
Task Allocation for Heterogeneous Robots

Using a Self-Organizing Contextual Map

Matt Ross

School of Psychology

University of Ottawa

Ottawa, Canada

mross094@uottawa.ca

 Pierre Payeur

Faculty of Engineering

University of Ottawa

Ottawa, Canada

ppayeur@uottawa.ca

 Sylvain Chartier

School of Psychology

University of Ottawa

Ottawa, Canada

sylvain.chartier@uottawa.ca

Abstract—The Self-Organizing Contextual Map (SOCM) is

applied to address the task allocation problem in the context of

multi-robot heterogeneous systems. Inter-variability and

overlap of common capabilities (sensors, actuators, and

descriptors) exist between robotic agents. As a starting point, a

range of search-and-rescue tasks are used to form a set of

binary symbol codes that identify selected tasks. Binary vectors

are then predefined to represent factitious features (task

requirements) to solve these search-and-rescue tasks, forming

the attribute codes. The combination of these vectors is used to

form associations between the features of a task (requirements)

and a robotic agent’s capabilities. Using a recursive stepwise

approximation and calculating the Euclidean distance, feature

and contextual maps are formed to differentiate between tasks.

Then similar predefined binary vectors are used that represent

the robotic agent’s capabilities. Using this information, nested

domains are created on top of the contextual map that form

allocation regions for all learned tasks. Three generalization

tests are then performed to assess the SOCM’s robustness and

task allocation abilities. Overall, the results suggest that the

applied SOCM encapsulates a true heterogeneous system for

addressing a simplified version of the task allocation problem.

Keywords—Task allocation, multi-robot systems, hetero-

geneous systems, self-organizing contextual map (SOCM),

search and rescue.

I. INTRODUCTION

Multi-agent systems have emerged as a significant topic
of interest within robotics due to their potential benefits for a
large range of real-world applications, such as search and
rescue tasks [1]. These larger tasks are typically divided into
smaller subtasks that can be worked on by individual robotic
agents or cooperative teams. However determining which
robotic agents are suitable/capable of solving a given task
can be challenging and is known as the task allocation
problem [1], [2].

Task allocation is dependent on the characteristics of the
robotic agents involved; they can either be homogeneous or
heterogeneous [1], [3], [4]. Homogeneous systems comprise
of identical agents with the same capabilities, sensors, and
actuators. Within these systems, task allocation is typically
not based on agent capability, but rather on additional factors
like remaining battery or location [3]. This type of system is
common when addressing the task allocation problem and
has been applied in numerous ways. Some of these include
market-based strategies, where task allocation is dependent
on the incurring cost [5], and swarm approaches to name a
few [1], [6]. However the task allocation problem becomes
increasingly difficult in the context of heterogeneous
systems, where significant inter-variability amongst agent
capabilities and hardware can exist [1], [4], [7]. Furthermore,
another dimension of complexity is added when there is any
overlap in capabilities between agents in the system
[1].

However, these systems offer versatility, flexibility, and
practicality from a design perspective where having a single
agent with all the necessary hardware is simply too arduous
[1], [4].

Inspired from the formation of local assemblies in the
brain [8], [9], the unsupervised Self-Organizing Map (SOM)
has become a powerful tool due to its nonlinear topology
preservation from a high-dimensional input space to a low-
dimensional grid [10]–[12]. This endows the SOM with both
dimension reduction properties [8], [12] and the clustering of
input information that shares common features [9]–[12]. The
SOM and its variations has been found in a myriad of
applications including the control of robotic manipulators to
representations of semantic relationships [10] (see [9] for a
review).

In recent years the SOM has become an alternative
approach to multi-task assignment due to the underlying
competition during learning [13]. This competition allows
winners, as well as their neighbors, to move closer to a given
target providing a key component for the task allocation
problem. The SOM has been applied to multi-robot systems
for solving the task allocation problem for mobile wheeled
robots [14] and autonomous underwater vehicles (AUVs)
[13], [15], [16]. Although studies tackle other issues such as
path planning [13] and dynamic environments [14], they
often assume that the robotic agents are homogeneous. An
inhomogeneous approach was used for AUVs and was
defined as different battery types for agents [16]. However
while this is still heterogeneous, we make the hypothesis that
more variability between agents is needed to fully
encapsulate a true heterogeneous system.

