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Abstract. Advances in unsupervised learning have allowed the efficient
learning of feature representations from large sets of unlabeled data. This paper
evaluates visual features learned through unsupervised learning, specifically
comparing biasing methods using Gaussian filters on a single-layer network.
Using the restricted Boltzmann machine, features emerging through training on
image data are compared by classification performance on standard datasets.
When Gaussian filters are convolved with adjacent hidden layer activations from
a single example during training, topographies emerge where adjacent features
become tuned to slightly varying stimuli. When Gaussian filters are applied to
the visible nodes, images become blurrier; training on these images leads to less
localized features being learned. The networks are trained and tested on the
CIFAR-10, STL-10, COIL-100, and MNIST datasets. It is found that the
induction of topography or simple image blurring during training produce better
features as evidenced by the consistent and notable increase in classification
results.

1 Introduction

Feature representations learned directly from unlabeled data have proven to be more
effective than handcrafted features in modern visual object classification applications.
Recent advances in unsupervised learning mechanisms have fueled this increased
performance. An effective way to assess these methods and their properties is to test
them on single-layer networks, as opposed to the commonly-used multi-layered net-
works used for image classification, such that the influence of network architecture is
minimized and the actual performance of the learning mechanism can more easily be
isolated and compared. Coates et al. [1] structured their comparison similarly by
comparing single-layer networks and their classification performance on standard
image classification datasets under a variety of parameters. That study outlined the
efficacy of several single-layer techniques at learning discriminative features from raw
pixel data. Modeled after that study, our current research aims to compare biasing
techniques on a single layer network in order to boost image classification performance
through generating better features. The properties of these features, which are more
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difficult to interpret at higher levels in a multi-layer network, may lead to further
understanding of their role in object recognition.

In unsupervised learning, Gaussian filters have been considered for inducing
topography into feature representations, falling under the idea of incorporating infor-
mation from neighboring regions [2]. In this work, the same application of Gaussian
filters will be performed to create a topography in the network during training.
Topography can provide insight into what learned features are similar or are most likely
to co-occur. It also allows the grouping of those features through pooling to produce
more invariant responses, thus behaving as an improved feature representation. This
work will show that, even without pooling, learning features in a topography produces
better results on its own than when topography is not used. Topographic independent
component analysis (TICA) [3] learns features from unlabeled data and creates
topography in those learned features. Kavukcuoglu et al. [4] learn invariant features
across a topographic map through a technique called predictive sparse decomposition
(PSD). These features are learned directly from the data and show better performances
when compared to handcrafted features for object classification tasks. The topography
also improves the invariance of features compared to regular PSD, with the results
showing that they also form a better feature representation. Goh et al. [2] introduce 2D
topography into a restricted Boltzmann machine (RBM) which learns invariant color
features that vary smoothly over the hidden layer.

Downsampling has been used to provide incremental invariance to transformations
and dimensionality reduction in the convolutional neural network via pooling [5] or
skipping samples [6], thus increasing the discriminative capabilities of the learned
features. In a sense, convolution with a low-pass filter produces the same invariance
without the dimensionality reduction. That principle is used in this work, where
blurring can aid in learning better features, and the Gaussian filter is used here for that
purpose.

Gaussian filters provide the link between the two above-mentioned procedures,
falling under the idea of combining information from neighboring regions. It is
expected that sharing information between neighbors will benefit the learning of good
features. Le et al. created a deep network that leveraged neighborhoods of features
found using TICA en route to state-of-the-art results on a variety of object recognition
benchmarks [7]. Sermanet et al. learns visual features directly from the data using
sparse coding to build a deep network which achieved state-of-the-art results on a
variety of pedestrian detection datasets [8]. These results show that better classification
results can be achieved when learning features directly from large amounts of image
data and provides suitable motivation to explore different methods of biasing unsu-
pervised learning networks to improve feature representations.

