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D representation and recognition of objects are two

pivotal steps for autonomous robots to safely explore

and interact with an unknown environment and ma-
nipulate objects. 3D modeling can be beneficial in different
robotic applications such as object grasping, pose estimation,
robot navigation and localization. Real-time data acquisition
and accurate object representation are essential in the context
of such practical applications. On the other hand, the recog-
nition of the objects in an environment is indispensable for
situational awareness and for enabling the robot to interact ef-
fectively with complex environments.

Robot vision can be considered as the most informative and
reliable sensing modality in autonomous robots. Nevertheless,
vision fails to work properly in a number of situations includ-
ing low light environments, cases where an object is occluded
or is out of the camera’s field of view, and situations in which
objects are not visually distinguishable. Tactile sensing, as an
indispensable element of dexterous robotic manipulation, can
be efficiently integrated with other sensory modalities, in par-
ticular with vision, to increase the reliability of an autonomous
robot. It makes available a wide range of information on objects
including surface properties such as roughness, texture, vibra-
tion, temperature, local shape, etc., all important features that
can contribute to better identifying an object. Moreover, a com-
bined use of vision and touch in humans was demonstrated to
facilitate manipulation, grasping and handling of objects, and
could therefore be exploited to increase the efficiency of au-
tonomous robots in a variety of tasks. However, visuo-tactile
integration and the creation of efficient computation methods
to help a robot successfully recognize and manipulate the ob-
jects it is interacting with remains a challenging issue.

A huge research effort has been invested in the literature
to efficiently integrate the two sensing modalities. Never-
theless, all currently published works tackling visuo-haptic
interaction only use visual data to increase the spatial resolu-
tion of tactile data, to resolve conflict situations, such as cases
where the tactile information is faulty, or conjunctly use tac-
tile and visual data to recognize objects. Considering the fact
that the acquisition and processing of tactile data itself is a
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time-consuming task, such approaches for visuo-tactile inte-
gration are associated with a high computational cost, thus
making them very difficult, if not impossible, to use in real-
time interaction scenarios. Alternatively, the sophisticated
cognitive skills of the human brain and its patterns of natural
intelligence have encouraged scientists to develop biologically
inspired computation techniques, bringing automatic process-
ing capabilities to computers and robots.

Referring to biological research, we can draw three main
conclusions about the interaction and collaboration of visual
and haptic sensory modalities: 1) Tactile salient features also
attract visual attention to their location [1]; 2) a combined use
of vision and touch works more efficiently compared to cases
where vision and touch are exploited separately [2]; and 3) vi-
sual and tactile object recognition rely on similar processes in
terms of categorization, recognition and representation [2].
These conclusions suggest that visuo-tactile integration is a
promising solution to optimize the process of object modelling.
Moreover, visual data, in the form of salient regions acquired
by amodel of visual attention (according to 1) can be employed
to guide the process of tactile data acquisition. Furthermore, vi-
suo-tactile integration can be performed (according to 2 and 3)
at a higher (perception) level based on similarities between the
two sensing modalities. Since collecting large datasets of tactile
data for training a model is a much more complex task com-
pared to visual data, it is expected that a transfer of learning
from vision to touch can both enhance the performance of tac-
tile object recognition and amalgamate visual and tactile data
processing units in robots. This paper presents research initia-
tives performed by the authors to validate these biologically
inspired assumptions and efficiently merge measurements
from different instrumentation technologies in a framework to
operate in the context of practical robotic tasks that involve 3D
object representation and recognition.

Techniques forVisual and Tactile Data
Acquisition

As illustrated in Fig. 1, the framework makes use of visual
and tactile data acquired over the surface of objects. A variety
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Fig. 1. Overall framework for combined use of vision and touch in 3D object representation and recognition.