We therefore propose using a SOM that has been
extended to higher levels of processing, the Self-Organizing
Contextual Map (SOCM) [17], to solve the task allocation
problem for a fully heterogeneous robotic system. The
robotic agents in this system are defined as heterogeneous as
they vary with respect to their capabilities (on-board sensors,
actuators, and descriptors), but are permitted to overlap with
some common features. The SOCM was initially proposed
for the organization of a group of various animals with
predefined features to form a meaningful animal map based
on common features [17]. Here we applied the SOCM to task
allocation for a heterogeneous unmanned robotic system to
perform various search-and-rescue tasks with factitious
features. In the current implementation the robustness and
generalization qualities of the SOCM are studied to show
some of the advantages of this method for task allocation.

With respect to the task allocation taxonomy, the current
study is conducted considering a Non-Dependent-Single
Robot-Single-Task Instantaneous Allocation (ND-SR-ST-
IA) [2], [18]. Briefly stated this means that only one agent is
assigned a single task at any given time with no
consideration of future assignments [1], and task allocation is

978-1-7281-1964-9/19/$31.00 ©2019 IEEE

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.

57

dependent only on the capabilities of the agent and the given
task requirements [2].

The reminder of this paper is divided as follows: Section
II.A-B outlines the architecture and input patterns used by
the SOCM. Section II.C describes the learning procedure for
differentiation between tasks and the formation of the
contextual feature map. Section II.D describes the post-
learning phase where the contextual feature map is created
for task allocation. Section III outlines various tests and their
respective simulation results. Finally in Sections IV and V,
we discuss and conclude the overall findings of our work.

II. METHODS

A. Architecture

The SOCM used here is comprised of two layers, a high
dimensional input layer (23 dimensions per task) and a
smaller 2-dimensional output layer, comprised of a 8x8
square lattice of units (sixty-four units). To prevent
underfitting the data, the size of this output layer was
estimated [19] according to (1).

(1)

where M is the number of units and Obs is the number of
features observed for all tasks (130 total, see TABLE I.).

This estimation suggests a total of approximately 57 units
in the output layer. However, to keep a consistent square
lattice, this number was rounded up to 64 units (8x8). Each
input vector is initially connected to every unit in the output
layer via randomized synaptic weights between 0-1 (Fig. 1,
where k [1-8]).

B. Input Patterns

The input patterns for the SOCM contain two
components: the symbol and attribute codes. The symbol
code is a vector of zeros the length of the list of all tasks,
with a value of 1 identifying the selected task. This provides
the network with the capability of extracting the
corresponding hardware requirements from the symbol
(label) only. The second component of the pattern comprises
of the attribute code, which is directly encoded using a
binary vector for each task that describes the presence or
absence of the available hardware on a robot agent that is
essential to completing that task (TABLE I.). These two
codes are then concatenated (forming a 23 dimensional
vector) to allow association between the features of search-
and-rescue task (its requirements) and the capabilities of a
robot (available hardware) according to (2):

(2)

where the xs is the symbol code vector and xa is the attribute
vector. All input vectors are then normalized to a unit length
of one prior to learning.

C. Learning: How the SOCM differentiates tasks

Learning for the SOCM takes place offline and is
initialized with random weights for synaptic connections
between the input layer and all units of the output layer (64
units). This means that initially the network has no
knowledge on how to differentiate between tasks based on
the available hardware mounted on a given robotic agent,

and the hardware needed to complete a given task (see graph
a) of Fig. 2).

Figure 1. SOCM architecture. In the above architecture, each component of

only one input vector projects to all units in the output layer. With m=23,

and k [1, 8].

TABLE I. SEARCH AND RESCUE TASKS AND HARDWARE REQUIRED

Hardware Required

(Features) O
p

en
in

g
 a

 d
o

o
r

 (
D

o
o
r)

P
er

so
n

 u
n

co
n

sc
io

u
s

 (
P

U
)

P
er

so
n

 d
ro

w
n

in
g

 (
P

D
)

F
ir

e
d

et
ec

ti
o
n

(F

ir
e-

D
)

C
li

m
b

in
g
 s

ta
ir

s
 (

S
ta

ir
s)

R
o
o

m
 s

ea
rc

h

(R
-S

)

P
er

so
n

 t
ra

p
p
ed

 –
ru

b
b
le

(P

T
R

)

P
er

so
n

 t
ra

p
p
ed

-w
a

te
r

 (
P

T
W

)

F
lo

ta
ti

o
n

d

ev
ic

e
(F

lo
a
t)

F
ir

e
ex

ti
n

g
u

is
h

er

(F
ir

e-
ex

)