This work characterizes the effectiveness of biasing methodologies, specifically
based around the Gaussian filter, at learning discriminative features by classification
performance on standard datasets. The testing datasets will be the CIFAR-10 [9],
STL-10 [1], and COIL-100 [10] image classification datasets. To reduce variability
when comparing techniques, an RBM [11] with fixed hyperparameters is used as a
singular architecture on which they are tested.
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2 Background

2.1 Restricted Boltzmann Machine

The RBM [11] is an undirected bipartite network which uses its hidden layer to
represent input data from the visible layer. It is an energy-based model, and calculates
the energy of the joint configuration of visible nodes and hidden nodes by (1).

Eðv; hÞ ¼ �a0v� b0h� h0Wv : ð1Þ

where v and h are the visible and hidden node states, respectively, a and b are the
visible and hidden biases, respectively, and W are the symmetric weights connecting
the hidden and visible nodes.

Equation (2) determines the probability that a binary hidden node is on, given the
visible vector. To deal with image data, the visible vector is modeled using linear
nodes. Equation (3) determines the visible node given the hidden vector.

Pðhj ¼ 1jvÞ ¼ sigmoidðbj þ
X

i
wijviÞ : ð2Þ

Pðvi ¼ vjhÞ ¼ N ðvjai þ
X

j
wijhj; 1Þ : ð3Þ

where hj is the jth hidden node, v is the visible node vector, bj is the bias of the jth

hidden node, ai is the bias of the ith visible node, wij is the weight connecting the ith

visible node, vi, and hj, N(µ, r
2) is a probability density of Gaussian distribution with

mean µ and standard deviation r. Since the image data is normalized, unit variance is
used.

Training is accomplished using contrastive divergence (CD), and involves lowering
the energy for preferred configurations of hidden and visible nodes, and raising the
energy for undesirable configurations [11]. The training alternates between the positive
phase and negative phase, where the positive phase samples the hidden state, h+, and
the visible state, v+, from the data while the negative phase produces the reconstruc-
tions of the hidden state, h−, and the visible state, v−. The weight update is defined as:

Dwij ¼ c½\vþi hþ
j [ �\v�i h

�
j [ � : ð4Þ

where c is the learning rate, and < . > is the average over a number of samples.
Sparsity has been shown to increase discriminative power and optimize RBM

representation of data by forcing only a subset of nodes to represent presented data.
Lee et al. [12] specify a sparsity target and add a regularization term to encourage
activation with the target frequency by increasing or decreasing the bias.

2.2 Gaussian Filters

The purposes of the Gaussian filter in this work are conceptually varied, despite
obvious similarities. In the case of the topographic RBM, the Gaussian filter
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incorporates information from local hidden nodes to induce a dependence thus
influencing nodes to develop properties similar to its neighbors. For the purpose of
image blurring, the Gaussian filter serves to soften edges such that the network learns
blurrier features and perhaps helps remove noise. The effect of the sigma value, which
represents the standard deviation of the Gaussian function, will also be evaluated.
These filters are normalized to have a gain of 1.

3 Methodologies

The idea of this work is to compare the application of Gaussian filters to induce
different effects during unsupervised learning of visual features in an RBM. The
compared biasing methods will be: regular RBM, topography, and input blurring.

When training in a batch, the weighted sums in (2) and (3) are performed by matrix
multiplication. The visible input matrix contains all of the training data to be used in the
current batch, where each row represents a training pattern, or image patch in this work,
and each column represents a visible node. The weight matrix contains the weights
connecting each visible node to each hidden node. The hidden activation matrix is
calculated by multiplying the visible matrix and the weight matrix, resulting in a matrix
of activations with each row representing a pattern and each column representing a
hidden node. Figure 1 shows how a Gaussian filter is applied in the hidden activation
matrix and visible inputs matrix for each method.

3.1 Regular RBM

An RBM with regularization only to induce sparsity [12] is used as a control and will
be compared as a baseline. This will be referred to as the regular RBM.

Fig. 1. Application of convolution, where h are hidden node activations, v are visible inputs, M
is the # of visible nodes, N is the # of hidden nodes, and R is # of patterns. Gaussian filters for
topography induction are applied to the hidden activation matrix (left), while the input blurring
filter is applied to the visible inputs matrix (right)
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3.2 Topography

Topography is induced in the RBM by biasing the network during training. By
ordering the nodes for a 1D topography, or arranging the hidden nodes in a grid for a
2D or 3D topography, neighboring nodes can be determined. Applying a Gaussian
filter to hidden node activations at each example, each node incorporates information
about its neighboring nodes. Applied during learning, adjacent nodes develop slightly
different features that gradually vary across the grid.

