allocation is dependent 
on the incurring cost [5], and swarm approaches to name a 
few [1], [6]. However the task allocation problem becomes 
increasingly difficult in the context of heterogeneous 
systems, where significant inter-variability amongst agent 
capabilities and hardware can exist [1], [4], [7]. Furthermore, 
another dimension of complexity is added when there is any 
overlap in capabilities between agents in the system 
[1]. 

However, these systems offer versatility, flexibility, and 
practicality from a design perspective where having a single 
agent with all the necessary hardware is simply too arduous 
[1], [4].  

Inspired from the formation of local assemblies in the 
brain [8], [9], the unsupervised Self-Organizing Map (SOM) 
has become a powerful tool due to its nonlinear topology 
preservation from a high-dimensional input space to a low-
dimensional grid [10]–[12]. This endows the SOM with both 
dimension reduction properties [8], [12] and the clustering of 
input information that shares common features [9]–[12]. The 
SOM and its variations has been found in a myriad of 
applications including the control of robotic manipulators to 
representations of semantic relationships [10] (see [9] for a 
review). 

In recent years the SOM has become an alternative 
approach to multi-task assignment due to the underlying 
competition during learning [13]. This competition allows 
winners, as well as their neighbors, to move closer to a given 
target providing a key component for the task allocation 
problem. The SOM has been applied to multi-robot systems 
for solving the task allocation problem for mobile wheeled 
robots [14] and autonomous underwater vehicles (AUVs) 
[13], [15], [16]. Although studies tackle other issues such as 
path planning [13] and dynamic environments [14], they 
often assume that the robotic agents are homogeneous. An 
inhomogeneous approach was used for AUVs and was 
defined as different battery types for agents [16]. However 
while this is still heterogeneous, we make the hypothesis that 
more variability between agents is needed to fully 
encapsulate a true heterogeneous system.  

We therefore propose using a SOM that has been 
extended to higher levels of processing, the Self-Organizing 
Contextual Map (SOCM) [17], to solve the task allocation 
problem for a fully heterogeneous robotic system. The 
robotic agents in this system are defined as heterogeneous as 
they vary with respect to their capabilities (on-board sensors, 
actuators, and descriptors), but are permitted to overlap with 
some common features. The SOCM was initially proposed 
for the organization of a group of various animals with 
predefined features to form a meaningful animal map based 
on common features [17]. Here we applied the SOCM to task 
allocation for a heterogeneous unmanned robotic system to 
perform various search-and-rescue tasks with factitious 
features. In the current implementation the robustness and 
generalization qualities of the SOCM are studied to show 
some of the advantages of this method for task allocation. 

With respect to the task allocation taxonomy, the current 
study is conducted considering a Non-Dependent-Single 
Robot-Single-Task Instantaneous Allocation (ND-SR-ST-
IA) [2], [18]. Briefly stated this means that only one agent is 
assigned a single task at any given time with no 
consideration of future assignments [1], and task allocation is 
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dependent only on the capabilities of the agent and the given 
task requirements [2]. 

The reminder of this paper is divided as follows: Section 
II.A-B outlines the architecture and input patterns used by
the SOCM. Section II.C describes the learning procedure for
differentiation between tasks and the formation of the
contextual feature map. Section II.D describes the post-
learning phase where the contextual feature map is created
for task allocation. Section III outlines various tests and their
respective simulation results.  Finally in Sections IV and V,
we discuss and conclude the overall findings of our work.

II. METHODS

A. Architecture

The SOCM used here is comprised of two layers, a high
dimensional input layer (23 dimensions per task) and a 
smaller 2-dimensional output layer, comprised of a 8x8 
square lattice of units (sixty-four units). To prevent 
underfitting the data, the size of this output layer was 
estimated [19] according to (1).  

(1)

where M is the number of units and Obs is the number of 
features observed for all tasks (130 total, see TABLE I.). 

This estimation suggests a total of approximately 57 units 
in the output layer. However, to keep a consistent square 
lattice, this number was rounded up to 64 units (8x8). Each 
input vector is initially connected to every unit in the output 
layer via randomized synaptic weights between 0-1 (Fig. 1, 
where k [1-8]).  