Sensors

Infrared 1 0 0 0 1 0 1 0 0 1

Ultrasonic 1 0 1 0 1 0 0 1 1 0

Camera 1 1 1 1 1 1 1 1 0 1

CO2

detector

0 0 0 1 0 0 0 0 0 1

Actuators
Pan-tilt 1 0 0 0 1 1 1 1 0 1

Arm 1 0 1 0 0 0 0 0 0 1

Deploy O2 0 0 1 0 0 0 1 1 1 0

Descriptors

Mobile 1 1 0 0 1 1 1 1 1 1

Fast 0 1 1 0 0 1 1 1 1 1

Battery >3h 0 1 1 1 0 0 1 1 1 0

Land 1 1 0 1 1 1 1 0 0 1

Aquatic 0 0 1 0 0 0 0 1 1 0

Small 0 0 0 0 0 0 1 1 0 0

To differentiate between tasks the network uses a
recursive stepwise approximation [9] by randomly selecting
one of the input patterns and finds the “best matching unit”
(BMU) from the output layer by computing the Euclidean
distance (3) between the input vector and the weight vector
of each unit in the output layer. The unit with the shortest
distance is the winner.

(3)

where x(n) is the selected input at iteration n, wj(n) is the
weight vector of a unit in the output layer, and i(x) is the
shortest Euclidean distance for that input (BMU).

58

a)

b)

Figure 2. Evolution of the feature map during learning: a) the output layer

with overlaying feature map after 1 learning iteration, and b) the output layer

with overlaying feature map after 2000 learning iterations. See TABLE I for
abbreviations.

The BMU and its neighbors (other units that were
excited) move closer in space to that input, making them
more similar to that input. The size of the neighborhood
around the BMU is calculated using a Gaussian function (Eq.
4, 5) with a decreasing standard deviation over time,
according to (6), in order to allow the formation of distinct
clusters.

(4)

(5)

where d2
j,i is the difference between the position rj of excited

unit j in relation to the position of the BMU, ri, for a
two-dimensional lattice, with (n) representing the radius
(standard deviation) of the topological neighborhood.

(6)

where 0 is the initial radius of the topological neighborhood
(set to a value of 5), n the current iteration, and 1 is a time
constant calculated by (7).

(7)

and here N is the total number of iterations (2000 in present
study).

Weights are then updated for all excited units via
Hebbian learning with the inclusion of a forgetting term and
neighborhood function influence (8).

(8)

where wj(n) are the weights for each unit j, (n) the learning
rate, hj,i(x)(n) the influence of the neighborhood function, and
x(n) is the selected input, all at the current iteration n.

After updating, both the radius of the topological
neighborhood () and the learning rate () are permitted to
decrease according to (6) and (9) respectively.

(9)

where 0 is the initial learning rate set at 0.1 and 2 another
time constant set to N (2000 here).

This whole process is repeated until n = N iterations, that
is until convergence and formation of the feature map (see
graph b) of Fig. 2). Convergence was estimated by
minimizing the quantization error (see Fig. 3) as calculated
by (10).

(10)

where the quantization error (QE) is the difference
between the input x(n) and the distances, calculated in Eq.
(3), from units in the output layer at iteration (n).

Figure 3. Quantization Error across iterations. Calculation of the distance

between input data points and output units.

D. Post Learning: How the SOCM allocates tasks

After 2000 learning iterations, a contextual map is
derived from the Euclidean distance (3) for the weights
instead of inputs. This results in a topology for weight
connections where the BMU for each weight vector is
represented by one of the input tasks (Fig. 4). This allows the
clear distinction of task-clusters based on the BMUs for each
task and their respective topological neighborhoods. Once
complete, information about the specialization of available
robotic agents is used to create vectors in the same manner
and size (23 dimensions) as the task-input (see TABLE II),
with a zero vector for the symbol code. These “robot”
vectors are then used to create nested domains on top on the
contextual map (Fig. 5). This automatically assigns the
previously-learned tasks to the best suited available robotic
agent based on its specializations. All processes, from
initialization to final map formation, take less than a minute
(approximately 21.204 seconds) on an average desktop
computer for offline training.