Assuming batch training, a Gaussian filter is applied among adjacent hidden nodes
exposed to the same pattern in the activation matrix. The positive phase activations of
the hidden nodes are modified by (5) as found in [2].

ĥðkÞj ¼
XN

n
hðkÞþn xðj; nÞ : ð5Þ

where ĥðkÞj is the topography-induced positive activation of hidden node j at pattern k,

h kð Þþ
n is the positive phase hidden activation of hidden node n at pattern k, and the

neighborhood function, x, is a set of fixed neighborhood weights which controls the
impact of the surroundings on each activation. x is set to a Gaussian function. 1 � 3,
3 � 3, and 3 � 3 � 3 kernels are used for the 1D, 2D, and 3D topographies,
respectively.

3.3 Input Blurred

For input blurring, image patches are blurred using a Gaussian filter with kernel width 3
and varying sigmas, using (6), before being passed to the RBM.

vðkÞi ¼
XM

m¼1
v kð Þ
m xði;mÞ : ð6Þ

where vðkÞi is the visible node i at pattern k being blurred, v kð Þ
m is a neighboring visible

node m at pattern k, and the neighborhood function, x, is the Gaussian filter.

4 Experimental Work

4.1 Preprocessing

In both training and testing, all patches are contrast normalized and whitened, as these
are common techniques to reduce redundant information [1].

4.2 Training

CIFAR-10 is composed of real-world 32 � 32 colour images containing objects
belonging to 10 different classes, with a total of 50,000 training images and 10,000
testing images. STL-10 is similar to CIFAR-10 with 10 classes, but contains 96 � 96
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colour images. It contains 500 training images and 800 test images per class, plus
100,000 unlabeled images for unsupervised learning. COIL-100 contains images of
100 objects on a black background rotated 360° about the vertical axis at 5° increments,
resulting in 72 images per object. Samples of CIFAR-10 and COIL-100 are shown in
Fig. 2.

Primarily, the network is trained on random patches from the CIFAR-10 dataset.
50,000 random 8 � 8 color patches, divided into batches of 100, were used as training
data. The networks were trained for 100 epochs. This dataset contains enough variation
to learn a variety of features from real-world images. As an additional experiment, the
network is also trained on random patches from STL-10 as well as random patches
from COIL-100 to see if the same effects persisted across training datasets. Finally, the
networks are also trained on the MNIST handwritten dataset [13], with the full pattern
instead of patches, to determine if these techniques work in a different domain.

4.3 Testing

As a measure of how effective the techniques are, the networks are tested on three
datasets: CIFAR-10 [9], STL-10 [1], and COIL-100 [10]. The networks are used to
extract features via a rudimentary convolution procedure, and a linear classifier is
trained on the resulting outputs.

The convolution procedure follows the one outlined in [1]. The training example is
transformed into a set of subpatches, each of which are passed through the RBM to
generate a set of feature vectors representing the entire image. Experiments in this work
use a stride of 1, which means no patches are skipped over and an image of n-by-n
pixels, and an input-patch size of w-by-w, produces an (n-w+1)-by-(n-w+1) repre-
sentation with K features. yij denotes the K-dimensional representation extracted at
position (i, j). A simple pooling mechanism is implemented by dividing the image into
4 quadrants, and the feature vector is reduced from a (n-w+1)-by-(n-w+1)-by-K rep-
resentation to a 2-by-2-by-K representation by summing the yij’s in each quadrant.
A standard linear classifier is used for classification with the summed feature vectors
and the associated label.

