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Abstract—— This paper introduces a probabilistic approach 

for assigning specialized individual agents among a robotic swarm 

to corresponding constrained tasks. Based on the assumption that 

each individual agent possesses specialized capabilities, the 

proposed approach evaluates probabilistic fitting of the available 

robot individuals based on the requirements imposed by the 

current task, which takes the form of a recognized target object in 

a specific environment. A formal matching scheme is developed to 

evaluate a task-agent fitting score among all available agents. It 

assigns the most qualified and available specialized robotic agent 

as the best responder to perform the recognized task. A simulation 

study is presented to validate the efficiency and robustness of the 

proposed approach.  

Keywords— task-agent assignment, specialized task 
allocation, probabilistic representation, swarm robotics. 

I. INTRODUCTION 

A multi-agent robotic system is composed of multiple 
interacting agents within a bounded space, while collective 
behavior emerges from the interaction between the agents and 
with the environment. In this paper the concept of specializing 
the individual agents to respond to constrained tasks is explored. 
A formalism is introduced for task allocation in the context of a 
collaborative swarm of mobile robots. Unlike previous work that 
considers heterogeneity among the robotic agents mainly from 
their physical construction, here a specific definition of 
specialization is introduced. It leverages the embedded hardware 
and software characteristics of each agent. As a result, an 
advanced form of specialized labor division emerges in the 
swarm, which divides the labor among the individual members 
based on best matching the specific requirements of the task to 
each robot’s capabilities. This form of task allocation can reduce 
equipment cost and increase the net efficiency of the swarm. The 
proposed probabilistic scheme computes a specialty fitting 
score, which supports optimal task allocation. As qualified 
agents are assigned to corresponding tasks with different scores, 
a form of prioritization among robotic agents also emerges. The 
following section reviews state-of-the-art approaches for 
automated task-agent allocation. Section III details the proposed 
framework, while section IV links the approach with target 
object recognition that defines the tasks considered. The formal 
task-agent matching process is defined in section V, and 
experimental results are reported in section VI. 

II. STATE-OF-THE-ART 

Previous research works introduced many task-agent 
assignment solutions such as maximum matching algorithms [1] 
that match equal number of vehicles and tasks. A perfect 
matching problem [2] involves having a convention to map a set 
of robots to another set of  tasks. In these approaches, task-
agent assignment is addressed without considering agent’s 
specialization.  

Stochastic or probabilistic task-agent assignment techniques 
have also been proposed. Jones and Mataric [3] built a state 
transition probabilistic model to respond to changing tasks. Two 
agents perform a foraging task with equal probabilities. They 
keep their current foraging state and observe the environment in 
their vicinity. The current foraging state is re-evaluated based on 
new observations, and the probability of the robot’s state priority 
changes with respect to the observed foraging task. Then, based 
on the current probability, the robot can change its foraging 
state. Smith and Bullo [4] proposed a task-agent assignment 
probabilistic algorithm called “grid assignment algorithm” to 
partition the targets environment to a grid of cells. Then the 
available robots in each cell are assigned to the targets that 
occupy the same cell. Claes et al. [5] addressed spatial task 
assignment as a multi-agent planning problem using a Markov 
decision process. The proposed model aggregates the effect of 
the other team members into a probabilistic model to control the 
individual agents that are trying to perform spatially distributed 
tasks. Lang and Toussaint [6] introduced a probabilistic model 
to define object-action relevance. The proposed model involves 
a subset of objects that are relevant for specific planning 
purposes. The model is used in [7] to compute a sequence of 
actions and apply approximate inference to control the robot 
planning, grasping and reasoning for the arrangement of table-
top objects. Yasuda et al. [8] proposed a response threshold 
probabilistic model to control the individuals that perform a food 
foraging process. As a result, robots with a probability that 
exceeds a specific threshold can leave the nest. Then they search 
for food. Recently, Wu et al. [9] introduced a task assignment 
probabilistic model based on environmental stimulus and the 
agent’s response threshold. The environmental stimulus is 
modeled based on a specific time increment, and decrement with 
every active agent. This threshold level is increased when the 
total number of similar agents is decreased. The system is 
modeled for battlefield attacks and the transition probability can 
only transfer the individual agents among the swarm between 
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two task states for the entire targets. It neither matches nor takes 
the decision to make specialized agents interact with the current 
tasks.  

