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Abstract. Fully convolutional networks have been leveraged extensively in
semantic segmentation tasks. While possessing demonstrated competency for
dense prediction, such supervised learning networks are restricted to labeled data
during training and hence show poor generalization while confronting unseen
domains. As a pivotal transfer learning technique, domain adaptation aims to
alleviate discrepancies between distinct domain distributions to improve the per-
formance of generalization in unsupervised manners. Although a family of domain
adaptation methods have demonstrated significant effectiveness on cross-domain
semantic segmentation tasks, the overlook of pixel-wise domain divergences leads
to over-adaptation. To deal with this problem, we investigate effective pixel-wise
inter-domain discrepancy metrics to regularize the training of adaptation networks
at a pixel-wise level. We first leverage generation confidence encoded from the
output space as a weighting map to impose more adaptation emphasis on deeply
shifted regions. Furthermore, we employ discrimination confidence on the fea-
ture space to refine generation confidence into a more reliable weighting map.
The formulation of generation and discrimination confidence does not introduce
additional computations over the fundamental DA framework. In our experiments,
the proposed pixel-wise weighted adaptation approach outperforms state-of-the-
art methods on two cross-domain segmentation tasks and demonstrates effective
alleviation of over-adaptation.
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1 Introduction

Even though fully convolutional networks (FCNs) recently dominated the field of seman-
tic segmentation [1-3], such networks are generally trained using a huge number of
pixel-wise labeled data, which precludes its application in practical scenarios, such as
autonomous driving and robotic navigation, where collecting labeled data in chang-
ing scenarios with large appearance gaps is extremely expensive. Recently developed
photo-realistic synthetic street-scene datasets [4] offer an appealing workaround by sim-
ulating various scenarios for supervised network training. However, an FCN pre-trained
on synthetic datasets will generally fail on real-world inference, which is referred to as
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the cross-domain shift [5, 6]. This domain shift cannot be eliminated even with a large
number of synthetic data.

The domain adaptation (DA) technique is recognized for its capability of transferring
learnt semantic patterns from a source domain to a target domain without using labeled
data from that target domain. Therefore, DA has been well leveraged into cross-domain
semantic segmentation tasks between synthetic datasets (source domain) and real-world
datasets (target domain). Early research [7-9] developed a discrimination network (dis-
criminator) on the feature space to align domain distributions. However, feature-level
adaptation is limited when decoding high dimensional visual cues that have been sup-
pressed in the feature space [10]. To overcome this issue, alternative approaches [10-12]
turned to utilize structural information on the output space and hence obtained promising
domain adaptation performance.

Despite such advances, pixel-wise divergence on inter-domain discrepancy is gen-
erally overlooked in conventional DA works. For instance, as shown in Fig. 1, while
clear domain shift exits in between two domains, the source-trained network still pre-
serves a capability to correctly classify parts of the pixels that are originally exhibiting
light domain discrepancy in the target domain. However, conventional domain adapta-
tion methods would have negative effectiveness on such pixels while treating all pixels
under a same degree of domain shift, thereby segmenting parts of lightly shifted pixels
incorrectly.

In this paper, we propose a pixel-wise weighted DA scheme for semantic segmen-
tation. We align the cross-domain distributions by interpreting pixel-wise inter-domain
discrepancy amongst the target domain pixels, so as to deploy weighted adaptation
regularization that allows domain adaptation to pay more attention to deeply shifted
regions than to lightly shifted ones. As such, each pixel contributes differently and
separately to the adaptation loss. Moreover, given the uncertainty associated with gen-
eration confidence on discrepancy indication, we introduce discrimination confidence
from an auxiliary discriminator to refine the generation confidence with the goal of
further improvements.

The main contributions of this work are: 1) a pixel-wise weighted domain adaptation
approach, which leverages a synthetic-data-trained segmentation network more effec-
tively when applied on a real-world dataset; and 2) an auxiliary discriminator on the
feature space, which is trained to measure the inter-domain discrepancy in a different
perspective.

2 Related Work

2.1 Semantic Segmentation

Fully convolutional network [3] based models have outperformed traditional non-CNN
models [13, 14] in the field of semantic segmentation. For instance, FCN- based Deeplab
v2 [1] and PSPNet [2] show state-of-the-art performance on semantic segmentation
tasks. Meanwhile, the development of pixel-wise labeled datasets (e.g., PASCAL VOC
2012 [15] and Cityscapes [16]) made FCNs usage possible in supervised training set-
ting. But when confronting cross-domain segmentation tasks, the domain shift across
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datasets degrades the performance of many state-of-the-art FCNs. Expanding the vol-
ume of datasets is the first attempt to deal with this problem. But collecting datasets with
widespread variability that cover various testing scenarios is extremely time-consuming
in the real world. As such, provided that the domain shift problem can be properly
handled, FCN-based segmentation networks can alternatively be trained on synthetic
datasets [4, 17], which are easily generated by graphics engines, and transposed onto
real-world datasets and scenarios.