B. Input Patterns

The input patterns for the SOCM contain two
components: the symbol and attribute codes. The symbol 
code is a vector of zeros the length of the list of all tasks, 
with a value of 1 identifying the selected task. This provides 
the network with the capability of extracting the 
corresponding hardware requirements from the symbol 
(label) only. The second component of the pattern comprises 
of the attribute code, which is directly encoded using a 
binary vector for each task that describes the presence or 
absence of the available hardware on a robot agent that is 
essential to completing that task (TABLE I.). These two 
codes are then concatenated (forming a 23 dimensional 
vector) to allow association between the features of search-
and-rescue task (its requirements) and the capabilities of a 
robot (available hardware) according to (2):  

(2) 

where the xs  is the symbol code vector and xa is the attribute 
vector. All input vectors are then normalized to a unit length 
of one prior to learning. 

C. Learning: How the SOCM differentiates tasks

Learning for the SOCM takes place offline and is
initialized with random weights for synaptic connections 
between the input layer and all units of the output layer (64 
units). This means that initially the network has no 
knowledge on how to differentiate between tasks based on 
the available hardware mounted on a given robotic agent, 

and the hardware needed to complete a given task (see graph 
a) of Fig. 2).

Figure 1. SOCM architecture. In the above architecture, each component of 

only one input vector projects to all units in the output layer. With m=23, 

and k [1, 8]. 

TABLE I. SEARCH AND RESCUE TASKS AND HARDWARE REQUIRED

Hardware Required 
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Sensors 

Infrared 1 0 0 0 1  0 1 0 0 1 

Ultrasonic 1 0 1 0 1 0 0 1 1 0 

Camera 1 1 1 1 1 1 1 1 0 1 

CO2 

detector 

0 0 0 1 0 0 0 0 0 1 

Actuators 
Pan-tilt 1 0 0 0 1 1 1 1 0 1 

Arm 1 0 1 0 0 0 0 0 0 1 

Deploy O2 0 0 1 0 0 0 1 1 1 0 

Descriptors 

Mobile 1 1 0 0 1 1 1 1 1 1 

Fast 0 1 1 0 0 1 1 1 1 1 

Battery >3h 0 1 1 1 0 0 1 1 1 0 

Land 1 1 0 1 1 1 1 0 0 1 

Aquatic 0 0 1 0 0 0 0 1 1 0 

Small 0 0 0 0 0 0 1 1 0 0 

To differentiate between tasks the network uses a 
recursive stepwise approximation [9] by randomly selecting 
one of the input patterns and finds the “best matching unit” 
(BMU) from the output layer by computing the Euclidean 
distance (3) between the input vector and the weight vector 
of each unit in the output layer. The unit with the shortest 
distance is the winner. 

(3)

where x(n) is the selected input at iteration n, wj(n) is the 
weight vector of a unit in the output layer, and i(x) is the 
shortest Euclidean distance for that input (BMU). 
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a) 

b) 

Figure 2. Evolution of the feature map during learning: a) the output layer 

with overlaying feature map after 1 learning iteration, and b) the output layer 

with overlaying feature map after 2000 learning iterations. See TABLE I for 
abbreviations. 

The BMU and its neighbors (other units that were 
excited) move closer in space to that input, making them 
more similar to that input. The size of the neighborhood 
around the BMU is calculated using a Gaussian function (Eq. 
4, 5) with a decreasing standard deviation over time, 
according to (6), in order to allow the formation of distinct 
clusters.  

(4) 

(5) 

where d2
j,i is the difference between the position rj of excited 

unit j in relation to the position of the BMU, ri, for a  
two-dimensional lattice, with (n) representing the radius 
(standard deviation) of the topological neighborhood.  

(6) 

where 0 is the initial radius of the topological neighborhood 
(set to a value of 5), n the current iteration, and 1 is a time 
constant calculated by (7). 

(7) 

and here N is the total number of iterations (2000 in present 
study). 

Weights are then updated for all excited units via 
Hebbian learning with the inclusion of a forgetting term and 
neighborhood function influence (8). 

(8)

where wj(n) are the weights for each unit j, (n) the learning 
rate, hj,i(x)(n) the influence of the neighborhood function, and 
x(n) is the selected input, all at the current iteration n.  

After updating, both the radius of the topological 
neighborhood ( ) and the learning rate ( ) are permitted to 
decrease according to (6) and (9) respectively.  

(9)

where 0 is the initial learning rate set at 0.1 and 2 another 
time constant set to N (2000 here). 

This whole process is repeated until n = N iterations, that 
is until convergence and formation of the feature map (see 
graph b) of Fig. 2). Convergence was estimated by 
minimizing the quantization error (see Fig. 3) as calculated 
by (10). 

(10) 

where the quantization error (QE) is the difference 
between the input x(n) and the distances, calculated in Eq. 
(3), from units in the output layer at iteration (n). 

