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Abstract. Segmentation is a first and important step in video-based motion cap-
ture applications. A lack of constraints can make this process daunting and dif-
ficult to achieve. We propose a technique that makes use of an improved JSEG 
procedure in the context of markerless motion capture for performance evalua-
tion of human beings in unconstrained environments. In the proposed algorithm 
a non-parametric clustering of image data is performed in order to produce ho-
mogenous colour-texture regions. The clusters are modified using soft –
classifications and allow the J-Value segmentation to deal with smooth colour 
and lighting transitions.  The regions are adapted using an original merging and 
video stack tracking algorithm.  

1   Introduction 

Image segmentation is often considered one of the most important low level vision 
processes.  It has recently been extended from colour images to video sequences with 
field applications in video encoding and video database indexing [1, 2].  The concept 
of representing video regions in terms of objects has also been introduced.  An analy-
sis of these objects can provide more insight as to the content and the semantics of a 
video. In this particular case, objects representing individuals could be evaluated to 
extract information regarding their activities.  The provision of quantitative measure-
ments for human performances using a passive vision based system has a strong ap-
peal for activities in the field of music and sports where performance measurements 
are based on human perception and experience. This type of application is often re-
ferred to as Motion Capture. 

Recently there has been significant advancement in the field of computer vision 
techniques.  However, none have yet addressed the complex problem faced here with-
out having to impose unreasonable constraints upon musicians or athletes and their 
environments.  Many motion capture techniques using passive sensors still rely on 
contrasting backgrounds or on assumptions on the motion and complexity of the 
scene.  These impositions yield an environment that is foreign to a performer, poten-
tially compromising the integrity of his actions, leading him to behave differently than 
he would in a more comfortable environment.  The limitations of such techniques may 
also obfuscate key performance markers through the application of arbitrary data 
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representations or manipulations.  We introduce the concept of unconstrained envi-
ronments, where a performer and his environment are faced with a minimum of as-
sumptions and requirements allowing him to perform uninhibited.   

Two categories of segmentation techniques are explored in the application of a 
Motion Capture system. The first category deals with frames in a sequential manner. 
This field has been explored thoroughly and has too many varying approaches to list 
within the scope of this paper.  Some of the more popular techniques can be catego-
rized as contour-based, background modeling and region space approaches. In the 
case of contour-based approaches, techniques are often driven by image gradients in 
order to produce a delineation of important image components.  One of the founding 
techniques, called active contours, was introduced by Kass et al. [3].  The contours 
are formed using an energy minimization procedure designed in such a way that its 
local minima are achieved when the contour corresponds to the boundary of an object.  
The technique was modified for video objects by Sun et al. [1] using a projective 
tracking algorithm but is not well suited for large non-rigid movements.  In the case of 
background modeling techniques, one successful algorithm was introduced by 
Stauffer and Grimson [4].  They proposed the use of a mixture of Gaussian probabil-
ity models to capture individual pixel behaviours and separate active foreground ob-
jects from low-motion background objects.  Despite various improvements to this 
technique [5], in the case of performance evaluation, assumptions on the presence of 
motion cannot always be made, making the distinction between foreground and back-
ground objects complex.  Finally, region-based approaches perform an analysis of the 
data space in order to produce a simplified grouped representation of the data. The 
union of these regions makes the process of segmentation and tracking much simpler.  
In the case of watershed algorithms [6, 7, 8], regions are formed by identifying local 
minima within a frame’s gradient image.  More adaptive techniques achieve segmen-
tation using an adaptation of the k-means algorithm [9].  The criterion used for the 
creation of regions can yield different results depending on the nature of the images 
processed.  The second category of segmentation techniques deals with frames in sets 
of blocks, called video stacks, and has received an increasing amount of attention.  In 
DeMenthon [10], video stack segmentation uses a modified Mean-Shift approach 
which is computationally intensive, requiring a hierarchical implementation. 

The hybrid approach proposed within this paper incorporates a video stack analysis 
with a sequential frame tracking of segmented video objects.  It avoids the high com-
putational and memory cost of volume based analysis by separating the video stream 
into frame windows. A combination of clustering and spatio-temporal segmentation 
techniques is performed on the video window in order to extract pervasive homoge-
nous regions.  The algorithm builds upon the JSEG approach introduced in [11] and 
extended by Wang et al. [12]. 

