2017 IEEE International Symposium on Robotics and Intelligent Sensors
, Ottawa,

5-7 Oct. 2017

(IRIS2017)
Canada

Consistent Multirobot Localization
using Heuristically Tuned Extended Kalman Filter

Ruslan Masinjila', Pierre Payeur?
School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa, Canada

1

Abstract—Probabilistic algorithms have widely been used
with significant success in single-robot localization as well as
mapping. However, when it comes to distributed, multirobot
systems, probabilistic algorithms have a tendency to quickly
converge to inconsistent, often overly optimistic estimates,
whenever interdependencies in such systems are ignored. This
paper presents a solution to consistent, decentralized, multi-
robot localization using a heuristically tuned Extended Kalman
Filter. Extensive simulations show that the proposed solution is
able to significantly improve the consistency of pose estimates
for each robot in a system while maintaining the computational
complexity of the classical Extended Kalman Filter.

Keywords-Extended Kalman Filter; Decentralized Multi-
robot Localization

I. INTRODUCTION

Multirobot systems are increasingly being used to perform
complex tasks. For example, Amazon uses thousands of
autonomous Kiva robots in some of its warehouses in order
to speed up the process of retrieving and shipping goods
from the large warehouse to customers [1]. Without knowing
where the robots are, and where they should go, the robots
would collide with each other, resulting in damages to the
robots themselves and the goods they carry, as well as
delays. Therefore, accurate localization in each robot is
extremely important in order to avoid such problems. In
the last two decades, research in multirobot systems has
gained a lot of attention [2]. The key reason is the increase
in efficiency when multiple robots collaborate in order to
accomplish a given task [2], [3]. As a result, a number of
algorithms that support multirobot localization have been
developed. These algorithms estimate the pose of every
robot in a team by combining motion measurements from
proprioceptive sensors of individual robots, with robot-to-
robot measurements from their exteroceptive sensors [4].

Multi-robot localization schemes can be either centralized,
multi-centralized or decentralized. In a centralized scheme
[5]-[9], all computations are done in one processing center,
which can be one of the robots (the leader). Although
this scheme can provide optimal and consistent pose es-
timates for all robots in a group, it is poorly scalable,
computationally expensive, and is vulnerable to single-point

978-1-5386-1342-9/17/$31.00 ©2017 IEEE

297

rmasi036 @uottawa.ca, *ppayeur@uottawa.ca

failure (for example, if the leader malfunctions). In a multi-
centralized scheme [10], each robot maintains information
about its own pose, and that of every other robot in the
group. In other words, every robot maintains a copy of
the entire group’s state. This scheme is robust to single-
point failure but results in even higher communication and
computation costs. In a decentralized scheme [4], [11]-
[13], each robot maintains only the information about its
own pose, and only updates this information locally when
relative robot-to-robot measurements become available. This
scheme can provide approximate solution to a multirobot
localization problem at reduced communication and compu-
tation costs but often leads to inconsistent (overly optimistic
or pessimistic) estimates if the interdependencies between
robots are neglected [14]. This paper presents an empirical
methodology for tuning the classical Extended Kalman Filter
(EKF) in order to achieve consistent pose estimates for every
robot in decentralized multirobot systems while maintaining
the computation and communication costs of the classical
EKF.

II. RELATED WORK

In the early 90’s, Kurazume et. al. developed the ini-
tial concept of multirobot localization [7]. The main idea
in multirobot localization is the use of robots themselves
as portable landmarks to others in order to improve the
localization accuracy, especially in GPS-denied and un-
chartered areas with unstructured or insufficient landmarks
[15]. Subsequent studies in multirobot localization adopted
and improved upon Kurazume’s initial concept. The biggest
challenge in multirobot localization is calculating consistent
pose estimates of every robot in a team through tractable
algorithms. Inconsistencies in decentralized systems arise
when the interdependencies within such systems are ignored.
The Extended Kalman Filter is one of the most popular,
tractable, probabilistic algorithm that has seen widespread
application in localization as well as mapping due to its
low computational cost and ease of implementation. Despite
its popularity, EKF has some significant shortcomings when
used to estimate robot poses, most notably its tendency to
quickly converge to inconsistent values and its inability to
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handle non-linear systems where the degree of non-linearity
is too high [16], [17].