Figure 3. Quantization Error across iterations. Calculation of the distance 

between input data points and output units.  

D. Post Learning: How the SOCM allocates tasks

After 2000 learning iterations, a contextual map is
derived from the Euclidean distance (3) for the weights 
instead of inputs. This results in a topology for weight 
connections where the BMU for each weight vector is 
represented by one of the input tasks (Fig. 4). This allows the 
clear distinction of task-clusters based on the BMUs for each 
task and their respective topological neighborhoods. Once 
complete, information about the specialization of available 
robotic agents is used to create vectors in the same manner 
and size (23 dimensions) as the task-input (see TABLE II), 
with a zero vector for the symbol code. These “robot” 
vectors are then used to create nested domains on top on the 
contextual map (Fig. 5). This automatically assigns the 
previously-learned tasks to the best suited available robotic 
agent based on its specializations. All processes, from 
initialization to final map formation, take less than a minute 
(approximately 21.204 seconds) on an average desktop 
computer for offline training.  
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TABLE II. AVAILABLE HETEROGENEOUS ROBOTIC AGENTS

Available Hardware  
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 1
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Sensors 

Infrared 1 0 0

Ultrasonic 0 1 1

Camera 1 1 0

CO2 detector 0 0 0 

Actuators 
Pan-tilt 1 0 0

Arm 0 1 0

Deploy O2 0 0 1 

Descriptors 

Mobile 0 1 0

Fast 0 0 1

Battery >3h 1 0 0 

Land 1 1 0

Aquatic 0 0 1

Small 0 0 0

Figure 4. Contextual map of the 2-D topology for weight connections. Each 

task abbreviation represents the Best Matching Unit (BMU) for each 

weight vector. See TABLE 1 for abbreviations. 

Figure 5. Contextual map with nested domains for each of the three 

specialized robotic agents available. See TABLE I for abbreviations and 

TABLE II for nested robotic domain details. 

III. RESULTS

The effectiveness of the SOCM for solving the task 
allocation problem was evaluated by administering several 
different generalization tests. The first one involved 
allocating the previously learned task of “Opening a door” to 
the best matching robot. The trained network was presented 
with an exact replica of the input vector (23 dimensions) that 
contained both the symbol code and attribute code with 
associated features (see TABLE I) for the “Opening a door” 
task. The network finds the BMU for the task and identifies 
the associated nested robotic domain. The network identifies, 
based on capability, that Robot #2 is the best suited available 
specialized agent for the task. This is reflected visually in 
Fig. 6 marking the BMU (red “X”) within the domain of 
Robot #2 (gray circle). It is important to note that by 
comparing TABLE I and TABLE II, Robot #2 shares the 
most, but not all, features with the “Opening a door” task, 
making it the best suited available agent. 

To show the robustness of the SOCM, the second and 
third tests involved allocating novel tasks that the network 
was not trained on. The second test involved presenting the 
network with an input vector containing only the symbol 
code for the “Climbing stairs” task and none of the 
associated required hardware (an attribute code of all zeros). 
The SOCM identifies the BMU for the task and the 
associated nested domain, that of Robot #2. This is reflected 
visually in Fig. 7 marking the BMU within the domain of 
Robot #2. Again, it is important to note that by comparing 
TABLE I and TABLE II, Robot #2 only shares some 
common features with the “Climbing stairs” task, but is still 
the best suited available agent based on both the network’s 
outputted solution and an external check.  

Finally, the third test involved presenting the network 
with a completely novel task that the network was not trained 
with to determine if it was able to provide a proper 
allocation. The vector that was presented to the network 
contained an all zero symbol code and only the following 
attribute code information regarding the hardware required to 
solve the task: fast, battery life>3 hours, and is aquatic. The 
network determines that this task is most similar to the 
“Person Drowning” task sharing many, but not all, features 
(see TABLE I). The BMU is identified in the nested domain 
of Robot #3 (green triangle), as reflected in Fig. 8.  

Figure 6. Contextual map with nested robotic domains for allocation of a 
previously learned task. Identification of BMU and associated domain for 
the learned “Opening a door” task (red “X”). See TABLE I for 
abbreviations and TABLE II for nested robotic domain details. 
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Figure 7. Contextual map with nested robotic domains for allocation of a 
symbol only task. Identification of BMU and associated domain when 
given only the symbol for “Climbing stairs” and no hardware features (red 
“X”). See TABLE I for abbreviations and TABLE II for nested robotic 
domain details. 