III. PROPOSED APPROACH 

The proposed approach forms a probability-based allocation 
mechanism for mobile robots equipped with specialized 
capabilities to best match with constrained tasks detected in their 
environment. Fig. 1 illustrates the overall objective of the task-
agent allocation process. When a group of specialized robotic 
agents navigate in a given workspace, observer agents search for 
target objects from a list of predefined objects of interest. Once 
a target is detected through visual pattern recognition [10], 
automated allocation of a robotic agent is initiated for the task to 
be completed (e.g. reach to the object for closer observation, 
track or pick the object, etc). The goal is to assign the most 
capable specialized agent to respond to a detected task. The 
proposed solution considers the swarm members to be 
intrinsically identical in their lower genetic level (e.g. similar 
mobile platforms) and extrinsically different in their higher 
functionality level (e.g. on-board sensors or actuators, 
communication and reasoning capabilities). This results in 
specialized capabilities for each individual agent forming an 
overall multi-agent system with non-homogeneous 
functionalities. 

 
Figure 1: General framework for specialized task-agent allocation. 

To achieve this goal, two coupled spaces are defined for 
coordinating the specialized robotic individuals in the swarm. A 
schematic diagram of the coupled coordination spaces is shown 
in Fig. 2. The control space tackles control considerations 
related to robots’ dynamics, swarm’s navigation, group 
formation and transition [11]. The specialization space 
optimizes the match between the task requirements and the 
individual robots’ specialization, which is the core contribution 
of this paper. The objective of the specialization space is to 
divide the labor amongst the swarm from the perspective of the 
individuals’ specialty in the presence of cooperation between the 
agents.  

Figure 2: Coupled spaces architecture for specialized agents’ coordination.

In the specialization space, a task-agent probabilistic 
approach is defined for matching characteristic features 
perceived on detected tasks with robot embedded specialties. It 
relies on an uncertain representation of the observed features, 
which provides a task specific signature that can be matched 
with predefined corresponding specialized functionalities of the 
swarm’s individuals. As such, this work focuses on 
characterizing the specialization of the agents as heterogeneous 
individuals with respect to their functionalities and on the 
evaluation of a task-agent fitting score that is required for 
assigning robots to specific tasks. The coordination of individual 
agents to the corresponding tasks addresses three main 
problems: 1) target task recognition, 2) task-agent specialty 
matching, and 3) coordination of the optimal specialized 
responder. An automatic task selection unit (ATSU) is 
introduced in [12] which is responsible for decision making on 
assigning the best specialized robot to a corresponding target 
object. In addition, a human supervisor is preserved in the 
control loop for strategic guidance, as depicted in Fig. 1 and 2. 

IV. RECOGNITION OF TASK CHARACTERISTICS 

In practice, target object detection and recognition in the 
robot environment is performed via modern deep learning 
pattern recognition methods, which rely on a set of visual 
features observed via color cameras mounted on some of the 
robotic agents that are part of the swarm [10].  

From a more general perspective, the proposed solution 
considers predefined Gaussian distributed spatial features, , 
to recognize target objects in a 2-dimensional environment. In a 
typical scenario, while the agents navigate the workspace, an 
embedded perception system collects information from the 
surrounding environment and extracts data from the dominant 
features, , on the observed targets. Then, the detected features 
are categorized through a classification mechanism. This 
provides information to the task-agent matching stage that is 
discussed in section V. The latter determines a confidence level 
in the fit between the detected target and any specialized agent. 