One of the strategies for dealing with inconsistencies in
multirobot localization involves joint estimation of every
robot’s pose in a team every time new information arrives
[8]. This strategy however, is only tractable for small groups
of robots due to quadratic growth in computation and
communication costs with the number of robots. Some of the
most recent strategies such as [13] and [4] provide consistent
estimates through the use of a technique called Covariance
Intersection, which fuses information under unknown in-
terdependencies through convex combination of mean and
covariances. The main drawback of this technique is that it
needs additional computational time to iteratively determine
the most optimal way of combining mean and covariances
in order to achieve consistent estimated results [18].

In the past, a common approach used to overcome
inconsistencies involved heuristic tuning of the Extended
Kalman Filter by deliberately adding artificial noise into the
system which offsets the effects of interdependencies and
linearization, and consequently results in consistent estima-
tions. This process is referred to as injection of stabilization
noise and was introduced by Maybeck [19]. Since then,
it has been shown that under certain conditions, such as
when the degree of nonlinearity of a system is not too
high, the consistency of EKF estimates can be adequately
maintained through deliberate addition of stabilization noise
[16], [17]. In the context of robot localization, consistency
in EKF poses can be achieved through deliberate inflation
of landmark covariances after every update [16], or through
the inflation of sensor covariances [20]. However, formal
ways for determining the adequate inflation of the covari-
ances have not yet been established. Thus, in this paper,
an empirical methodology for improving the consistency
of EKF estimates through artificial inflation of landmark
covariances in decentralized multirobot systems is proposed
and evaluated through extensive simulations performed in
MATLAB.

III. PROBLEM STATEMENT

At any given time, ¢, the EKF represents the robot’s
position and its associated uncertainty with the mean, ,
and covariance matrix, ) ,, respectively. Collectively, the
robot’s pose and its associated uncertainty is also known as
the robot’s belief, bel;, about its pose. That is:

belt = (/j'h Zt)

As a robot moves around, the EKF recursively propagates
and updates its latest belief with new information coming
from various sensors. This process is usually broken down
into two steps, namely prediction and correction.
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In the prediction step, the EKF makes a less accurate
estimation of the robot’s new belief, bel; = (i, ,), from
its previous belief, bels_1 = (ft¢—1,»_,_;), using its motion
model, f(p¢—1,ut), as shown in Equations 1 and 2:

Ty = f(pe—1,us) (H

B ()5 () (B)a(2)

where (; is the covariance matrix which specifies the
uncertainties associated with the robot’s control input, ;.
In the correction step, the EKF uses the robot’s obser-
vation model, g(f, 1), to estimate relative distance and
bearing, Et, of a landmark with known location, p, and
uncertainty, >, , with respect to the robot’s pose estimated
in the prediction step (Equation 3). The known uncertainty
of the landmark is propagated, and compounded with the
robot’s uncertainty estimated in the prediction step, Zt,
using the same observation model as shown in Equation 4
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where R; is the covariance matrix of the relative obser-
vations, which specifies the uncertainties associated with
relative distance and angle measurements.

Since in multirobot systems the robots carry portable

landmarks with them, pz and ), in Equation 3 can be
considered as /i, and ), of the robots that carry the portable
landmarks.
In Equation 4, S is usually referred to as the innovation or
residual covariance, and is used by the EKF to compute the
gain, which specifies the extent by which the less accurate,
estimated belief, bel; = (7, Y_,), is refined to more accurate
belief, bel; = (yt,y,). In practice, EKF has a tendency of
providing overconfident estimates. This means that estimated
covariance matrix, Et, of the belief, bel;, converges to
incorrect, often smaller values than the actual covariance
matrix. The convergence can be due to incorrect modeling
of the system, ignored interdependencies or high degree of
non-linearity in the system beyond the EKF’s ability.

IV. TUNING OF CLASSIC EKF FOR
DECENTRALIZED MULTIROBOT LOCALIZATION

This section describes the proposed empirical method-
ology for improving the consistency of EKF estimates by
means of artificial inflation of landmark covariances. The
proposed approach is validated through extensive simula-
tions of multirobot localization using the Extended Kalman
Filter.
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A. Multirobot Localization using Classic Extended Kalman
Filter

In order to study the behaviour of the classical EKF
algorithm, a number of simulations involving different num-
ber of robots were performed in MATLAB. The following
assumptions were made in the simulations:

The belief of a portable landmark, bel;, = (ur,y ;) is
the same as that of the carrier robot, bel; = (1s, ) ;).
All robots in a team are identical with the same motion
and observation models.