Before Adaptation

~

testing on real-world data

After Adaptation

without regularization [10] ation

Fig. 1. Illustration of proposed pixel-wise weighting adaptation. Top 2 rows: samples from source
and target domain (Ift), a source-domain pretrained model for semantic segmentation inferred
on these samples without adaptation (right). Bottom row: prediction results on target domain
are improved by output-space domain adaptation method [10], while visible over-adaptation
results (negative segmentations) exist (left). The proposed pixel-wise weighting adaptation method
obtains comparable improvement while it alleviates over-adaptation (right).

2.2 Adversarial Domain Adaptation

Adversarial domain adaptation [6] has been successfully leveraged in cross-domain
image classification [18, 19] and object detection tasks [20, 21]. When applied to seman-
tic segmentation [7—12, 22-25], it embeds a discrimination network (discriminator) into
FCN-based segmentation networks as an adaptation component. By imposing the DA
operation, the segmentation network not only learns discriminative representations but
also invariant encodings from different domains. Specifically, the DA model consists
of a generator and a discriminator. During training, as a generator, the segmentation
network interacts with the discriminator in an adversarial manner [26] by which the
discriminator is trained to upper bound the source and target domains distributions. The
generator then minimizes this bound to eliminate the discrepancy between two distinct
distributions. With this adversarial training process, the generator manages to produce
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invariant-discriminative features, such that the segmentation network can be applied on
both domains.

3 Preliminaries

In this section, we introduce mathematical preliminaries on supervised segmentation
model settings and unsupervised domain adaptation settings, upon which we introduce
the pixel-wise weighted adaptation approach in the next section.

The goal of domain adaptation for semantic segmentation is to train an FCN-based
segmentation network on the source domain and transpose it to the target domain without
supervision. To this end, we set a source domain Dy = {(Xgi], YE”)}?S , Where Xgi] €
RW>xH>3 is the i th of ng synthetic dataset images with a size of W x H x 3 in Dg, and
Yl € RWxHxL i5 3 corresponding pixel-wise annotation label with L categories. We
also set a target domain in the same way, i.e., Dr = {(XP])}:.’T, where XP] e RWxHx3
is a real-world dataset image. Note that there are no available labels in Dr. For clarity,
(X, Ys) and X correspond to a random sample from Dg and Dr respectively in the rest
of this paper.

3.1 Supervised Semantic Segmentation

For training a FCN-based segmentation network, a source domain sample (X;, Y;) is
fed into a feature encoder F, then a dense classifier C takes high-dimensional feature
encodings from F and produces a final soft-max probability distribution Py = C(F (X)),
where the structural prediction likelihood is P} = max;(Py). The objective loss function
is formed by the multi-class cross entropy with P and Y, formulated as:

Liex(FO) = —Exvyenil) Zz’[hy‘ngh)} log c(p(xgw,m))(z)] )

where E[-] is the statistical expectation and ground truth label Y is correspondingly
encoded into one-hot vector.

As for a target sample, X; € Dr, the source-trained segmentation network under
the parameter distribution of Dg can also generate a direct probability distribution P;,
while it would hardly reflect the genuine label distribution of D7 because of the presence
of domain shift. Meanwhile the absence of pixel annotation in D7 does not allow for
fine-tuning on the trained segmentation network.

3.2 Unsupervised Output-Space Based Domain Adaptation

Different from feature-space based DA models that embed a discriminative network on
the feature space, the output-space adaptation scheme considers the entire FCN-based
segmentation model as a generator (G = C[F(-)]), and embeds a discriminator D at the
end of G in order to take advantage of structural information available on the output
space.

During training, the G and D are updated alternatively by adversarial optimization on
binary cross entropy loss (2). In detail, the discriminator D is firstly trained to classify
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each element on the soft-max outputs Py and P; into its original domain label (we
denote source domain label as 0, and target domain as 1), aiming to best represent inter-
domain distribution discrepancy. D is updated with back propagation by minimizing (2),
formulated as:

Laav(G,D) = ~Ex.eng[y | Tog(l = DGx""))]

~Exep[),, , log (p(6e™))s

During the discriminative network training, G is fixed for just taking part in the
forward propagation.