Fig. 2. (a) Some examples of images found in CIFAR-10, with labels of horse and boat.
(b) Example object from different angles in the COIL-100 dataset
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Classification accuracy is reported according to the standard testing procedure for
each dataset. For CIFAR-10, the features extracted from the training set are used to
train the final classifier; the reported classification accuracy is on the test set. STL-10 is
divided in to 10 folds, where features extracted from a subset of examples are used for
training and testing in each fold. The reported accuracy is the average test accuracy
across the folds. With COIL-100, the testing procedure follows that of Mobahi et al.
[14]. Features extracted from each object at 0, 90, 180, and 270° are used for training.
The testing is conducted on all other angles. With MNIST, convolution is not used
since the networks are trained on the full image.

5 Results and Analysis

Experiments were carried out with RBMs using the methodologies detailed earlier:
Regular, 1D, 2D, and 3D topographies, and input blurred. All networks are regularized
with the a sparsity of 0.01, weight decay of 0.002, and no momentum term. CIFAR-10
is used for training unless otherwise stated. An 8 � 8 color receptive field size was
used in all tests, except with MNIST where the full grayscale image is used. Any other
parameters specific to each method are outlined in the results.

In the 3D topography, to keep the same number of nodes in each dimension, a
different number of total nodes than the 1D and 2D topography was chosen for
comparison. The largest cube number that is smaller than the comparison number is
chosen as the number of hidden nodes for the 3D topography. This amounts to 216,
343, 512, 729, 1000, and 1331 nodes for the 3D topography corresponding to 225, 400,
625, 900, 1225, and 1600 nodes for the other topographies, respectively.

Figure 3 shows the results of training a RBM after inducing a 2D topography,
where each element in the 20 � 20 grid is a visualization of the feature that each
hidden node learns. For example, a vertical feature node responds best to vertical
edges, a colored feature node responds best to the displayed color, and a patterned
feature node responds best to the displayed pattern. Examples of features learned by the
regular and input blurred RBMs, are also shown in Fig. 3.

The regular RBM contains many localized features resembling Gabor filters, acting
as very small edge detectors. The 2D topography contains smooth variations among
neighboring nodes in both axes, and is made up of similar edge detectors yet they are
much larger in size. The features learned by the RBM with input blurring shows more
high frequency features with less localization. The topographical RBM also has more
high frequency features with less localization, but they look less clean and isolated;
while less pleasant to look at, it indicates a more diverse and complex set of
correlations.

Primarily, the sigma parameter in the Gaussian filter will determine the impact of
the biasing. The classification accuracies on CIFAR-10 of each of the techniques with
varying sigma values is shown in Fig. 4 for 225 nodes and 900 nodes. The graphs show
that all of the techniques outperform the regular RBM by a significant margin at peak
performance. The stronger biasing of the 3D topography provides too much of a
constraint among the nodes, causing them to develop poorer features and decrease
performance as sigma increases. Otherwise, a larger sigma generally increases
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performance. Aside from the 3D topography, the methods are relatively robust to the
sigma parameter choice, and a poor choice is still likely to produce better results than
the regular RBM.

The methods and their classification accuracies on CIFAR-10 relative to the
number of hidden nodes in the network are shown in Fig. 5. Within each method, the
sigma with the best accuracy at 900 nodes is the representative. As expected, an
increase in hidden nodes produces an increase in the quality of the feature represen-
tation thus increasing the classification accuracy. Here, the input blurring and the
topographical methods show a constant improvement over the regular RBM.

The simple blurring of training images produces a surprising increase in classifi-
cation accuracy, producing over a 2% increase at 225 nodes and 900 nodes. The

Fig. 4. Classification accuracy on the CIFAR-10 test set vs. Sigma for each technique at 225
hidden nodes (left) and 900 hidden nodes (right)

Fig. 3. (a) 20 � 20 grid of features produced by 2D Topography in an RBM. (b) Examples of
features learned by the regular RBM. (c) Examples of features learned by the input blurred RBM
(Color figure online)
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biasing to induce topography also produces better classification results than without
biasing. At 225 nodes, the 1D topography’s performance exceeds the regular RBM’s
by over 4%. At 900 nodes, the 2D topography’s performance exceeds the regular
RBM’s by over 3%.

Training on CIFAR-10 produces image features which translate well to other visual
datasets, including STL-10 and COIL-100. The classification accuracies of each
method tested on various datasets, when trained on CIFAR-10 at 1600 nodes, is shown
in Table 1. The sigma with the best classification accuracy on CIFAR at 1600 nodes is
used, determined by evaluations between 0.0 and 2.0.

