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Abstract – Autonomous robotic systems require automatic 

registration of data collected by on-board sensors. Techniques 
requiring user intervention are unsuitable for autonomous robotic 
applications, while iterative-based techniques do not scale well as 
the dataset size increases, and additionally tend towards locally 
minimal solutions.  To avoid the latter problem, an accurate initial 
estimation of the transformation is required for iterative algorithms 
to perform properly.   

The method presented in this paper does not require an initial 
estimation of the transformation, and avoids problems of the 
classical iterative techniques by employing the multi-dimensional 
Fourier transform, which decouples the estimation of rotational 
parameters from the estimation of the translational parameters.  
Using the magnitude of the Fourier transform, an axis of rotation is 
estimated by determining the line that contains the minimal energy 
differential between two rotated 3-D images.  By using a coarse to 
fine approach, the angle of rotation is determined from the minimal 
sum squared difference between the two rotated image.  As the 
Fourier transform introduces hermitical symmetry in the rotation, 
the proper solution is identified through the use of a phase-
correlation technique, and the estimate of translation is 
simultaneously obtained. Experimental results illustrate the 
accuracy that can be achieved by the proposed registration 
technique and performance is compared with that of the classical 
iterative closest point method. 

Keywords – Registration, pose estimation, frequency domain, data 
fusion. 

I. INTRODUCTION 
The proliferance of low cost, and high quality range 

sensing systems has lead to their use for many different 
purposes, such as creating virtual objects for virtual 
museums, space exploration, and games. Registration 
estimation involves determining the rotations and translations 
required to align one image with another. The prevalent 
methods for registering range images involve relying on the 
positional sensors of the data acquisition apparatus, relying 
on complex feature detection and matching algorithms, or 
iterative algorithms that may converge to an incorrect 
solution. These methods offer limited scalability and their 
execution time increases dramatically with an increase in the 
number of points in the datasets to be registered. 

This paper presents a registration estimation algorithm for 
3-D measurements that is automatic, does not need any initial 
estimate of the transformation parameters and requires no 
apriori knowledge of the object that is being registered, with 
the only assumption being that there is sufficient overlap 
between datasets for the algorithm to produce an accurate 
estimate. The proposed algorithm takes advantage of the fact 

that the Fourier transform decouples the estimation of the 
rotational parameters from the estimation of the translational 
parameters. This is accomplished by separating the frequency 
information into a magnitude and phase component. The axis 
of rotation is determined, followed by the angle of rotation.  
Due to the Hermitian property of the Fourier transform, there 
are two possible solutions for the rotational parameters, 
separated by 180°. To determine the correct rotational 
parameters, as well as estimate the translation parameters, a 
phase correlation utilising the frequency domain is applied to 
each possible solution. The solution that produces the most 
impulsive phase correlation is selected as the correct solution, 
with the location of the impulse corresponding to the 
translational parameters.   

The proposed algorithm has been tested on 3-D datasets, 
but also provides the framework for a multiple dimension 
extension. The theoretical description in the following 
section is generalized to the multiple dimensional case. 
Experimental results are presented for the 3-D case using 
pure range data. 

II. REVIEW OF TECHNIQUES 
Traditionally, registration estimation has been performed 

in the space domain. The most widely explored approach to 
solve the registration estimation problem is the iterative 
approach, and the most widely adopted of these approaches is 
the Iterative Closest Point (ICP) algorithm and its various 
reincarnations and modifications. The ICP algorithm, initially 
proposed by P.J. Besl and N.D. McKay [1], describes a 
method for registering a set of 3D data (P) with a reference or 
model dataset (X). The method operates by calculating the 
closest points in set P, with those in set X. From this 
matching of closest points, an estimate for the registration 
parameters is made. P is transformed by this estimate, and the 
mean squared error (MSE) between the transformed P and X 
is computed. If the MSE is not beneath a predefined 
threshold, the estimation process is repeated using the newly 
transformed dataset, P, otherwise the current estimate of the 
registration is the solution. 