The initial belief (EKF pose and associated uncertainty)
of each robot is randomly initialized around the actual
ground truth of the robot using the errors specified by
the initial covariance matrix. This is done in order to
reflect the discrepancies between ground truth and EKF
estimates, which may arise if the robots were to use
their own sensors to estimate their initial poses.
Robots move within sensing and communication range
from each other.

Zero mean, white Gaussian random noise is added into
each of the robot’s modeled sensors in order to reflect
the uncertainties associated with measurements.

In addition to the above assumptions, simulation param-
eters for each robot were initialized as follows:

Encoder error (each wheel) = 10% of distance traveled.
Initial actual pose (m, m, rad) = 5[randn, randn, randn]
where randn represents a random scalar drawn from the
standard normal distribution.

Initial pose error (m, m, rad) = [0.001, 0.001, 0.001].
Range sensor error (m, rad) = [0.1, 0.1].

Robot size = 0.3m x 0.3m.

Under the above assumptions, 20 simulation runs were
repeated for 5 robots using the classic EKF. In all simulation
runs, each robot moves along its predefined ground truth
path in an open area in such way that at any given moment
at least one of the five robots remains stationary while the
other robots (one or more) move to their next locations.
The order in which the robots move is completely random.
Furthermore, each moving robot refines its estimates through
relative observation of stationary robot(s) after having moved
a random distance between 0.Im and Im from its last
estimated location. For each robot, the Average Normal-
ized Estimation Error Squared (ANEES), averaged over 20
simulation runs, is used to evaluate the consistency of the
EKF estimates at 95% confidence interval. ANEES can be
interpreted as the ratio of the actual error to the estimated
error [21]. On the other hand, Mean Absolute Error (MAE)
in position, averaged over the distance moved by the robot,
is used to evaluate the accuracy of the EKF estimates. For
20 simulations and at 95% confidence interval, an estimate
is consistent if its ANEES value falls within the interval
[0.6746,1.3884]. Figure 1 shows the ground truths and
average trajectories of the classic EKF for the five robots
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(top) and the corresponding ANEES curves for each robot
(bottom).
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Figure 1: Top: Trajectories of the classic EKF averaged over
20 runs. Bottom: ANEES of 5 robots using classic EKF
averaged over 20 runs.

From Figure 1, it can be seen that the ANEES for
each robot rapidly grows out of the consistent interval,
[0.6746,1.3884] (black broken lines) despite having their
EKF pose estimates very close to their respective ground
truths. This happens because the covariances estimated by
the classical EKF for each robot converge to wrong, small
values, while the actual covariances grow unbounded.

B. Heuristic Tuning of the Classic EKF

Suppose Equation 5 is the shorthand representation of
Equation 4 introduced in Section III.
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In order to overcome the convergence of the estimated
covariance matrices to wrong values, the covariance matri-
ces of the stationary robots (and therefore of the portable
landmarks) are artificially inflated during their propagation

such that S;, becomes:
— — T
(0%, 07,
o1 = (OUL ) (OZL) (0#@)

In this paper, C' will be referred to as the Covariance
Inflation Index. At first glance, it appears that the Covariance
Inflation Index amplifies the entire covariance matrix of the
stationary robot, thereby inflating both lincar and angular
components of the uncertainty associated with the pose of
the stationary robot. However, a closer examination of the
term Sy, in the classical Extended Kalman Filter reveals
that only the linear components of the landmark covariances
are propagated through the observation model during the
correction step. Thus, the landmark covariances provide the
ideal medium through which classical EKF can be tuned by
manipulating linear components of the system (i.e position),
which are less prone to errors, while bypassing the angular
components (i.e orientation), which is more susceptible to
linearization errors.

(6)

C. Multirobot Localization using Heuristically Tuned Ex-
tended Kalman Filter

The simulations described in Section IV-A were repeated
using 5 robots with artificially inflated covariance matrices
during the correction step. For the given system, the value of
C (Covariance Inflation Index), was empirically determined
and experimentally verified to be proportional to the distance
traveled by the robot up to the point where it acts as a
landmark to others [22]. Thus:

C = AAD )

where A is an experimentally determined constant, and AD
is the distance covered by the robot up to the point where
it acts as a landmark to others. Thus, Equation 6 becomes:

51.= (G0 Jaans,)(

For each set of 20 simulations involving 5 robots as
described in IV-A, a different value of A in Equation 8
was used until the best ANEES results were obtained as
shown in Figure 2. For the given multirobot system, the
best ANEES results were obtained when the value of A was
15 because most of the ANEES values fall within the valid
interval (black, broken horizontal lines).