59

TABLE II. AVAILABLE HETEROGENEOUS ROBOTIC AGENTS

Available Hardware

R
o
b
o

t
 #

 1

R
o
b
o

t
 #

 2

R
o
b
o

t
#
 3

Sensors

Infrared 1 0 0

Ultrasonic 0 1 1

Camera 1 1 0

CO2 detector 0 0 0

Actuators
Pan-tilt 1 0 0

Arm 0 1 0

Deploy O2 0 0 1

Descriptors

Mobile 0 1 0

Fast 0 0 1

Battery >3h 1 0 0

Land 1 1 0

Aquatic 0 0 1

Small 0 0 0

Figure 4. Contextual map of the 2-D topology for weight connections. Each

task abbreviation represents the Best Matching Unit (BMU) for each

weight vector. See TABLE 1 for abbreviations.

Figure 5. Contextual map with nested domains for each of the three

specialized robotic agents available. See TABLE I for abbreviations and

TABLE II for nested robotic domain details.

III. RESULTS

The effectiveness of the SOCM for solving the task
allocation problem was evaluated by administering several
different generalization tests. The first one involved
allocating the previously learned task of “Opening a door” to
the best matching robot. The trained network was presented
with an exact replica of the input vector (23 dimensions) that
contained both the symbol code and attribute code with
associated features (see TABLE I) for the “Opening a door”
task. The network finds the BMU for the task and identifies
the associated nested robotic domain. The network identifies,
based on capability, that Robot #2 is the best suited available
specialized agent for the task. This is reflected visually in
Fig. 6 marking the BMU (red “X”) within the domain of
Robot #2 (gray circle). It is important to note that by
comparing TABLE I and TABLE II, Robot #2 shares the
most, but not all, features with the “Opening a door” task,
making it the best suited available agent.

To show the robustness of the SOCM, the second and
third tests involved allocating novel tasks that the network
was not trained on. The second test involved presenting the
network with an input vector containing only the symbol
code for the “Climbing stairs” task and none of the
associated required hardware (an attribute code of all zeros).
The SOCM identifies the BMU for the task and the
associated nested domain, that of Robot #2. This is reflected
visually in Fig. 7 marking the BMU within the domain of
Robot #2. Again, it is important to note that by comparing
TABLE I and TABLE II, Robot #2 only shares some
common features with the “Climbing stairs” task, but is still
the best suited available agent based on both the network’s
outputted solution and an external check.

Finally, the third test involved presenting the network
with a completely novel task that the network was not trained
with to determine if it was able to provide a proper
allocation. The vector that was presented to the network
contained an all zero symbol code and only the following
attribute code information regarding the hardware required to
solve the task: fast, battery life>3 hours, and is aquatic. The
network determines that this task is most similar to the
“Person Drowning” task sharing many, but not all, features
(see TABLE I). The BMU is identified in the nested domain
of Robot #3 (green triangle), as reflected in Fig. 8.

Figure 6. Contextual map with nested robotic domains for allocation of a
previously learned task. Identification of BMU and associated domain for
the learned “Opening a door” task (red “X”). See TABLE I for
abbreviations and TABLE II for nested robotic domain details.

60

Figure 7. Contextual map with nested robotic domains for allocation of a
symbol only task. Identification of BMU and associated domain when
given only the symbol for “Climbing stairs” and no hardware features (red
“X”). See TABLE I for abbreviations and TABLE II for nested robotic
domain details.

Figure 8. Contextual map with nested robotic domains for allocation of a
novel task. Identification of BMU and associated domain when presented
with novel task with hardware features of: fast, has battery life>3 hours,
and is aquatic (Red “X”). See TABLE I for abbreviations and TABLE II
for nested robotic domain details.

IV. DISCUSSION

The identification of an effective mechanism for task
allocation that aims at determining which robotic agents are
capable of solving a given task in a multi-robot system has
been the root of many approaches [20], [21]. With the
aforementioned advantages of using a heterogeneous system,
we believe that a heterogeneous approach to the task
allocation problem merits further exploration. We therefore
sought to explore the task allocation problem using
heterogeneous system from an artificial neural network
standpoint using the SOCM.

As illustrated in our results, the SOCM was able to form
a contextual map with clear differentiation between tasks
based on the required hardware and the capabilities of
robotic agents to solve these tasks. In this alternative
approach to the actual task allocation problem, it is important
to note the success of the network’s ability to differentiate
between highly correlated tasks. For example the tasks of

“Opening a door” and “Climbing stairs” were highly
correlated with only one difference in the hardware required,
with the “Opening a door” task additionally requiring an arm
(TABLE I). Despite this high degree of similarity, distinct
separate clusters were still observed (Fig. 4). This could be in
part due to the orthogonal nature of the symbol codes
lowering the correlation between these tasks, thus making it
easier for the network to identify different BMUs.