The ICP algorithm, as with most iterative convergence 
algorithms, tends towards the closest local minima when 
using discrete datasets.  The solution obtained may or may 
not correspond to the global minimizing solution, and hence 
the ICP algorithm requires an initial estimate that is close to 
the actual registration parameters, or a particularly 
transformed dataset to obtain a precise solution.  The 
estimation of the registration parameters is performed in two 
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stages, by first calculating the rotational parameters and then 
using the rotational parameters to calculate the translational 
parameters, hence if the rotation is incorrect, the translation 
will be incorrect.  The advantages of the ICP algorithm are its 
precision, flexibility, and ease of use, and the main 
disadvantage of the ICP algorithm is its tendency to converge 
to local minima solutions instead of the proper global minima 
solution without a close initial estimate. 

There are several papers available in the literature 
[2][3][4], which discuss modifications to the ICP algorithm 
in order to provide better convergence toward the global 
minimum.  This is achieved by either transforming the data, 
altering the matching criterion, providing a close initial 
estimate of the registration parameters, or by acceleration of 
the algorithm at various steps. 

Alternatives to registration in the space domain have been 
proposed to avoid the need to match features, and to deal 
with unorganized data clouds, by taking advantage of some 
characteristics of the Fourier transform. By avoiding the 
feature detection, extraction, and matching steps that occur in 
classical registration techniques, frequency domain 
algorithms avoid possible imprecision and poor matches 
inherent to this sort of process. 

L. Lucchese, G. Doretto, and G.M. Cortelazzo in [5] 
extend their previous work with frequency domain 
registration estimation in 2-D [6] to the 3-D case. As 
previously stated, the Fourier transform decouples the 
rotational parameter estimation from the translation 
estimation.  In order to prevent the impulsive nature of the 
effect of singularities on the frequency spectrum, the data set 
is convolved with a spherical Gaussian kernel with standard 
deviation of 0.05 and diameter of 7 voxels.  This creates a 
spherical solid region about each point with density decaying 
with distance from the point. 

Lucchese et al. estimate the axis of rotation by 
determining the radial projections of the difference image 
through the DC (0,0,0) point.  By performing this step, the 
determination of the axis of rotation is reduced to 
determining the minimum of a 2-D function.  The estimate is 
further refined by resampling the function in a small thin 
cylinder around the estimated axis of rotation, then 
determining angular histograms of the projection of the 
cylinder onto the three orthogonal elementary planes, and 
then finally determining the angles corresponding to the 
maxima for each histogram.  These maxima are used to 
determine the optimal axis of rotation.  With the axis of 
rotation now determined, the coordinate system is 
transformed such that the problem becomes a 2-D rotation 
problem about the w-axis, as illustrated in Fig. 1. 

Now that the problem is reduced to a 2-D problem of 
estimating the rotation about w, a 2-D image is created from 
the 3-D image by integrating along the w-axis.  The 
complexity of finding the angle of rotation is further reduced 
to 1-D by changing to polar co-ordinates and integrating 
along the distance parameter.  Finally, the angle of rotation is 

determined by the peak of the correlation between the 
corresponding 1-D functions of each range image. 

 
w-axis

u-axis v-axis

Rotation axis

w-axis

u-axis v-axis

Rotation axis

Transformation

 
Fig. 1.  Axis transformation. 

Due to the Hermitian symmetry of the Fourier transform, 
there are two complementary solutions, separated by 180°.  
The ambiguity between solutions is resolved in the 
estimation of translation.  To estimate the translation, the 
original data is rotated by each solution, and transformed into 
the frequency domain.  A phase correlation between images 
is performed.  The phase correlation function corresponding 
to the correct solution will be impulsive in nature, and the 
location of the impulse corresponds to the translation.  The 
phase correlation function corresponding to the incorrect 
solution will not be impulsive in nature.   