Second, with the supervision from D, the generator G is trained to produce “source-
style” soft-max output P, to eliminate the inter-domain discrepancy. G is trained by
maximizing (2), while D is only allowed for forward propagation in this stage.

Combining with supervised training using (1), the segmentation network G manages
to generate discriminative and invariant distributions among pixels within the source and
target domains.

@

4 Pixel-Wise Weighted Adaptation Method

In this section, building upon the conventional output-space DA model, the proposed
pixel-wise weighted adaptation approach is introduced in two stages. It first investigates
the use of the generation confidence to develop a pixel-wise weighting method for
output-space based adaptation. Second, it employs an auxiliary discriminator on the
feature space to measure the inter-domain discrepancy from a different perspective,
which contributes to further improvements.

4.1 Generation Confidence Weighted Adaptation

In Tsai et al. [10], although the pixel-wise adaptation process is carried out by an output-
space based DA network, each element on the output space is considered under a same
inter-domain discrepancy. In other words, such an approach implements a global adap-
tation for each target domain sample without any consideration on the pixel-wise inter-
domain discrepancy. To deal with the problem, the proposed pixel-wise weighted adap-
tation focuses on emphasizing precise regularization on the adaptation process by using
pixel-wise inter-domain discrepancy.

From the perspective of self-supervised adaptation [27, 28], the structural prediction
likelihood P for a source domain sample shows the segmentation confidence of an FCN
when classifying pixels into correct categories. It further infers that, for a target domain
sample, Py indicates the generation confidence in the context of DA, which tells the
confidence of a FCN generating distributions on the target domain that are consistent
with the source domain. In other words, a large value in P} corresponds to small inter-
domain discrepancy as the generator can segment the target-domain pixel with high
generation confidence. As such, pixel-wise inter-domain discrepancy could effectively
be estimated by the generation confidence.
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Based on the above observation, we introduce a pixel-wise weighted adversarial
adaptation framework that minimizes distribution distance across domains on the output
space according to the pixel-wise inter-domain discrepancy. We consider the pixel-wise
inter-domain discrepancy as a weighting map to drive the adaptation model to pay more
attention on deeply shifted pixels. To further protect well aligned regions from over-
adaptation, we set the pixel-wise discrepancy to a small value, here empirically set at
0.01, on well aligned regions (where the generation confidence is higher than a threshold,
T). As such, the generation-confidence weighting map d " is formulated as:

40 — {0.0l , if pt(w’h)* >T, 3)
e~ Prw.*  Giherwise.

The generation-confidence weighting map (shown on the upper-left of Fig. 2) allows
domain adaptation to pay more attention to deeply shifted regions than to lightly shifted
ones. Specifically, the weighting map d " is utilized to pixel-wise weight conventional
adversarial adaptation loss (2). As such, each pixel contributes differently and separately
to the adaptation loss. Following [11], we also employ a small adaptive weight (see
details in Section V.B) to stabilize the adversarial training process. Hence, the proposed
pixel-wise weighted adaptation approach can be formulated as:

Laan (G.D) = —Ex.ens| ) logl = DGG{" )]
o @)
_EX[EDT [Z(w 0 (d(W,h) + /’L) . 1Og(D<G(x§w,h))))]

4.2 Discrimination Confidence Weighted Aadaptation

In this section, we introduce discrimination confidence to integrate with generation
confidence for a more reliable adaptation weighting map. It is based on the observation
that target domain pixels that are far away from source domain decision boundaries would
be hardly interpreted by generation confidence due to the unreliable value of pfw’h)*
generated by the source FCN on the output space. In this way, a part of the discrepancy-
agnostic pixels would be wrongly weighted according to the second condition of (3).
This factor influences the generation confidence in the adaptation procedure, which
eventually is prone to over-adaptation on the target domain.

To handle the above problem, it is proposed to rather use an auxiliary discriminator
D on the feature space to estimate domain divergence from a different perspective.
As such, a complementary regularization is introduced that aims to further refine the
generation-confidence weighting map. Specifically, we first introduce a discriminator
on the feature space of the FCN for distinguishing the difference grid of the feature
encodings between source and target domain images. Second, we involve the discrimi-
nator D*"* into an auxiliary adversarial training with feature encoder F using the binary
cross entropy loss, as formulated in (5).