Many approaches to task allocation involve the
decomposition of larger tasks into smaller subtasks prior to
allocation, such as with some market-based approaches [22].
Therefore, the incorporation of an effective mechanism for
differentiating between tasks can be considered necessary to
allocation. In regards to the actual allocation of tasks, we
show that nested domains of heterogeneous robots are easily
created on top of the contextual map forming allocation
regions. The formation of nested domains for approaching
this problem is in line with previous work where a
centralized algorithm is used to form allocation regions for
each agent based on robot speed profiles [23].

The use of the SOCM can be considered as fast as any
classical classification technique. The application of nested
domains in combination with the contextual map allow for
the identification of the BMU and allocation of learned tasks
to the most suitable robotic agents within fractions of a
second on an average desktop computer. It took an average
of 0.009 seconds to perform task allocation, excluding
training, for the three cases presented here. Furthermore the
robustness of the SOCM was validated with reasonable
allocation of a task with the minimal information of just a
symbol, and with a completely novel task.

While the SOCM has shown success with the task
allocation problem, some questions still remain. For instance,
in the condition where the task is unsolvable due to no agent
having the needed capabilities would the SOCM still allocate
an agent? From additional experiments conducted within the
current framework, the SOCM would still allocate to the next
suitable agent based on any remaining similarities between
task requirements and agent capabilities, even though the
agent would not be able to fully solve the task. In the search-
and-rescue scenarios considered here, this is not seen entirely
as a limitation. For example, in the case of a person
drowning, an agent might not have the capability to dispense
oxygen or an arm to lift the person out of the water.
However, it is better to send an agent that might not be fully
capable to save a drowning person than none at all. However,
we believe that this is a situation-based problem and future
refinements are required to incorporate when an agent should
still be allocated despite a mismatch in required capabilities
and task requirements.

V. CONCLUSION

The overall aim of this paper was to examine the
application of the SOCM as a mechanism for task allocation
in a heterogeneous unmanned robotic system. This work
shows that the applied SOCM encapsulates a true
heterogeneous system with inter-variability amongst its
members for addressing the task allocation problem. Even
though the representation considered for the task allocation
problem in this initial experimental study focuses on
relatively simple tasks, it clearly shows the potential of the
application of SOCM to develop formal associations
between tasks and robotic agents that must share common
characteristics.

61

More complex tasks may have many potential solutions
and require further cooperation of multiple robots [21]. One
potential solution would be to incorporate a k-winners-take-
all (kWTA) rule to produce a more distributed classification
[24]. Furthermore, Monte-Carlo or bootstrap methods could
be used to assess the stability of quantization in the SOCM
[25]. This would allow the selection of more reliable maps,
which is an important consideration for applications to
sensitive problems such as search-and-rescue, where
increased reliability is an essential asset for such dynamic
problems. Finally, we aim to incorporate weighted inputs
(instead of just binary) to put emphasis on specific features
that may be more critical for solving a given task [17].

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support from
Department of National Defence of Canada toward this
research under the Innovation for Defence Excellence and
Security (IDEaS) program, and from the Ontario Graduates
Scholarship (OGS).

REFERENCES

[1] L. E. Parker, “Multiple Mobile Robot Systems,” in Springer
Handbook of Robotics, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 921–941.

[2] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive
taxonomy for multi-robot task allocation,” Int. J. Rob. Res., vol. 32,
no. 12, pp. 1495–1512, Oct. 2013.

[3] A. Nikitenko, E. Lavendelis, M. Ekmanis, and R. Rumba, “Task
Allocation Methods for Homogeneous Multi-Robot Systems: Feed
Pushing Case Study,” Autom. Control Comput. Sci., vol. 52, no. 5, pp.
371–381, Sep. 2018.

[4] D. Di Paola, D. Naso, and B. Turchiano, “Consensus-based robust
decentralized task assignment for heterogeneous robot networks,” in
Proceedings of the 2011 American Control Conference, 2011, pp.
4711–4716.

[5] E. Lavendelis, A. Liekna, A. Nikitenko, A. Grabovskis, and J.
Grundspenkis, “Multi-Agent Robotic System Architecture for
Effective Task Allocation and Management,” in Proceedings of the
11th WSEAS International Conference on Signal Processing,
Robotics and Automation (ISPRA '12), Cambridge, UK, pp. 167-174,
Feb. 2012.