In order to avoid the computational penalty of performing 
a 3-D phase correlation, the authors perform three 1-D phase 
correlation functions based upon the projections onto the 
primary axis.  Additionally to minimize the numerical errors 
involved in the computation of differences between small 
numbers, a logarithmic difference function is used for the 
estimation of the rotation axis.  Finally, to reduce the effects 
of discrimination in estimating the angle of rotation, a 
minimal search based windowing function is used along each 
plane, and these minima are added together to form the 2-D 
image. 

The method is used to produce an initial estimate to be 
refined by the ICP algorithm.  The disadvantages of this 
algorithm is the computational cost of applying the FFT 
several times (1 time for each image for estimation of the 
axis of rotation, 1 more time for one image in estimation of 
the angle of rotation, and finally 2 more times on one image 
for the estimation of translation), as well as the need for 
computing several histograms.  On the other hand, this 
frequency-domain algorithm eliminates the need to extract 
and match features, and avoids local minima solutions that 
may occur with traditional iterative algorithms. 

III. REGISTRATION IN THE FREQUENCY DOMAIN 
This section describes the theory required for frequency 

domain registration techniques, expanding upon the 
mathematical arguments put forth by Lucchese et al. in [5]. 

Let N be the number of dimensions of the signal, and M 
be the diagonal matrix containing the reciprocal of the size of 
each dimension.  Let [ ]nr1Im  be the space domain samples 
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from one viewpoint, and let [ ]nr2Im  be the same space 
domain samples from a different viewpoint, with the vector 
nr  indicating the sample location in discrete Cartesian 
coordinates, with respect to the origin of the image.  Let the 
rigid transformation between Im1 and Im2 be represented by: 

[ ] [ ]TnRn += rr
21 ImIm  

 

(1) 
where R is the NxN rotation matrix, and T is the Nx1 
translation vector.   
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The discrete Fourier transform (DFT) representation of 
Im1 and Im2 are: 

[ ] [ ] nMkj
M

n

M

n

M

n

TN

N

N

N

enkF
rrrr

π2
1

0

1

0

1

0
1Im

1

1

1

1

1
Im... −

−

=

−

=

−

=
∑ ∑ ∑

−

−

=   
(2) 

[ ] [ ] nMkj
M

n

M

n

M

n

TN

N

N

N

enkF
rrrr

π2
1

0

1

0

1

0
2Im

1

1

1

1

2
Im... −

−

=

−

=

−

=
∑ ∑ ∑

−

−

=   
(3) 

where k
r

 is the vector representing the N-dimensional 
discrete frequency index, n1, n2, …, nN are the components of 
the vector nr , and M1, M2, …, MN are the discrete size of each 
of the respective N dimensions. Now, if the rigid 
transformation depicted in eq.(1) is applied to eq.(3), the 
relationship between FIm1 and FIm2 can be found.  Note that 
FIm2 notation is slightly modified here to introduce the rigid 
linear transformation. 
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The transpose of a rotation matrix being its inverse: 
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If a change in variables to the above equation is made 
( kRk

rr
→ ), it then becomes: 
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We observe that in eq.(4) the translation component is 
independent of nr , and that the part of the equation in 

brackets is equal to FIm1 (see eq.(2)).  This leads to the 
deduction of the relationship between FIm1 and FIm2: 

[ ] [ ] ( ) MTkRj
T

ekFkRF
rrr

π2
ImIm 12

−=  
 

(5) 
 

From eq.(5), two separate equations can be developed, one 
for solving for the rotation matrix (R), and one for solving for 
the translation vector (T) when given the rotation matrix.  
This is accomplished by separating the equation into 
amplitude and phase components.

 
 

[ ] [ ]kFkR
rr
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(6) 

[ ] [ ] ( ) MTkRkFkR
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(7) 
 

From eq.(6), it is possible to deduce the rotation matrix 
(R) using the amplitude spectrum of Im1 and Im2.  Once the 
rotation matrix is known, the translation vector (T) can be 
solved for through the use of a phase correlation method 
using the phase spectrum of Im1 and a derotated Im2 (eq.(7)). 