Lann(F,D™) = —Ex,eps [y log(l = D™ (F"")))]

~Excen;[ Y log@™* (FG"")))]

(w, 1)

&)



592 H. Tian et al.

Generation-confidence
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i% Discrimination-confidence
Weighting Map
(DisMap)
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Refined Weightlg aMap combined with DisMaP) IO-Ol
Fig. 2. Illustration of proposed weighting maps. The generation-confidence weighting map is
encoded by the segmentation network that is trained on the source domain and tested on a tar-
get domain image. The discrimination-confidence weighting map is encoded by the auxiliary
discremination network that is trained on both domains. The two weighting maps interpret the
inter-domain discrepancy from different perspectives. The combination of the two maps, Eq. (6),
provides a refined weighting map for pixel-wise adaptation regularization.

In the auxiliary adversarial training, D*"* allocates a membership of the target
domain, D*(F (x"""))) € [0, 1], to each feature grid. It further infers that the encodings
of D™ represent the confidence of a source-trained feature encoder when generating
consistent-with-target distributions. As such, pixel-wise domain discrepancy in the tar-
get domain is estimated by the discrimination confidence as D**(F (x;"*))), from a
different perspective. We also visualize the discrimination-confidence weighting map
on the upper-right of Fig. 2. Lastly, the generation-confidence weighting map is refined
by the discrimination-confidence weighting map, which is illustrated on the bottom of
Fig. 2. The weighted adversarial adaptation loss is therefore updated as in (6):

Latn(G, D) = ~Exens [} log(1 = DG("")))]

(6)
“Exenr [, @7 40 - D" FG)) - 1ogDG "))

4.3 Network Overview and Optimization

The proposed pixel-wise weighted adaptation network is illustrated in Fig. 3, which is
formed of three components: a generator G, a discriminator D (embedded on the soft-
max output space) and an auxiliary discriminator D*"*(embedded on the final feature
layer). The network training is carried out by the interaction between (1), (5) and (6),
which are alternatively optimized according to the stages below:

e Segmenter Updating. The segmentation network is initially trained in a supervised
way utilizing labeled source domain data (X, Y) € Ds. Parameters in F and C are
updated by minimizing the loss function (1) as follows:

min Lseg (F, €] )
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o Generator updating. At this stage, unlabeled target domain data X; € Dr are used to
optimize the generator G and feature encoder F. Note that, unlike the previous stage,
G and F are updated to confuse the D and D*"* by which the target-generated features
and soft-max output will be considered as derived more likely from the source domain.
The D and D™ are fixed at this step, and G and F are updated by maximizing the
loss functions (5) and (6) as in (8), where X,qy is the trade-off weight used to balance
the supervised training in (7) and adversarial training in (8).

nGla;_()"adv [‘Cade (G,D) + Laux (Fv Daux)] 3

e Discriminator updating. Data and domain labels in Dg and Dr are used to update
D and D™ simultaneously to ensure the capability of distinguishing soft-max output
and feature encodings respectively. At this stage, the F' and C are fixed. The loss
functions (5) and (6) are minimized as in (9).

min (Lo (G. D) + Lo (F. D*™)] O)

S Experiments

In this section, the proposed method is evaluated on two classical synthetic-to-real
semantic segmentation tasks. Meanwhile we analyze the results with qualitative and
quantitative comparisons to the state-of-the-art.

Generator (Segmentation Network) : G

source domain
“ - T
target domain
Discriminator: D

Discriminator: D‘“‘

o 7

——> L

—— Lygun
(o]

aux

— : tensor flow generation
« - adversarial learning discrimination confidence _ 7

© :elementally multiplication

Fig. 3. A conceptual overview of the proposed weighted adaptation network. Entire network is
composed of 3 different fully convolutional networks: segmentation (generation) network, G,
and 2 discrimination networks, D and D**. The weighted adaptation is deployed through an
adversarial learning with the pixel-wise weighting map.
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5.1 Datasets

Cityscapes [16] is a real-world street scene dataset collected by dash cameras mounted
on a moving car wandering in European cities. It contains 2,975 training images and
500 validation images, with high resolution (2048 x 1024), and pixel-wise labels in 34
categories of street objects. The training set (without labels) is considered as the target
domain. GTAS [17] is a synthetic street scene dataset extracted from a realistically
rendered computer game: Grand Theft Auto V. As rendered and annotated by a graphics
engine, it forms a large dataset with 24,966 images with high resolution (1914 x 1052),
and pixel-wise labels in 19 of the 34 categories of Cityscape. The entire image set with
ground truth labels are used as the source domain in the task “GTAS to Cityscapes”.
SYNTHIA [4] contains 9,400 synthetic images with 16 of the 19 categories of GTAS.
The resolution of each image is 760 x 1280. While this dataset is also rendered by a
graphics engine, it is less realistic than GTAS and uses different viewing angles. That
presents more severe domain shift that will challenge the adaptation capability of the
proposed model. This dataset is used as the source domain in the task “SYNTHIA to
Cityscapes”.