of instrumentation techniques are nowadays available for ac-
quisition of the geometry of 3D objects; most of them rely on
either time-of-flight sensor [3] or triangulation-based systems
for modelling. Radio detection and ranging, Light Detection
and Ranging (LiDAR), shaped light pulse, and sound naviga-
tion and ranging (sonar) are different types of time-of-flight
sensors transmitting and receiving back narrow beam signals
in order to compute the distance between sensor and object
points. They can be used to acquire data on 3D objects through
sweeping the beam over the object surface. Triangulation
based systems basically take advantage of different view-
points of objects from which specific features are sensed and
matched. Stereo vision, structured light systems and space-
time stereo are examples of triangulation-based systems for
3D geometry acquisition. Stereovision is a technique where
two images from different viewpoints are acquired from an
object, which are then used to determine correspondences be-
tween the images [4]. Since no energy beam is emitted toward
the object, stereo vision is referred to as a passive modeling so-
lution. In structured-light systems, a light pattern is projected
onto the object surface from one viewpoint. An image taken
from a different viewpoint can be used to match correspond-
ing points and compute the 3D coordinate of surface points [5].
Spacetime stereo systems project an arbitrarily varying pattern
on the surface of object. Subsequently, they perform feature
matching using two video streams, taken from different view-
points over specific space-time windows. Such modeling
systems are more appropriate for moving or deformable ob-
jects [6].

In the case of tactile data acquisition, existing tactile
sensors characterizing surface deformations and texture
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sistive tactile sensors or
more specifically Force
Sensing Resistor arrays
(FSR) are widely used for object recognition and have been
selected in this research [9].

An Enhanced Computational Model of
Visual Attention

At the heart of the proposed framework for combined use
of vision and touch for 3D object representation and recog-
nition (Fig. 1) is a computational model of visual attention.
When looking at daily encountered visual scenes, the human
visual system instantaneously processes the huge amount of
available perceptual information in order to select a subset
of relevant and required stimuli. This procedure of selection
or inhibition of perceptual information is referred to as visual
attention. Computational models of visual attention, which
attempt to mimic the behavior of the human visual attention
system, can be categorized into bottom-up and top-down
models. Top-down attention mechanisms obey different types
of cognitive factors in scene exploration such as, expectations,
or searching for a specific target and prior knowledge, while
bottom-up models rely on a set of effective features under free
viewing conditions. For the latter, several researches from the
field of neuroscience and psychology have identified contrib-
uting features in deployment of visual attention such as color
opponency, contrast, curvature, edge, entropy, intensity, orien-
tation and symmetry. As such, classical computational models
of visual attention [10] build upon these features and apply
the center-surround operations exhibited in human receptive
field onto them to produce so-called conspicuity maps. Fig. 2
illustrates an example of conspicuity maps created based on a
center-surround operation on a list of effective features for the
guidance of vision as obtained by an enhanced model of visual
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Fig. 2. Enhanced model of visual attention.

attention proposed in [11]. In this figure brighter pixels corre-
spond to regions where higher attentional resources should be
allocated.

Multi-feature integration is the next phase in the compu-
tation of a saliency map, which produces the final output of
the computational visual attention model, highlighting sa-
liencies as bright regions on a black background in 2D. In the
literature, the conspicuity maps are generally integrated by
averaging [10]. However, in an attempt to better guide atten-
tion, feedback from users (in form of a list of salient vertices
identified over the surface of 3D objects) can help experimen-
tally determine the contribution weight of each feature in
integration process. This allows features that are more con-
form to human input to contribute more to the final saliency
map. As such, for our enhanced visual attention model, a
ground-truth saliency map is generated by casting a round
Gaussian area (inspired by anatomy of receptive field in hu-
man vision system) around the salient vertices identified by
users. Subsequently, a similarity metric between the ground-
truth saliency map and each feature map is computed to
produce a weighting scheme. Fig. 2 demonstrates an exam-
ple of ground-truth saliency map and the final adaptively
weighted saliency map. Experimental results identified
curvature and entropy as the most prominent features in
guidance of visual attention for a set of mono-colored objects
rendered against a black background [11].

Another possible approach for feature integration is to
adopt a machine learning technique to learn the location of
salient points based on extracted features [11]. In such an ap-
proach, the process of saliency prediction is formulated in
form of a binary classification problem. Subsampled versions
of conspicuity maps are fed as input attributes to a Sup-
port Vector Machine (SVM) to predict if the associated pixel
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represents a salient region or not. A prediction accuracy of
86.08% is achieved.