A. Determining the Rotation Matrix 
It is well known that all rotations in 3-D space can be 

represented as a rotation about an axis of rotation, a fact that 
the frequency domain technique takes advantage.  By rotating 
an object in space about an axis, the position of all points 
change – except those belonging to the axis of rotation.  This, 
when described mathematically, corresponds to multiplying a 
scaled version of an eigenvector of a matrix with the matrix 
itself (note that the axis of rotation corresponds to the 
eigenvector with eigenvalue equalling 1 for the rotation 
matrix, see eq.(8)). 

[ ] [ ] [ ]kkkR
rrr

122 ImImIm FFF ==  
 

(8) 
This holds true in the frequency domain, since rotation is not 
affected by a Fourier transform, hence by determining the 
zero-line in the difference function of the magnitude of the 
Fourier transforms of the images to be registered, the axis of 
rotation can be determined. 

To determine the angle of rotation, rotate FIm1 about the 
axis of rotation, until the rotated FIm1 equals FIm2.  This can 
be accomplished by minimizing the mean squared error 
(MSE) between transformed magnitude images, |FIm1| and 
|FIm2|, for each value of the angle of rotation.   

In order to determine the rotation matrix, there are a few 
issues that must be addressed.  The first and foremost is that 
the Fourier transform of real data is Hermitian symmetric.  In 
other words, the frequency domain spectrum for the 
frequency values between 0 and π are also represented by the 
complex conjugate of the values contained between 2π and π:  

( ) ( )wFwF −→ π2*  
 

(9) 

In the discrete mapping of the DFT, where K
r

 is the 
column vector containing the discrete size along each 
dimension, and k

r
is a discrete frequency location, then this 

effect is represented by: 
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This mapping is both beneficial and detrimental to 
determining the rotation matrix.  The benefit is that only half 
of the frequency data is unique, therefore only half of the 
DFT needs to be computed.  The drawback to the Hermitian 
symmetric mapping is that two solutions for rotation are 
obtained, with a separation of 180°.  This is exemplified in 
Fig. 2. 
 

Rotation by 45° or by -135°?

 
Fig. 2.  Example of Hermitian symmetry of 

the magnitude of the Fourier transform.  

B. Determining the Translation Vector 
Once the rotational parameters have been estimated, the 

translation vector can be determined. Due to the presence of 
two complementary solutions for the angle of rotation, a 
method of determining the proper solution is needed.  
Fortunately eq.(7) provides solutions to both the problem of 
solution selection, as well as estimation of the translational 
parameters.  The application of eq.(7) is equivalent to a 
phase-correlation of Im1 with Im2.  The secondary solution 
for R (which is denoted R’), will provide a reflection, in 
addition to the rotation, about the axis of rotation. 

The solution corresponding to the proper solution will 
provide an impulse-like response, while the complementary 
solution will provide a non-impulsive response.  The solution 
in each case will rarely be strictly impulsive, but one solution 
will be more impulse-like than the other solution.  This 
enables us to select the solution, based upon whether or not 
the cross-correlation between Im1 with the derotated versions 
of Im2 produces an impulse-like function, with the location of 
the impulse signifying the estimation of the translational 
parameters. 

IV. ALGORITHM 

A. Determining the Axis of Rotation 
In order to determine the axis of rotation, the difference 

between the two magnitudes of the FFT must be calculated.  
The straight difference is not reliable in practice, since the 
magnitudes of the FFT may be small, as well as the effects 
caused by noise in the images may introduce incorrect 
minimums in the difference function.  In [5], a normalized 

logarithmic difference is used to rectify this problem.  While 
this does work effectively, calculating logarithmic 
differences are quite processor intensive compared to 
calculating straight differences.  The difference function 
developed for the proposed algorithm is the normalized 
percentage difference, which ensures that the values with a 
large relative difference, even when the magnitudes are 
small, produce a large difference, and that values with a small 
relative difference, even when the magnitudes are large, 
produce a small difference, while having a lower processing 
cost compared to the normalized logarithmic difference.  This 
difference is defined as: 
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(11) 

In this difference, the frequency domain images are 
normalized with respect to the zero location, as the zero 
location provides a good indication of the energy present in 
the images.  The divisor is then chosen to be the maximum of 
the two points in the difference to ensure that the values fall 
between zero and one. 