5.2 Implementation Details

The proposed network is deployed using PyTorch on a NVIDIA GTX 1080Ti GPU.
Following the settings in MRNet [12], we use ResNet-101 with memory module as the
FCN backbone for generator G (the segmentation network). Discriminator D comprises
four convolutional layers and a classifier layer with stride 2 and kernel size 4 followed
by a leaky ReLLU. The auxiliary discriminator D*"* comprises three convolution layers
with stride 1 and kernel size 1 followed by a leaky ReLU, and a classifier layer with
kernel size 1. Before feeding into D and D*'*, the encodings from output space and
feature space are up-sampled into the input image size of W x H.

The performance of the proposed method is evaluated under the metric of mean
Intersection over Union (mloU) proposed in [15]. During hyper-parameter learning, we
first consider threshold T that is used to protect well aligned (high generation confidence)
pixels from over-adaptation. Following self-training strategies proposed in [25, 27], we
set T to 0.9 to involve sufficient well aligned pixels. In our best model, the adaptive
weight p is set to 0.1. We then consider hyper-parameter Ay, as a trade-off for the
supervised training in (7) and the adversarial training in (8). We follow [10] to set it as
0.0005.

5.3 Adaptation from GTAS to Cityscapes

The overall quantitative experimental results over 19 classes are detailed in Table 1. The
“Source-only” model (trained on data from the source domain (GTAS) only and inferred
on the target domain (Cityscapes) reaches 36.6% on mean IoU. The proposed method
outperforms the “source-only” model by 10.6% on mean IoU after imposing domain
adaptation training. We also compare against the method proposed by Tsai et al. [10]
considered here as a vanilla method for output-space based DA network. The proposed
method brings a 5.8% improvement over [10] on mean IoU and demonstrates efficient
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Target image Source only CLAN [11] Proposed Manual annotation

Fig. 4. Qualitative results obtained for semantic segmentation without and with domain adapta-
tion. The third column is the adaptation results shown in CLAN [11]. The fourth column is the
proposed pixel-wise weighted adaptation results, and the fifth column is the ground truth manual
annotation.

Source only CLAN [11] proposed

Fig. 5. Feature clusters visualization by t-SNE [34]. Each color represents a different class cluster.

alleviation of over-adaptation on several classes (e.g., “pole” and “bike”) as a result of
the proposed pixel-wise weighted adaptation regularization.

Besides, we also present experimental comparisons with three state-of-the-art DA
models [11, 12], and [29] in Table 1. Luo et al. [11] introduce a weighted adaptation
method based on a different discrepancy measurement. The proposed method outper-
forms [11] on mean IoU by a margin of 4%. It shows a more efficient adaptation operation
under similar complexity of the model structure (i.e., two discriminators vs. two gener-
ators). Zheng and Yang [12] recently proposed an output-space adaptation method that
introduces a memory module for semantic segmentation. Conversely, Pan et al. [29] uti-
lize entropy information in the intra-domain space for adaptation operation. As shown
in Table 1, the proposed method leads to further adaptation improvements for [12] and
[29] in general mean IoU, demonstrating the complementary effectiveness of the pro-
posed adaptation method on the conventional methods that were elaborated on different
DA strategies. Nevertheless, the proposed method happens to underperform on some
classes (e.g., “train” and “truck”). We infer that a possible unbalance may develop in
the pixel-wise weighted adaptation when several categories are involved simultaneously,
which deserves further investigation.
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At last, we illustrate qualitative experimental evaluation of the proposed method.
First, in Fig. 4, it can be observed that the “Source only” model experiences a severe
drop on segmentation performance when applied on the target domain. Compared to
the “Source only” model, the proposed method provides a clear improvement in the
segmentation results. Second, in comparison to [11], there are visible improvements on
specific classes in the segmentation results, demonstrating the adaptation capability of
the proposed model on those classes. Lastly, we visualize the feature space encodings by
using t-SNE [30] in Fig. 5. It reveals how the proposed method provides more separable
feature clusters for the target domain, which facilitates the domain adaptation process.