[6] S. Berman, A. Halasz, M. A. Hsieh, and V. Kumar, “Optimized
Stochastic Policies for Task Allocation in Swarms of Robots,” IEEE
Trans. Robot., vol. 25, no. 4, pp. 927–937, 2009.

[7] A. Khamis et al., “Cooperative Robots and Sensor Networks,” Stud.
Comput. Intell., vol. 604, 2015.

[8] X. Lin, D. Soergel, and G. Marchionini, “A self-organizing semantic
map for information retrieval,” in Proceedings of the 14th annual
international ACM SIGIR conference on Research and development
in information retrieval - SIGIR ’91, pp. 262–269, 1991.

[9] T. Kohonen, “Essentials of the self-organizing map,” Neural

Networks, vol. 37, pp. 52–65, Jan. 2013.

[10] G. A. de Barreto, A. F. R. Araújo, and H. J. Ritter, “Self-Organizing
Feature Maps for Modeling and Control of Robotic Manipulators,” J.
Intell. Robot. Syst., vol. 36, no. 4, pp. 407–450, 2003.

[11] J. Himberg, J. Ahola, E. Alhoniemi, J. Vesanto, and O. Simula, “The
Self-Organizing Map as a Tool in Knowledge Engineering,” 2001, pp.
38–65.

[12] S. Haykin et al., Neural Networks and Learning Machines Third
Edition. 2009.

[13] D. Zhu, X. Cao, B. Sun, and C. Luo, “Biologically Inspired Self-
Organizing Map Applied to Task Assignment and Path Planning of an
AUV System,” IEEE Trans. Cogn. Dev. Syst., vol. 10, no. 2, pp. 304–
313, Jun. 2018.

[14] A. Zhu and S. X. Yang, “A Neural Network Approach to Dynamic
Task Assignment of Multirobots,” IEEE Trans. Neural Networks, vol.
17, no. 5, pp. 1278–1287, Sep. 2006.

[15] D. Zhu, H. Huang, and S. X. Yang, “Dynamic Task Assignment and
Path Planning of Multi-AUV System Based on an Improved Self-
Organizing Map and Velocity Synthesis Method in Three-
Dimensional Underwater Workspace,” IEEE Trans. Cybern., vol. 43,
no. 2, pp. 504–514, Apr. 2013.

[16] M. Chen and D. Zhu, “A Workload Balanced Algorithm for Task
Assignment and Path Planning of Inhomogeneous Autonomous
Underwater Vehicle System,” IEEE Trans. Cogn. Dev. Syst., 2018.

[17] H. Ritter and T. Kohonen, “Self-Organizing Semantic Maps,”
Biological cybernetics, vol. 61, no. 4, pp. 241-254, 1989.

[18] B. P. Gerkey, M. J. Mataric, and M. J. Matari, “A Formal Analysis
and Taxonomy of Task Allocation in Multi-Robot Systems,” Int. J.
Rob. Res., vol. 23, 2004, pp. 939-954.

[19] J. Tian, M.H. Azarian, and M. Pecht "Anomaly detection using self-
organizing maps-based k-nearest neighbor algorithm," in Proceedings
of the European Conference of the Prognostics and Health
Management Society, pp. 1-9, 2014.

[20] R. Zlot and A. Stentz, “Complex Task Allocation For Multiple
Robots,” in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 1515–1522, 2005.

[21] O. Al-Buraiki, P. Payeur, “Agent-Task Assignation Based on Target
Characteristics for a Swarm of Specialized Agents," in Proceedings of
the 13th Annual IEEE International Systems Conference, Orlando, FL,
pp. 268-275, Apr. 2019.

[22] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-Based
Multirobot Coordination: A Survey and Analysis,” Proc. IEEE, vol.
94, no. 7, pp. 1257–1270, Jul. 2006.

[23] J. Camilo, G. Higuera, and G. Dudek, “Fair subdivision of Multi-
Robot Tasks,” Robot. Autom. (ICRA), 2013 IEEE Int. Conf., pp.
3014–2019, 2013.

[24] S. Chartier, G. Giguere, D. Langlois, and R. Sioufi, “Bidirectional
Associative Memories, Self-Organizing Maps and k-Winners-Take-
All: Uniting feature extraction and topological principles,” in 2009
International Joint Conference on Neural Networks, pp. 503–510,
2009.

[25] M. Cottrell, E. de Bodt, and M. Verleysen, “A Statistical Tool to
Assess the Reliability of Self-Organizing Maps,” in Advances in Self-
Organising Maps, London: Springer London, pp. 7–14, 2001.

62