The minimal weight zero crossing lines, which 
corresponds to the axis of rotation is determined through the 
use of a moving window search algorithm.  This algorithm 
determines the minimal weight path crossing the frequency 
domain origin within a small window.  The window is 
successively moved away from the origin along the minimal 
weight path, resulting in the axis of rotation being determined 
with higher precision as the window moves further away. 

B. Determining the Angle of Rotation 
The angle of rotation is determined by first subsampling 

the frequency domain.  The frequency domain is further 
reduced such that the only remaining frequency locations lie 
between –π/2 and π/2 along each dimension.  This step is 
performed to minimize the number of computations to be 
performed.   

The angle of rotation is then iterated coarsely between –π 
and π.  Due to possible numerical errors made at the various 
stages of calculation, the full range of –π to π is used to 
determine the optimal angle, as opposed to the minimal 
required range of 0 to π.  The frequency locations selected in 
FIm2 are rotated, followed by calculating the squared error 
normalized magnitude percentage difference as presented in 
eq.(12).   
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(12) 

The angle corresponding to the minimal error is selected 
for the new midpoint in the coarse to fine search. The 
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selected points in FIm2 are now rotated more finely between 
(angle-π/2) and (angle+π/2), and again the error is calculated, 
and the minimal error angle is selected. This task continues 
until the desired angular precision is reached. The angular 
search range is cut in half and centred on the minimal error 
angle from the previous coarser iteration, and the range is 
divided up according to how many frequency divisions are 
desired. 

Once the angle has been determined, it should be noted 
that due to the Hermitian symmetrical nature of the Fourier 
transform, there exists a second solution to the angle of 
rotation that differs by 180° (π radians) from the determined 
angle (eq.(13)). The selection of the correct solution is 
performed in the subsequent section. 

π±= AngleAngle'  
 

(13) 
In Lucchese et al., the angle of rotation is determined 

involving a 1-D correlation technique, after integrating the 
images along the axis of rotation, and along the radius.  
These steps are complex and require an additional forward 
and inverse Fourier transform, as well as determining a 
maximum of a noisy 1-D function. The coarse to fine 
approach eliminates the need for the complex correlation 
technique, and zooms in on the least squares error solution 
for the frequency locations selected.  This ensures that 
accuracy is maintained, while keeping the algorithm simple 
and easy to understand.  As the number of frequency points 
increases, so does the accuracy of the algorithm.  Also as the 
number of frequency divisions increases, the precision of the 
algorithm increases.  The computation time of the angle of 
rotation increases as the previously mentioned parameters 
increase. 

C. Solution Selection 
Due to the previously mentioned Hermitian symmetry of 

the frequency domain, there exists two possible solutions for 
the rotation.  To properly disambiguate the solutions, a phase 
correlation of each solution must be performed, as suggested 
by Lucchese et al. in [5].  For this to occur, Im2 must be 
derotated by each of the complementary rotational solutions, 
producing [ ]na r

2Im , and [ ]nb r
2Im  (see eq.(14) and eq.(15)).  