5.4 Adaptation from SYNTHIA to Cityscapes

We next demonstrate the efficacy of the proposed method on the task “SYNTHIA to
Cityscapes”. As detailed in Table 2, the proposed method brings a 12.3% improvement
over the “Source only” model compared to a 7.3% improvement obtained in [10]. It is
also worth noting that the leading performance of [29] on mean IoU in the task “GTA5
to Cityscapes” is here surpassed by the proposed method and by [12], which indicates
that, even though all three methods leverage different underlying principles, the proposed
method could obtain a more reliable performance in both cross-domain adaptation tasks.
Regarding specific classes, the proposed method outperforms [12] on seven classes, such

as “sky”, “person” and “moto.”, and outperforms [29] on nine classes, such as “side.”,
“person” and “bike”.

5.5 Ablation Studies

Three experimental ablation studies are conducted with respect to the two proposed
weighting maps (illustrated in Fig. 2), to evaluate the efficacy of each component intro-
duced in this work. First, we examine the generation-confidence weighting map when
disregarding the protection of well aligned pixels by setting T = 1 (GenMap”=I). As
shown in Table 3, GenMap7=! provides an improvement of 1.0% on mean IoU com-
pared to the DA method developed upon the baseline [12] only. It indicates that while
the generation-confidence weighting map might be limited by the implicit uncertainty
mentioned in section IV.B, it still remains capable to implement pixel-wise adaptation
regularization. The ablation study also conducts domain adaptation based on the genera-
tion confidence weighting map with a lower threshold at T = 0.9 (GenMap7=0-9), and on
combined generation and discrimination confidence weighting maps (GenMap”=0-9 4
DisMap), under the experimental settings detailed in section V.B. As shown in Table 3,
the adaptation model with GenMap”=0- reaches mean IoU of 46.8%, which indicates
that an improvement can be achieved through applying thresholding (T = 0.9). Further-
more, the combined adaptation model GenMap”=0-9+ DisMap reaches 47.2%, demon-
strating that DisMap is a valid complementary strategy to further refine the generation
confidence to reach higher performance.
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Table 2. Experimental results of the adaptation task “SYNTHIA to Cityscapes” under the metric
of mean IoU.

-SYNTHIA to | road |side |build | light | sign | vege |sky | person |rider | car |bus | moto | bike | mloU
Cityscapes-

Source only 55.6 | 23.8 | 746 |6.1 12.1 | 74.8 | 79.0 | 55.3 19.1 |39.6 | 233 | 13.7 |25.0 |38.6

AdaptSegNet | 79.2 | 37.2 | 788 |99 |10.5 |78.2 |80.5 |53.5 19.6 | 67.0 | 29.5 |21.6 |31.1 |459
[10]

CLAN [11] 81.3 | 37.0 | 80.1 |16.1 |13.7 |78.2 |81.5 |53.4 21.1 |73.0 | 329 |22.6 |30.7 |47.8
MRNet [12] 82.0 [36.5 | 80.4 |18.0 134 |81.1 |80.8 |61.3 21.7 | 84.4 | 324 | 148 |45.7 |50.2
IntraDA [29] 843 |37.7 1795 |92 |84 |80.0 |84.1 |57.2 23.0 | 78.0 | 38.1 | 203 |36.5 |48.9
Proposed 851 (41.2 [ 79.2 |10.1 | 13.1 |79.0 | 85.6 | 61.7 26.6 | 77.4 | 364 | 234 |42.6 |50.9

Table 3. Ablation studies in the task “GTAS to Cityscapes”.

Methods MRNet [12] GenMapTzl GenMapTzag DisMap | mloU
DA without pixel-wise weighting v 45.5
Pixel-wise weighted DA (T = 1) v v 46.5
Pixel-wise weighted DA (T = 0.9) v v 46.8
Pixel-wise weighted DA (refined w/ | v/ v v 47.2

DisMap)

6 Conclusion

In this work, we propose a pixel-wise weighted adversarial adaptation framework. We
first utilize generation confidence to regularize the output-space adaptation process at a
finer level of details. Second, we introduce an auxiliary feature space based discriminator
as a complementary discrepancy indicator to refine generation confidence, which con-
tributes additional improvements on adaptation. The experimental results demonstrate
that the proposed method is effective for over-adaptation alleviation and outperforms
leading state-of-the-art methods for semantic segmentation. Future work will involve
designing more efficient domain discrepancy metrics and combining DA schemes to
improve the performance of the proposed method for application on cross-domain
semantic segmentation.
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