Again, each of the techniques produces a notable increase in performance over the
regular RBM across all datasets; some greater than others depending on the dataset.
With such a large amount of features, representational power tends to saturate and
classification accuracy plateaus. Therefore, it is interesting that the techniques still
produce a fixed increase in classification performance despite hidden layer size.

To evaluate representation learning on different data, Table 2 shows the results of
training and testing on the same dataset for STL-10, COIL-100, and MNIST.

It can be seen that the techniques, trained on STL-10, produce similar increases
relative to the regular RBM as when they are trained on CIFAR-10. STL-10 contains

Fig. 5. Best parameters for each method comparing the classification accuracy on the CIFAR-10
test set vs. the number of hidden nodes

Table 1. Classification results, with 1600 nodes, on CIFAR-10, STL-10, and COIL-100, when
trained on CIFAR-10. Uses the sigma which produces the best results on CIFAR-10 for each
method. Note that the topographic 3D RBM uses 1331 nodes

Method (RBM) Classification
accuracy (%)
CIFAR STL COIL

Regular 73.82 51.49 84.24
Topography 1D (r = 1.25) 75.41 52.21 85.69
Topography 2D (r = 1.00) 76.24 54.06 86.28
Topography 3D (r = 0.75) 75.65 54.76 84.28
Input Blurring (r = 1.50) 74.76 52.10 86.82
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very similar images to CIFAR-10, including a lot of background imagery. These
training samples are taken from real images, as a result, they produce similar perfor-
mance. But training on a simpler dataset, such as COIL-100, produces worse results.
This is likely due to the large amount of uninformative patches, since there is a lot of
black space in COIL-100 due to a lack of background. These techniques actually
degrade performance from the regular RBM if the dataset contains enough uninfor-
mative patches. Given the improved results on MNIST, a dataset where a 0.2% increase
in accuracy is considered statistically significant [15], it is visible that the topography
techniques also translate to another domain.

In general, the topographic methods perform best, and classification accuracy is
boosted even without pooling, as the features themselves benefit from the shared
information within the neighborhood during training. At peak sigmas, the 1D topog-
raphy produces similar results to the 2D and 3D topographies. However, it is com-
putationally simpler, since its 1 � 3 kernel only requires 2 neighbors. Thus, sharing a
small amount of information between nodes produces a large improvement in features,
and this improvement does not correlate with the number of neighbors, given that the
results of the 3D topography are not much better than the others. For these reasons, the
1D topography is a better solution than the other topographic methods when training
time is important. Otherwise, they are comparable in terms of accuracy.

6 Conclusion

This paper performed a comparison between biasing effects of Gaussian filters in the
training of RBMs to evaluate their relative performance when it comes to learning good
visual feature representations. The quantitative comparison was based on classification
results on several image classification datasets.

Primarily, biasing to induce topography quite obviously produces better classifi-
cation results than without biasing. The 1D topography provides the best balance
between computational simplicity and effectiveness. The simple blurring of training
images also produces a notable increase in classification accuracy.

The comparison between classification results produces tangible evidence that,
despite differences in the approach, improved features can be achieved by biasing the

Table 2. Classification results, with 1600 nodes, on STL-10, COIL-100, and MNIST when
trained on themselves. Uses the sigma which produces the best results on CIFAR-10 for each
method. Note that the topographic 3D RBM uses 1331 nodes

Method (RBM) Classification
accuracy (%)
STL COIL MNIST

Regular 51.55 78.74 97.57
Topography 1D (r = 1.25) 53.22 75.66 97.97
Topography 2D (r = 1.00) 54.34 75.59 97.88
Topography 3D (r = 0.75) 54.31 76.06 97.80
Input Blurring (r = 1.50) 52.28 78.69 97.38
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network appropriately. The same biasing can likely be applied to improve image
classification results on larger scale multi-layer networks. Overall, this work shows that
the simple sharing of information between neighboring nodes, both input and hidden,
during training allows the networks to consistently develop better visual feature
representations.
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