This step requires going back to the space domain, due to the 
phase discontinuities present in the frequency domain from 
the sparse datasets. 
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[ ] ( )[ ]nAngleRRn Axis
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(15) 
The phase correlation between Im1 and Im2

a, and Im1 and 
Im2

b will be performed in the frequency domain, 
appropriately zero padded to ensure that the correlation 
performed is not a cyclic correlation.  The phase of the 
Fourier transform as previously stated contains the translation 
component.  Taking advantage of this fact, the phases 
between image one and the candidates for the correct solution 
of image two are subtracted, leaving only the phase 
difference, and after performing the inverse Fourier 

transform, the translational shift between the two images.  
This is formally described as follows: 
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With phase correlation functions now computed, the 

solution selection process may be started.  The solution 
corresponding to the correct rotation, will be more impulsive 
in nature compared to the other solution due to the nature of 
the correlation.  This is performed by determining the 
summation over each dimension of the ratios of the gain 
corresponding to the highest peak encountered in the 
collapsed phase correlation function versus the variance of 
the phase correlation function: 
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(19) 

The above function was chosen as a good measure of the 
impulsiveness of a data set, since it provides a direct measure 
of peak energy compared to the averaged energy of the data.  
The proper rotational solution corresponds to which of 
SPGRa or SPGRb is higher.  If SPGRa is higher, the 
rotational solution is ( )AngleRR Axis ,

r
, otherwise 

( )π−AngleRR Axis ,
r

 is the solution. 

D. Determining the Translation 
The translation parameters correspond to the location of 

the peaks in each dimension used in the previous section to 
choose the correct solution.  If SPGRa was the correct 
solution, then the translation parameters correspond to the 
location in normal space of the peaks found in [ ]ndP a ,2

1 , 
and conversely if SPGRb was the correct solution then the 
translation parameters correspond to the location in normal 
space of the peaks found in [ ]ndP b ,2

1 . 

V. EXPERIMENTAL RESULTS 
Fig. 3 illustrates experimental results obtained by applying 

the described frequency-domain registration algorithm upon 
3-D data point clouds representing a model of a house frame 
generated using a laser range finder simulator operating on a 
virtual representation of the object. As can be observed with 
this superposition of the point clouds (respectively in blue en 
red) after registration, under low noise conditions the 
accuracy of registration estimates is high with very little 
visible error in the merge. 
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Fig. 3.  Point cloud representation of the results 

of the registration between two different 
viewpoints for a simulated house frame. 

Front V iew Top View  
Fig. 4.  Point cloud representation of the results 

of the registration between two different 
viewpoints for a real model of a house frame. 

Table 1.  Performance Comparison 

 Avg Nb of 
Points 

Avg Time  
for ICP (sec) 

Avg Time  
for FFT (sec) 

Data Set 1 7526.82 247.20 10.30 
Data Set 2 3668.00 52.01 8.87 

Factor 2.05 4.75 1.16 
 

Fig. 4 illustrates a similar superposition of two point 
clouds collected using a real range image acquisition system 
on an actual mockup model of a house frame. The integrated 
range sensing system that is used is described in [7].  The 
registration estimation is also of high quality when applied on 
data collected under realistic operational conditions. The 
main perceptible errors reside in a small rotation visible in 
the top view, and a translation error visible in the front view.  
These are mainly due to the background plane that appears in 
the real scene but was absent in the simulated case. Also, the 
real range sensor tends to produce outliers in the datasets that 
influence the estimation of registration parameters. 

 
 
 
 

During experimentation it was observed that when the 
number of points in the range image was doubled, the 
average completion time for ICP more than doubled, while 
the completion time for our algorithm stayed relatively 
constant for a particular parameter set (see Table 1.). The 
proposed approach appears as being less sensitive to the 
dataset size while performing much faster than classical ICP. 

VI. CONCLUSION 

This paper demonstrates that frequency-domain 
registration is practical and reliable, even when applied on 
large datasets due to its scalability.  The proposed registration 
technique extends previous work and provides strategies to 
achieve efficiency gains, in particular those pertaining to the 
determination of the axis and angle of rotation, without 
deteriorating registration parameters accuracy.  A set of 
experimental results illustrates the potential of the new 
frequency-domain registration algorithm when applied to 
both simulated and real datasets. 
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