2   General Approach 

The proposed technique is categorized as a region-based motion capture segmentation 
algorithm and uses colour-texture information to produce homogenous regions within 
a set of frames that are then tracked throughout the sequence.  The technique is based 
on Deng and Manjunath’s JSEG implementation [11] with key improvements making 
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it more appropriate to the context of a performer evaluation considered here.  The 
algorithm is structured as a set of five key processes: clustering, soft-classification, J-
value segmentation, merging and tracking.  While many of these processes have been 
addressed in the original JSEG algorithm, this work proposes several improvements 
and introduces algorithms which have shown to be more efficient within the harsh 
environments that we tested in.   

2.1   Non-parametric Clustering of Images 

As a precursor to the actual segmentation the video stacks must first undergo a clus-
tering process.  Originally proposed by Deng et al. [11] was a k-means based ap-
proach which assumes that the colours present within a scene follow Gaussian-like 
statistics.  This hypothesis cannot always be guaranteed for complex scenes.  Wang et 
al. [12] also reached this conclusion and modified the approach to use a non-
parametric clustering technique called the Fast Adaptive Mean-Shift (FAMS).  The 
FAMS algorithm introduced by Georgescu et al. [13] builds upon the original Mean-
Shift technique proposed by Comaniciu et al. [14].  It is used within our approach to 
cluster colour distributions within a video stack without applying constraints to these 
distributions.  Only the basic concepts of the Mean-Shift property and the FAMS 
algorithm are conveyed here. 

Given n  data points such as niRx d
i ,,1, …=∈  associated with a bandwidth 

0>ih , the multivariate kernel density estimator at location x  is defined as: 
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Where )(xk  is a function defining the kernel profile and dkc , is a normalization con-

stant.  If the derivative of the kernel profile )(xk  exists, a density gradient estimator 

can be obtained from the gradient of the density estimator yielding the following: 
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The last term in equation (2) is called the Mean-Shift.  This term, by definition, points 
in the direction of the maximum increase in the density surrounding a point x .  By 
applying the mean shift property iteratively, we converge on the mode of a given 
point.  By associating the mode of each distribution to the data points converging to it, 
a nonparametric clustering of the data space is obtained. 

In [13] several other improvements were brought to the clustering technique.  
These include the use of adaptive bandwidth sizes and an optimization technique 
called Locality-Sensitive Hashing (LSH) that aims to speed up the clustering process.    
This speed up requires a lengthy pre-processing in order to obtain optimal parameters 
that would yield the best computation time and reduced error.  In the implementation 
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done here, the adaptive bandwidths were omitted and optimization parameters were 
manually selected.  These omissions did not overly affect the clustering process but 
did allow for a much quicker processing.  The end result is an algorithm that achieves 
a better colour clustering in light of smooth colour gradients. 

2.2   Creation of Soft-Classification Maps 

In the list of improvements to the original JSEG algorithm, Wang et al. [12] intro-
duced the concept of soft-classification maps.  These maps represent a measured 
membership value that a pixel has to its assigned cluster.  These values allow the 
JSEG algorithm to soften the colour-texture edges between two similar cluster distri-
butions.  The classification maps can be created for every pixel using Bayesian prob-
abilities.  The cluster distributions in this case are represented using Gaussian statis-
tics in order to compute the corresponding memberships. 

In this paper, we have opted to compute our classification maps differently.  The 
use of Gaussian statistics to describe the clusters undermines the idea behind the use 
of the non-parametric FAMS algorithm.  Instead, the clusters are represented using 
3D normalized histograms of Lu*v* pixel intensities.  The values of the histogram 
bins, when projected back into the image, represent the non-parametric probability, 

)|( ik wIP , that pixel kI  belongs to the class iw .  This process is called a histogram 

back-projection [2] and allows for the creation of soft-classification maps without the 
need to assume particular distributions on the clusters. 

2.3   J-Value Segmentation 

JSEG is a novel segmentation technique that attempts to produce regions out of pixel 
labelled images.  In this case, the labels are generated by the FAMS process described 
earlier and represent the distribution assigned to each pixel.  The first step in the seg-
mentation is to compute a homogeneity measure of every pixel based on its 
neighbours.  This measurement depicts the local variation in colour classification 
surrounding a pixel.  This value, called the J-value, is presented here following the 
same notation as adopted by Deng et al. [11] and adapted in order to take into consid-
eration the previously defined soft-classification maps.  First the mean position of 
clusters is defined as: 
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Here iz,ω  is the membership value taken from the soft-classification maps defined in 

the previous section.  The introduction of this term is a modification proposed by [12] 
to the original JSEG technique and allows the membership values to influence the 
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mean position of a particular cluster.  Finally, the total spatial variance of clusters is 
defined as: 

∑
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Similarly, the sum of all cluster variances is given as: 
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The term iz,ω  also makes an appearance within the above variance computation and 

allows the same membership values to play a role within the computation of WS .  The 

J-value of the local region is obtained based on these variances: 
WWT SSSJ /)( −=  (7) 

The original paper [11] provides examples on how a particular local cluster distribu-
tion would affect the outcome of the J-value.  For a local region where clusters are 
distributed approximately uniformly, the J-value will remain relatively small.  In-
versely, should the local region consist of segregated clusters; the J-value will in-
crease.  The result of an image wide J-value computation is a gradient image corre-
sponding to homogeneous colour-texture edges.   