Optimized 3D Object Representation

The fast rendering capability of triangular meshes has made
them one of the most popular techniques for 3D object rep-
resentation in robotics, virtual environments and computer
graphics. Nevertheless, when the geometry of the object is
complex, an excessive number of triangles is called for to
achieve an accurate representation. The real-time creation and
maintenance of an object scene containing several objects with
enormous number of triangles becomes quickly impossible
in robotic applications due to on-board memory limitations.
Moreover, despite the fact that novel robotic platforms tend to
exploit graphics processing units (GPU) to achieve real-time
computation, the current technology of portable GPUs can
overheat rapidly, calling for optimization of computational
costs. This explains the interest in creating compact object rep-
resentations, that can be efficiently stored and used, but that
are also accurate, particularly in the areas that define the most
predominant geometrical properties of the objects, and thus
are more useful in object recognition and manipulation tasks.
Computational models of visual attention can be advanta-
geously engaged in this process to determine salient regions
of object meshes which are to be represented at a higher res-
olution. These salient regions correspond to the most evident
geometrical properties of the object (Fig. 3). For this purpose,
the entire surface of a 3D object is first scanned in form of im-
ages captured from different viewpoints. The previously
discussed model of visual attention is then computed over
each acquired image to produce a saliency map. The next step
is to derive salient points from salient regions. Since an over-
concentration of salient points within a region will degrade
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Fig. 3. Selectively simplified 3D modeling using the enhanced model of visual attention.

the quality of a simplified mesh, a non-maximum suppression
scheme is applied to avoid a large number of salient points oc-
curring within the same neighborhood over the mesh of the
object. Salient points are finally projected to 3D as a list of ver-
tices which should be preserved while other vertices remain
accessible to Qslim algorithm for simplification [11]. Qslim al-
gorithm is one of the most popular and efficient simplification
algorithms where vertex pairs are iteratively contracted while
maintaining a surface error metric. It simplifies 3D objects uni-
formly without considering the minor local features which are
decisive in the representation of an object, justifying why the
important salient areas are not subject to simplification. Us-
ing the proposed approach, different Level of Details (LoD)

relatively well-established
task in robotics. Literature
on 3D object recognition
can be broadly grouped into conventional methods that rely
on feature extraction from segmented images and use a clas-
sifier to recognize objects, and deep learning-based method
where feature extraction, object localization and recognition
are all performed using a deep convolutional neural network
(CNN) based architecture. Conversely, tactile object recogni-
tion can be performed either through dynamic or static touch.
While dynamic touch relies on data acquisition through mov-
ing the sensing probe over the surface of object, a static touch
is performed with an immobile tactile sensor contacting an ob-
ject. Static touches capture local shape of an object, including
small scale deformations on its surface, as illustrated in Fig. 4.
The acquisition of static tactile data requiring the movement
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Fig. 4. Object recognition from haptic glance.
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and positioning of the tactile sensor and then executing a di-
rect contact with the object is a tedious task. In terms of tactile
object recognition, machine learning solutions (e.g., neural
networks, self-organizing maps, kNN classifiers) tend to be
solutions of preference, regardless of the source of acquired
tactile data, the features extracted, and of the type of sensor
used. As mentioned in the previous sections, in our work we
used a Force Sensing Resistor (FSR) array to acquire tactile data
and employ machine learning solution to classify selectively
acquired tactile data, as detailed in the next section.

Visually Guided Selective Tactile Data Acquisition
for Object Recognition
Inspired by the human visuo-haptic integration principle, in
our proposed framework, we examined the use of the visual
attention model to identify a series of interest points to deter-
mine the location where to collect tactile data over the surface
of a 3D object to allow for the recognition of the probed object
based on a limited set of such tactile imprints (i.e., from haptic
glance). The value of this approach is that it avoids the te-
dious complete tactile acquisition process by identifying only
a limited number of probing points from which tactile data is
collected. Psychological studies about haptic perception sug-
gest that humans are able to recognize objects among a small
set promptly by a brief haptic exposure to a limited number of
local tactile cues (i.e., from a “haptic glance” [12]). In this con-
text, haptic glance can be defined as a short and static contact
between the fingertip and the object of interest. The acquired
tactile information by haptic glance is a combination of kinaes-
thetic signals sensed by joints, tendons and muscles as well as
cutaneous cues detected by human skin. While kinaesthetic
signals basically determine the location and position of the
fingertip when touching the object, cutaneous cues provide
information about local deformations and texture properties.
Experiments are conducted both on tactile imprints from a
physical 16 x 16 FSR sensor and on simulated imprints using
a virtual sensor [9], based on the working principle of a real
FSR, on physical objects for which accurate 3D models were
available. Since collection of tactile imprints is a tedious task
in nature, the simulated tactile sensor was used for a proof
of concept prior to experiments with a real sensor. When an