Figure 8. Contextual map with nested robotic domains for allocation of a 
novel task. Identification of BMU and associated domain when presented 
with novel task with hardware features of: fast, has battery life>3 hours, 
and is aquatic (Red “X”). See TABLE I for abbreviations and TABLE II 
for nested robotic domain details. 

IV. DISCUSSION

The identification of an effective mechanism for task 
allocation that aims at determining which robotic agents are 
capable of solving a given task in a multi-robot system has 
been the root of many approaches [20], [21]. With the 
aforementioned advantages of using a heterogeneous system, 
we believe that a heterogeneous approach to the task 
allocation problem merits further exploration. We therefore 
sought to explore the task allocation problem using 
heterogeneous system from an artificial neural network 
standpoint using the SOCM. 

As illustrated in our results, the SOCM was able to form 
a contextual map with clear differentiation between tasks 
based on the required hardware and the capabilities of 
robotic agents to solve these tasks. In this alternative 
approach to the actual task allocation problem, it is important 
to note the success of the network’s ability to differentiate 
between highly correlated tasks. For example the tasks of 

“Opening a door” and “Climbing stairs” were highly 
correlated with only one difference in the hardware required, 
with the “Opening a door” task additionally requiring an arm 
(TABLE I). Despite this high degree of similarity, distinct 
separate clusters were still observed (Fig. 4). This could be in 
part due to the orthogonal nature of the symbol codes 
lowering the correlation between these tasks, thus making it 
easier for the network to identify different BMUs.  

Many approaches to task allocation involve the 
decomposition of larger tasks into smaller subtasks prior to 
allocation, such as with some market-based approaches [22]. 
Therefore, the incorporation of an effective mechanism for 
differentiating between tasks can be considered necessary to 
allocation. In regards to the actual allocation of tasks, we 
show that nested domains of heterogeneous robots are easily 
created on top of the contextual map forming allocation 
regions. The formation of nested domains for approaching 
this problem is in line with previous work where a 
centralized algorithm is used to form allocation regions for 
each agent based on robot speed profiles [23].  

The use of the SOCM can be considered as fast as any 
classical classification technique. The application of nested 
domains in combination with the contextual map allow for 
the identification of the BMU and allocation of learned tasks 
to the most suitable robotic agents within fractions of a 
second on an average desktop computer. It took an average 
of 0.009 seconds to perform task allocation, excluding 
training, for the three cases presented here. Furthermore the 
robustness of the SOCM was validated with reasonable 
allocation of a task with the minimal information of just a 
symbol, and with a completely novel task. 

While the SOCM has shown success with the task 
allocation problem, some questions still remain. For instance, 
in the condition where the task is unsolvable due to no agent 
having the needed capabilities would the SOCM still allocate 
an agent? From additional experiments conducted within the 
current framework, the SOCM would still allocate to the next 
suitable agent based on any remaining similarities between 
task requirements and agent capabilities, even though the 
agent would not be able to fully solve the task. In the search-
and-rescue scenarios considered here, this is not seen entirely 
as a limitation. For example, in the case of a person 
drowning, an agent might not have the capability to dispense 
oxygen or an arm to lift the person out of the water. 
However, it is better to send an agent that might not be fully 
capable to save a drowning person than none at all. However, 
we believe that this is a situation-based problem and future 
refinements are required to incorporate when an agent should 
still be allocated despite a mismatch in required capabilities 
and task requirements.  

V. CONCLUSION

The overall aim of this paper was to examine the 
application of the SOCM as a mechanism for task allocation 
in a heterogeneous unmanned robotic system. This work 
shows that the applied SOCM encapsulates a true 
heterogeneous system with inter-variability amongst its 
members for addressing the task allocation problem. Even 
though the representation considered for the task allocation 
problem in this initial experimental study focuses on 
relatively simple tasks, it clearly shows the potential of the 
application of SOCM to develop formal associations 
between tasks and robotic agents that must share common 
characteristics.  
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More complex tasks may have many potential solutions 
and require further cooperation of multiple robots [21]. One 
potential solution would be to incorporate a k-winners-take-
all (kWTA) rule to produce a more distributed classification 
[24]. Furthermore, Monte-Carlo or bootstrap methods could 
be used to assess the stability of quantization in the SOCM 
[25]. This would allow the selection of more reliable maps, 
which is an important consideration for applications to 
sensitive problems such as search-and-rescue, where 
increased reliability is an essential asset for such dynamic 
problems. Finally, we aim to incorporate weighted inputs 
(instead of just binary) to put emphasis on specific features 
that may be more critical for solving a given task [17]. 
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