A.  Target Object Recognition and Features Extraction 

To map the appropriate agents to the corresponding tasks 
independently, the dominant features on the target objects are 
separated into classes. The observed data for each feature, , 
are encoded as a vector of  observed samples, that is

, where  is a Gaussian distributed 

random sample of a 2-dimensional spatial feature, visually 
observed, with mean  and variance . Also,  
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where  is the maximum number of features that are expected 
to be observed on a target object. The total number of distinctive 
features to be estimated creates a set of vectors, here called the 
features vector, . It is also assumed 
that each feature, , is associated with one specific class, , 
of target objects. These classes are also the ones considered 
available for training the target recognition stage on a number of 
predefined target objects [10]. Moreover, each class is 
associated with an action of a specific nature to be performed by 
one of the capabilities of the robotic agents. The feature space is 
therefore comprised of  predefined features that characterize 
the target objects, and are associated with the available 
specialized capabilities of the robots in the swarm. The 
confidence level in the recognition of these features, estimated 
as a probability, is leveraged in a matching scheme that 
computes the specialty fitting score of the agents to interact with 
each type of target. 

A pre-trained neural network with a set of  classes, , 
where , is used to retrieve observed 
features, from the visual perception of a given target. This 
leads to the posterior probability, ), that represents the 
probability that the observed feature, , belongs to each 
class , estimated by the Bayesian rule. 

 

with , and where  is the class-
conditioned probability density function [13] that describes the 
Gaussian distribution of the feature, , in each predefined class 

;  is a prior probability of the class , which is evaluated 
from the given training data set. If  is the total number of 

patterns that are available for  training and  of them belong 

to , then a prior probability of this class can be computed as: 

 

 is the probability density function of the feature  over 
all classes, which is given by: 

 

This probability density function of the feature is 
evaluated for all classes and does not affect the evaluation of the 
posterior probability, , in Eq. (1) since all quantities are 
a function of  [13]. As such, the denominator in Eq. (1) can be 

considered as a normalization constant, substituted by , to 

ensure that the posterior distribution on the left-hand side 
integrates to one. Thus, the posterior probability is evaluated as: 

 

As a result, the estimated features recognized on the 
target objects are associated to the classes that have the 
maximum estimated posterior probability, Eq. (4). The overall 
probability is computed collectively to evaluate the specialty-
fitting score of the proper agent, as will be detailed in section V. 

B.  Probability Density Estimation 

Based on the assumption that a features vector, , is 
distributed according to the class-conditioned probability 
density function, , for classes, 

 forms a likelihood function parameterized as 

, for the distribution of features across the classes. This 
likelihood function is used to estimate the features distribution 
parameters by exploiting the available set of training data in each 
class. In theory, it is assumed that the classes are mutually 
independent and the parameter estimation problem can be 
solved for each class independently [13].  

V. TASK-AGENT MATCHING APPROACH 

In the present work, the task-agent specialty matching 
problem consists of matching the best suited specialized agents 
with their corresponding target objects, or tasks, with a 
maximum level of confidence. In practice, for a given matching 
assignment, an agent responds to a specific task when the 
agent’s specialty offers a sufficient fitting score with the task 
requirements. However, a given agent can also qualify for 
different tasks but with different specialty fitting levels. The 
proposed task-agent matching approach leverages the 
probabilistic formulation introduced in section IV. It 
comprehends two sub-systems, that 1) evaluate the specialty 
fitting score between the detected task and a specialized agent; 
and 2) coordinate the most specialized and available agent to the 
current task.  

A. Specialization Definition and Coding 

The swarm of robots  consists of  
specialized individual agents, , and provides  different 
specialized roles or capabilities that are encoded in each agent’s 
binary specialty vector, . Each entry 
defined as  means that the robot possesses the 
corresponding necessary capability; and  indicates that 
the robot is not equipped with the necessary capability to tackle 
a feature  that is meant to correspond to a given class Ck, 
among  of them. Let us assume an outdoor scenario in which 
the individual agents of a robotic swarm are specialized to 
perform specific tasks such as picking up a box, or rescuing a 
person, and these tasks are to be performed on land or on water 
covered areas. The dominant features of the task will be land, 
water, box, and person. In this case, the specialty vector of each 
agent  will be defined as , with F = 4 considered 
features.  