7 7'
L

o @®)

V. EXPERIMENTAL VALIDATION

Using this value of A, the performance of the tuned EKF
was evaluated against its classic counterpart in four different

’
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test scenarios, each of which consists of 20 repeated simula-
tion runs. In each scenario, the initial starting locations, the
trajectories of the robots, and the order of their movements
are different. Simulation results for the four scenarios are
depicted graphically in Figures 3 through 6 and summarized
in Tables I through IV.
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Figure 2: ANEES results for EKF tuning with 5 robots over
20 runs with A=1, 15, 25.
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Figure 4: Scenario #2.
Ground truth trajectories of 5 robots (top). ANEES for
Classic (center) and Tuned (bottom) EKF averaged over 20

Figure 3: Scenario #1.
Ground truth trajectories of 5 robots (top). ANEES for
Classic (center) and Tuned (bottom) EKF averaged over 20

runs.
runs.
Table I: Summary for Scenario #1. Table II: Summary for Scenario #2.
Classic EKF Tuned EKE Classic EKF Tuned EKF
Consistent MAE Consistent MAE Consistent MAE Consistent MAE
Robot | ANEES (%) (m) ANEES (%) (m) Robot | ANEES (%) (m) ANEES (%) (m)

34.1772 0.1275 94.9367 0.1204
23.7500 0.0646 82.5000 0.0600
39.1892 0.1523 93.2432 0.1454
24.1379 0.1010 78.1609 0.0965
37.3134 0.0898 97.0149 0.0880

58.4906 0.0728 98.1132 0.0396
35.0000 0.1007 91.2500 0.0728
34.4086 0.1026 88.1720 0.0955
31.8841 0.1107 95.6522 0.0513
44.8718 0.1087 78.2051 0.0613
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Figure 6: Scenario #4.
Ground truth trajectories of 5 robots (top). ANEES for
Classic (center) and Tuned (bottom) EKF averaged over 20

Figure 5: Scenario #3.
Ground truth trajectories of 5 robots (top). ANEES for
Classic (center) and Tuned (bottom) EKF averaged over 20

runs.
runs.
Table III: Summary for Scenario #3. Table IV: Summary for Scenario #4.
Classic EKF Tuned EKF Classic EKF Tuned EKF
Consistent MAE Consistent MAE Consistent MAE Consistent MAE
Robot | ANEES (%) (m) ANEES (%) (m) Robot | ANEES (%) (m) ANEES (%) (m)

32.5000 0.0966 78.7500 0.0538
36.5079 0.0902 95.2381 0.0507
25.6410 0.0981 93.5897 0.0962
22.3529 0.1323 94.1176 0.1162
38.6667 0.0875 89.3333 0.0544

22.8571 0.1392 94.2857 0.0481
32.9268 0.1178 87.8049 0.0658
21.2121 0.0574 98.4848 0.0557
26.3736 0.2085 90.1099 0.1000
27.9070 0.1765 88.3721 0.0982
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The results in Tables I through IV show a significant
improvement in the consistencies (ANEES columns) and
a slight improvement in the accuracies (MAE columns) of
the estimates for all robots in all scenarios after tuning the
EKF. From the simulations, it was revealed that provided the
initial errors of the robots is small, the tuned EKF maintains
its integrity even in scenarios different from which it was
tuned in, and can handle random motions of continuously
varying number of moving or stationary robots.

VI. CONCLUSION

In this paper, an empirical methodology for tuning the
classic EKF for consistent multirobot localization in de-
centralized systems is proposed. The methodology involves
controlled artificial inflation of the covariance matrices of
the stationary robots which act as landmarks to the mov-
ing robots. The performance of the EKF tuned through
the proposed methodology was evaluated and compared
against its classic counterpart through extensive simulations
involving different scenarios, four of which are presented
in the paper. The results from the simulations show that
the tuning methodology improves both the consistency and
accuracy of the classic EKF, at no additional computation
or communication cost.
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