external force is applied to an FSR sensor while the sensor is
in direct contact with the surface of the object, the elastic layer
of the sensor captures the geometric profile of the object. A 2D
deformation profile, which forms the tactile imprint, is subse-
quently produced by the transducers in the sensor, as shown in
Figure 4. Similarly, the virtual tactile sensor captures the geom-
etry profile of the object surface, by measuring the distances
between the elements on the sensor and the surface of the vir-
tual object when the center of the sensor is in contact with the
object [9].

Once tactile data are collected a set of features are extracted
from them before classification. Feature extraction by wavelet
decomposition resulted in a good performance on tactile im-
ages acquired in form of a 2D deformation profile by a tactile
sensor [13]. Among the conventional classifiers from the litera-
ture, k-Nearest Neighbor (kNN) and Support Vector Machines
(SVM) were demonstrated to be among the best options for
tactile object recognition from haptic glance which usually re-
lies on small datasets for the training phase [13]. Classification
accuracies obtained by kNN and SVM are reported in Table 1.
Experiments conducted using a real tactile sensor confirm the
success of visual attention in optimizing the process of tactile
object recognition, with classification accuracies on average
22.9% lower than those obtained through simulation for KNN
and SVM [13].

Engaging kinaesthetic data in form of the probing location
can improve the recognition rate up to 14.86% [13]. A compar-
ison of experimental results suggests that for tactile datasets
of equal size, the recognition rate when tactile data are col-
lected from visually salient locations are up to 22.66% higher
than the case where tactile data are acquired by a blind touch
(random determination of tactile probing location) [13]. This
supports the fact that visual attention allows selection of loca-
tions which are relatively unique for each object. Since most of
the confusion cases are due to similar tactile features between
objects, further experiments are performed by eliminating
similar imprints based on crossed correlation measurement,
boosting up the performance up to 7.87%.

Despite the success of the object recognition framework
using the enhanced model of visual attention over randomly
touching the object (blind touch), a more reliable way to

Table 1 - Classification accuracies for experiments conducted over six objects (adapted from [13]).

Multiple touches
Single tactile imprint Single tac.tile impl:ints (din.lensionality
and probinglocations | reduction and feature
concatenation)
Enhanced visual attention Enhanced Enhanced visual
. n Blind X blind .
. . Similar imprints visual attention,
All imprints L. touch, ) touch, .
Eliminated . attention, | simulated data
Iated " Iated " simulated simulated simulated
Simulate Rea Simulate Rea
data data h 4 h
data data data data data 3 touches touches
kNN 73.33% 51.60% 76.37% 58.97% 50.67% 84.86% 67.21% 99.36% 100%
SVM 67.78% 43.00% 75.65% 47.86% 48.89% 82.86% 56.12% 99.43% 100%
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develop a highly reliable framework is to recognize objects
from multiple touches. As such, an unsupervised network is
first leveraged to reduce the dimensionality of features from
each imprint and then multiple imprints are concatenated to
be classified using kNN and SVM. Results confirm that, with
at least four touches on the object at visually salient locations,
the object can be perfectly recognized (Table 1).

Conclusion

Recent research makes use of biologically inspired compu-
tation and artificial intelligence as efficient means to solve
real-world problems. Drawing inspiration from visuo-tactile
collaboration in the human sensorial loop, this paper dis-
cusses possible approaches to exploit vision and touch sensing
modalities to accelerate and optimize the process of 3D object
representation and recognition for robotic manipulation.
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