The goal of the matching scheme is to maximize the task-
agent fitting score. The fitting scores of the swarm’s individuals 
that would be subject to the current task, are defined as: 

 

where represents the specialty fitting score 
achieved by an individual agent of identity, , based on the 
constraints raised by the detected features on the target. 

 represents the probability transition vector of the 
specialized features, which is a function of the estimated 
posterior probabilities, Eq. (4), of the recognized features on the 
target, which is given by:  
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As defined above, is a predefined robotic agent’s 
specialty vector that consists of binary variables. When a given 
agent does not have the capabilities required to match with the 
features recognized on a target, the corresponding probabilities 
of these features are excluded from the fitting score of the given 
agent. As a result, the proposed specialty fitting score, , 
emphasizes that each agent offers a specific level of 
competencies as a collective sum of the probabilities of the 
recognized features on a given task.  contributes as a 
diagonal element  of the swarms’ cumulative specialty 
fitting score matrix, , that is: 

 

B. Best Responder Coordination 

To support realistic scenarios, the proposed framework 
addresses the agents availability beyond their specialty, because 
a robot may not always be available when called in service. 
Therefore, a scheme for the best responder assignment 
coordination that considers the current agents availability status 
is also proposed. It assigns the most specialized agent to the 
recognized task in the presence of two coordinating constraints: 
the cumulative specialty fitting score, , Eq. (7), and the agents’ 
availability status, denoted as . The objective of the 
coordination scheme is to return the specialty fitting scores of 
only the available agents, so that the most qualified agent among 
them can be assigned the task, even though it may not be the 
very best one (i.e. a less competent but available agent at time 
of target object discovery).  

A binary availability vector, , is defined based on 
the current internal status of each robot. At the time of swarm 
deployment, the internal flag of the deployed agents raises to 
“available” while the internal flag of agents that are not available 
is set to “withdrawn”. Then, whenever the system finds an 
“available” agent that qualifies for the detected task, the 
availability flag keeps its fitting score active, and the detected 
task is assigned to this agent if the score is maximum. In 
contrast, agents with an internal flag “withdrawn” are 
deactivated, and the system may need to find another “available” 
agent. The proposed availability status vector of the robots,

, is defined as: 

 

Consequently, the task-agent coordination scheme can be 
synthesized as a specialty fitting scores vector, defined as: 

 

where  returns the specialty fitting scores for 
available agents, or 0 for withdrawn units, with respect to the 
current task.  

C. Human in the Loop 

For a more responsive dynamic operation of the proposed 
approach, a minimum fitting threshold (MFT), , is also 
implemented as a safety measure that guarantees a minimum 
fitting score below which no agent will be selected. To control 
this parameter, a human operator who supervises the swarm sets 
the MFT value for the task allocation system, either before the 

deployment of the swarm or during the operation. The MFT can 
vary to different levels based on the requirements of the task or 
in association with operational conditions. This way human 
skills and understanding of the situation can be shared with the 
robots by changing this parameter to influence the minimum 
required level of trust in the recognized target objects. The value 
of  for the team is given by: 

 

where, , is the agent’s maximum expected 
collective score that results when all of the agent’s capabilities 
are matched with the detected target’s features. To 
define, , let us consider that the maximum number of 
constraints, that are expected to be raised by each single target, 
equals to  Then the maximum expected collective score, 

, of the agent to fit with  task requirements can be 
defined as: 

 

where  is the class-conditional probability of the target’s 
feature, , in its predefined class, , amongst  constraints. 