The set of points which define the local region on which the J-value is computed is 
described by a circularly symmetric kernel mask.  This mask is applied to every pixel 
in an image.  The kernel size depends on the scale at which J-values are computed.  
At a larger scale smoother texture edges are detected while at a smaller scale, hard 
edges are detected.  The process is iterative; once regions are determined at a large 
scale, the regions undergo another JSEG process in order to split them based on a 
smaller kernel size.  Regions are created using a seed growing algorithm that amal-
gamates nearby pixels having a low J-value.   

The JSEG algorithm also allows for video segmentation by way of seed tracking.   
The tracking algorithm presented by Deng et al. [11] requires that all video frames be 
segmented at once and depends on small motion between frames.  This is not practical 
for very large or lengthy videos; a solution to this is presented within section 2.5.  
JSEG also defines the term tJ  in order to measure spatio-temporal homogeneity.  

This term, computed similarly as its J  counterpart, helps to indicate which pixels 
should be used when determining seed overlap. Only pixels with a good spatio-
temporal homogeneity are considered. 

2.4   Joint-Criteria Region Merging 

Both the JSEG and modified JSEG approaches suffer from over-segmentation.  Its 
original authors proposed a simple merging algorithm that iteratively attempted to 
merge regions having the closest corresponding histograms.  Over-segmentation being 
a classical problem, it has been explored extensively within other contexts [6, 7, 8].  
We adopted an algorithm that uses a joint space merging criterion introduced by Her-
nandez et al. [6].  This technique not only relies on colour information but also on the 
edges between two candidates.  As such, it prevents the accidental merging of regions 
with similar colour attributes having a strong edge in between them.  
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The first step in performing the merge operation is to formulate a Region Adja-
cency Graph (RAG) [15]. Region labels are represented by graph nodes while their 
similarities with adjacent regions are represented by edges.  Region merges are done 
iteratively and invoke an update of the RAG.  The similarity criterion used is based on 
both colour homogeneity and edge integrity.  Colour homogeneity is defined as a 
weighted Euclidian distance between the colour means of two adjacent regions.  The 
weight is computed based on region sizes and will favour the merging of smaller 
regions.  The edge integrity criterion is based on the ratio of strong edge pixels and 
regular edge pixels found along the boundary of two adjacent regions.  In order to 
compute this ratio, a gradient image is first created using Wang’s [8] morphological 
method.  A threshold is found based on the median value of the gradient image.  Any 
pixels found to have a value higher than the threshold are considered strong boundary 
pixels.  The edge criterion will increase in the case where two regions are separated 
by a prominent edge. 

To produce a single similarity criterion, both homogeneity and edge integrity crite-
ria must be evaluated.  Since their scales are not known, Hernadez et al. [6] suggest 
using a rank based procedure where the final similarity is given by: 

εαα RRW H )1( −+=  (8) 

Here HR  and εR are the respective ranks of the criteria given above for the same two 
adjacent regions.  α  is a weight parameter used to impart importance on either of the 
former criteria.  

2.5   Region Tracking 

The tracking algorithm developed for this framework combines the strengths of se-
quential and video stack segmentation to create a hybrid strategy to track regions. The 
resulting technique is described in the following sections. 

2.5.1   Intra-video Stack Tracking 
The original JSEG algorithm allows for block segmentation with the use of a seed 
tracking procedure.  This tracking however requires that the video be segmented in its 
entirety by considering all the frames at once in order to be successful and is often not 
feasible due to memory constraints.  We propose to first separate the segmented video 
in a series of video stacks.  The size of the stacks can be manipulated by an operator 
and depends on the available memory and computing power.  The tracking and region 
determination applied within a video stack is done using the technique proposed by 
Deng et al. [11] and described in section 2.3.  The tracking done in between stacks is 
described in the next section. 