The human operator can select the desired MFT required by 
changing, , in Eq. (10) in between two ranges, respectively a 
low specialty level (LSL) and a high specialty level (HSL). The 
minimum limit of LSL, , has to drive the task-agent 
allocation scheme to match the minimum specialized 
capabilities of the available agents to the estimated task. 
However, in many applications it is desired to ensure a higher 
level of safety with higher requirements on the matching level 
between the available agents’ capabilities and the recognized 
tasks. In such cases, the human operator enforces the system to 
work in the HSL range by setting  above a specific level  to 
ensure that only robots with a higher level of competence can 
intervene, where: 

 

Therefore, the vector of specialty fitting scores,  defined 
in Eq. (9), is further refined to accommodate only the scores of 
the available agents that achieve the MFT. As a result, the 
refined specialty fitting scores vector, , becomes: 

 

with , defined in Eq. (9). Accordingly, the most qualified and 
available responder agent to the detected task is selected 
automatically considering the human operator’s strategic 
guidance. The identification index of the best-suited and 
available responder above the minimum fitting threshold is 
given by: 

 

VI. SIMULATION EXPERIMENTS  

To validate the proposed task-agent matching approach, 
experiments are conducted in simulation. Three different target 
objects are assumed to be distributed over two different 
environments, with each one having special terrains that are 
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water-covered (cyan) or land (brown) areas, as shown in Fig. 3a, 
4a, and 5a. A swarm of six individual robots is deployed in 2-
dimensional workspace. Two robots are specialized to perform 
on each type of target ( ), and each robot has an 
individual preference for a specific environment, (water 
workspace ( ) or land workspace ( )) associated with its 
physical construction. The features, , can be related to the 
nature of the target objects or to specific environment 
constraints. Therefore,  The 
targets and the environmental constraints are color-coded in the 
figures below. Table 1 defines the specialized agents matching 
with corresponding targets and environment characteristics, 
whereas Table 2 defines the categorization of the given targets 
and their specific surrounding environment constraints in five 
different classes. In practice, these classes are pre-trained in a 
deep learning network from sample image datasets representing 
them in order to perform target object recognition [10]. This 
component remains beyond the scope of this paper, and features 
belonging to each class are considered available in the 
simulation. 

TABLE 1: SPECIALIZED CAPABILITIES OF EACH INDIVIDUAL ROBOT. 

 
Robot #ID 

 
Target Type 

Workspace 

Water-Covered 

( ) 

Land 

(  

  (red)   

  (red)   

  (blue)   

  (blue)   

  (green)   

TABLE 2: CATEGORIZATION OF TARGETS AND ENVIRONMENT 

CONSTRAINTS 

Target or environment constraint Class 

 (red) 

 (blue) 

 (green) 

(brown) 

(cyan) 

The proposed mechanism is simulated in two scenarios. The 
first scenario considers a  for the task-agent matching fitting 
process with an imposed MFT value, . The latter is set by Eq. 
(10), with . The second scenario tests the proposed 
approach with a different level of MFT. For the first scenario, 
Fig. 3a shows the assignment of agent , with Eq. (14), to a 
target of type  (red star) that is located on land. As shown in 
Fig. 3b, the overall specialty fitting score of the most specialized 
and available agent is 1.909, computed by Eq. (13), which 
exceeds the minimum confidence threshold set to 0.8, eq. (10). 
Table 3 presents comprehensive results of the individuals’ 
specialty fitting scores with respect to the recognized task, , 
the agents’ availability status, the overall task-agent fitting 
score, the MFT, as well as the specialty threshold control 
variable used in this case. It is also shown that agents  and 

 are withdrawn.  
In Fig. 4, a different simulation demonstrates a situation 

where the most component agent, here  that is not currently 
available, can be dynamically substituted by an alternative but 
less qualified agent. In this scenario, agent achieves a 
specialty fitting score of 1.909 to respond to a target of type  
(blue star) that is located on water, but is not available. However, 

agent , is available and comes out as the next best qualified 
agent with a specialty fitting score of 0.999, as shown in Table 
4, even though agent , is best suited to operate on land. In such 
a case, the system can still assign  to respond to target of type 

 on water-covered area, with Eq. (14), since it is available and 
its fitting score is above the MFT of 0.8. This case illustrates the 
inherent flexibility of the proposed framework. 

TABLE 3: SPECIALIZED CAPABILITIES ASSOCIATED WITH INDIVIDUAL ROBOTS 

WITH RESPECT TO TASK TYPE 1 ON LAND WORKSPACE. 

Agent 

ID# 

Individual 

agents 
fitting 

scores  

Available 

agents 

Available 

agents 
 fitting 

 scores 

Min. fitting 

threshold 

 with  

1.909 1 1.909  

 
0.8 

 0.999 1 0.999 

1 

0 

1 

0 

      
(a) 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

Figure 3: a) Assigning agent to a task of type 1 on land area, and b) specialty 
fitting scores of the available robots and minimum fitting threshold w.r.t. the 
current task.  

m
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TABLE 4: SPECIALIZED CAPABILITIES ASSOCIATED WITH INDIVIDUAL ROBOTS 

WITH RESPECT TO TASK TYPE 2 ON WATER-COVERED WORKSPACE. 

Agent 
ID# 

Individual 
agents fitting 

scores 

Available 
agents 

Available 
agents fitting 

scores 

Min. fitting 
threshold      

with  

 0.000 1 0  

 

0.8 
 0.910 1 0.910 

 0.999 1 0.999 

 1.909 0 - 

 0.000 1 0 

 0.910 0 - 

(a) 

 
(b) 

Figure 4: a) Assigning agent  to a task of type 2 on water-covered area, and 
b) specialty fitting scores of the available robots and minimum fitting threshold 
w.r.t. the current task. 

In the second scenario considered, the human operator 
raises up the MFT to increase the minimum level of 
competence required for a successful task assignment by 
selecting, , in the  range. The responses of the 
proposed approach when the confidence threshold is 
increased are presented in Fig. 5, with , 
corresponding to a higher MFT of 1.4, as shown in Table 
5, which is above all achieved specialty fitting scores, 
using Eq. (13). Even though agent  is available and 
somewhat competent, its specialty fitting score does not 
exceed the minimum fitting threshold in this case. As a 

consequence, no agent is assigned to the detected task. 
This experiment exemplifies that higher safety levels 
(i.e. higher MFT) can be set on demand to ensure that 
only robots equipped with all required functionalities to 
perform a specific task are assigned at any given point in 
time. As a result, while guaranteeing a minimum safety 
level, execution is performed on recognized targets, 
whenever possible, with the most competent and 
available agent that is selected as the best responder. 

TABLE 5: SPECIALIZED CAPABILITIES ASSOCIATED WITH INDIVIDUAL ROBOTS 

WITH RESPECT TO TASK TYPE 2 ON WATER-COVERED WORKSPACE, WHEN 

HIGHER COMPETENCE LEVEL IS IMPOSED. 

Agent 

ID# 
Individual 

agents 

fitting 

scores 

Available 
agents 

Available 
agents fitting 

scores 

Min. fitting 
threshold    

with  

0.000 1 0  
 

1.4 
0.910 1 0.910 

0.999 1 0.999 

 1.909 0 - 

0.000 1 0 

0.910 0 - 

(a) 

  
(b) 

Figure 5: a) No assignment to a task of type 2 on water-covered zone due to 
higher required MFT = 1.4, with and b) fitting scores of the available 
robots w.r.t. the current task. 
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VII. CONCLUSION 
A representation for specializing individual members of a 

robotic swarm was introduced. The specialized capabilities of 
individual agents are modeled and matched to corresponding 
features recognized on target objects with a quantified 
uncertainty level. The estimated probabilities of detected 
features on a target, corresponding to a specific task, are 
collectively summed up to tune the task-agent matching scheme. 
The latter is also extended to coordinate the specialized 
individuals with the corresponding tasks by considering agents 
availability state. Input from a human operator can be involved 
in the task assignment process to control and change the 
system’s operational conditions, which results in a safer and 
more selective task allocation operation. Simulation results 
demonstrate that the proposed approach is successful at properly 
assigning specialized agents to corresponding constrained tasks 
while guaranteeing a minimum safety level driven by user input. 