2.5.2   Inter-video Stack Tracking 
The inter-video stack tracking algorithm proposed is strongly based on region over-
laps between two consecutive video frames.  This means that the motions exhibited by 
the objects in the video must be captured with an appropriate frame rate in order to 
allow regions to have an overlap between frames.  The tracking correspondence indi-
cator used within this work stems from the research produced by Withers et al. [16].  
In their work, the authors have tried to identify region correspondences between 
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frames regardless of splitting, merging and non-uniform changes.  This tracking meth-
odology lends itself well to the segmentation technique presented here. 

The criterion used to find a correspondence between regions of two subsequent 
frames depends highly on distance and pixel overlap.  In this case, pixel overlap is 
defined as the number of pixels one region has in common with another between two 
frames.  Withers et al. [16] define the overlap-ratio, )(, tR ji , as the correspondence 

measure between region i  and j , it is given by the following equation: 

)(,

)(,
)(, tjiD

tjiV
tjiR =  (9) 

Here the terms )(, tD ji  and )(, tV ji  are distance and overlap ratios for the intersection 

of regions i  and j .  These ratios are defined as the fraction between the distance and 

overlap of regions i  and j  respectively and those of the region intersection exhibit-

ing the smallest value.  Regions that may have undergone a splitting or merging will 
still have a very large overlap-ratio with their ancestors.  By applying a threshold to 
the overlap-ratio, eq. (9), final correspondence can be achieved. 

3   Experimental Results 

This section provides a comparison between the various additions proposed in this 
paper and the steps found in the original JSEG algorithm.  It also presents sample 
results of the final segmentation that can be achieved.  Due to the nature of the algo-
rithm and of the improvements, it is difficult to define quantitative evaluation metrics 
that would apply to such segmentation methods.  However, the improvements are 
easily discernable by comparing the clusters of pixels.  All sequences were captured at 
a resolution of 320x240 and 30 fps and depict piano players performing in complex 
environments. 

In Figure 1 a clustering comparison between the original k-means and FAMS is 
shown.  The major disadvantage with the k-means algorithm is that it requires exten-
sive parameter tweaking in order to obtain a good clustering.  In the first sequence the 
k-means algorithm does not produce nearly as many clusters as FAMS, many of the 
image details are lost in the over clustering.  In the second sequence, FAMS is better 
able to distinguish colours from various image components.  The piano is described 
using fewer clusters. In the case of the pianist a distinction between the left and right 
arms as well as the torso can be made.  These improvements are in part due to 
FAMS’s ability to account for colour gradients, thus allowing cluster centers to differ 
from their actual mean.  The figure also looks at the quality of the results when pa-
rameters are manually selected.  FAMS requires more time to complete than its k-
means counterpart, but gives better results.  If an optimization on the parameters se-
lection is performed, the overall computation time is significantly increased for a 
negligible difference in results.  

Figure 2 shows the effect of the soft-classification of cluster on the J-value compu-
tations. Larger J-values are represented by brighter pixels. The figure depicts  
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Fig. 1. K-Means and FAMS Comparison 

 

Fig. 2. Impact of Soft-Classification 

the results of two soft-classifications computed using the smallest kernel size with 
Gaussian distributions [12] and the proposed histogram back-projection. The soft-
classification of clusters results in a softening of the non-homogeneous colour-texture 
edges. The use of Gaussian distributions leads to an over attenuation of J-Values, 
while the more flexible histogram back-projection yields J-Values that do not remove 
key image details.  The attenuation of values ultimately results in fewer seeds being 
generated for nearby regions having similar colour-texture properties. 

The results in Figure 3 clearly demonstrate a reduction in superfluous regions 
caused by colour gradients and lighting effects.  The shaded regions are the ones se-
lected by a human operator and are relevant to the motion capture process.  In the first 
video where more clusters were found using FAMS, a better outline of the musician is 
achieved.  In the second video where the number of clusters was approximately the 
same, the regions form better contours and identify semantic image components 
clearly.  In particular the pianist’s torso, arms and legs can be identified more easily.  
The change from Gaussian to histogram based soft-classification allowed regions to 
better keep their distinctive shapes and conform to the semantic video content. 
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Fig. 3. Segmentation Comparison 

4   Conclusions 

In this work several improvements were achieved over the original JSEG algorithm in 
order to allow for a non-parametric clustering of natural scenes and to take advantage 
of soft-classification maps.  The algorithm was also extended in order to improve the 
region merging process and to track key regions throughout a sequence for the pur-
pose of creating a motion capture system.  Results have shown the incredible adapta-
bility of the technique without the need to impose constraints on either the target or its 
environment thus allowing the technique to be used more efficiently in practical ap-
plications. 
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