Future developments will involve the refinement of robust 
target objects detection, and performing the evaluation of the 
proposed framework with more advanced integration and 
experimental validation on real systems. 

ACKNOWLEDGEMENTS 

The authors wish to acknowledge support from Hadramout 
Establishment of Human Development (HEHD), Mukalla, 
Yemen. 

REFERENCES 

[1] B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms. 
Berlin, Germany: Springer, 2008. 

[2] P. Hall, “On representatives of subsets.” Classic Papers in 

Combinatorics. Birkhäuser Boston, pp. 58-62, 2009. 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

[3]  C. Jones, M. J. Mataric, “Adaptive Division of Labor in Large-scale 

Minimalist Multi-robot Systems”. IEEE/RSJ Intl Conf. on Intelligent 
Robots & Systems, Las Vegas, NV, USA, Vol. 2, pp. 1969-1974, 2003. 

[4] S. L. Smith, F. Bullo, “Target assignment for robotic networks: 

Asymptotic performance under limited communication”. In Proc. Amer. 
Control Conference, New York, NY, pp. 1155-1160, 2007. 

[5] D. Claes, P. Robbel, F.A. Oliehoek, K. Tuyls, D. Hennes, W. van der 

Hoek, “Affective Approximation for Multi-Robot Coordination in 
Spatially Distributed Tasks”. In Proc. of the Intl Conf. on Autonomous 

Agents and Multi-agent Systems, Istanbul, Turkey, pp. 881-890, 2015. 

[6] T. Lang, M. Toussaint, “Relevance grounding for planning in relational 
domains”. In Joint European Conference on Machine Learning and 

Knowledge Discovery in Databases, Springer, Berlin, Heidelberg, pp. 

736-751, 2009. 
[7] M. Toussaint, N. Plath, T. Lang, N. Jetchev, “Integrated motor control, 

planning, grasping and high-level reasoning in a blocks world using 

probabilistic inference”. In IEEE Intl Conf. on Robotics and Automation. 
Anchorage, AK, USA, pp. 385-391, 2010. 

[8] T. Yasuda, K. Kage, K. Ohkura, “Response Threshold-Based Task 

Allocation in a Reinforcement Learning Robotic Swarm”. In IEEE 7th 
Intl Workshop in Computational Intelligence and Applications, 

Hiroshima, Japan, pp. 189-194, 2014. 

[9] H. Wu, H. Li, R. Xiao, J. Liu. “Modeling and simulation of dynamic ant 
colony’s labor division for task allocation of UAV swarm”. In Physica A: 

Statistical Mechanics and its Applications, pp. 127-141, Feb. 2018 

[10] W. Wu, P. Payeur, O. Al-Buraiki, M. Ross, “Vision-Based Target Objects 
Recognition and Segmentation for Unmanned Systems Task Allocation”. 

In 16th Intl Conference on Image Analysis and Recognition, Waterloo, 
ON, Aug. 2019. 

[11] O. Al-Buraiki, P. Payeur, and Y.R. Castillo, “Task switching for 

specialized mobile robots working in cooperative formation”. In IEEE Intl 
Symposium on Robotics and Intelligent Sensors, Tokyo, Japan, pp. 207-

212, 2016. 

[12] O. Al-Buraiki, P. Payeur, “Agent-Task assignation based on target 
characteristics for a swarm of specialized agents”. In 13th Annual IEEE 

International Systems Conference, Orlando, FL., pp. 268-275. 2019. 

[13] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New 

York, 2016.  

49


