IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 42, NO. 2, APRIL 1995 147

Trajectory Prediction for Moving Objects
Using Artificial Neural Networks

Pierre Payeur, Student Member, IEEE, Hoang Le-Huy, Senior Member, IEEE,
and Clément M. Gosselin, Member, IEEE

Abstract— A method to predict the trajectory of moving ob-
jects in a robotic environment in real-time is proposed and
evaluated. The position, velocity, and acceleration of the object
are estimated by several neural networks using the six most
recent measurements of the object coordinates as inputs. The
architecture of the neural nets and the training algorithm are
presented and discussed. Simulation results obtained for both
2D and 3D cases are presented to illustrate the performance of
the prediction algorithm. Real-time implementation of the neural
networks is considered. Finally, the potential of the proposed
trajectory prediction method in various applications is discussed.

I. INTRODUCTION

HE problem of predicting the trajectory of moving objects

is encountered in industrial robotic or servo systems
where the movement information (position, orientation, ve-
locity, and acceleration) is needed for control, capture, or
observation purposes. There are many situations where au-
tomatic equipment must interact with moving parts. From
the point of view of the automatic system, the trajectories
of the parts are frequently unknown. For example, consider
a packaging process where a robotic manipulator is used to
place parts into boxes. A usual and simple solution consists
in feeding the manipulator with parts by the means of a
belt conveyor. To ensure that parts are firmly grasped by the
manipulator, all of them must be placed in a similar manner on
the conveyor. Moreover, the conveyor must be stopped during
the grasping.

With an algorithm such as the one proposed in this paper,
the robot would be capable of catching objects which do not
arrive exactly at the same place and with similar orientation
on the belt conveyor while they are still moving. The belt
conveyor would then not have to be stopped repetitively. It
could even be replaced by a simple slide on which products
would be thrown. On such a device, moving parts are free to
rotate and to deviate from a perfect linear path. This is a typical

Manuscript received June 20, 1993; revised July 9, 1994. This work has
been completed under a strategic research grant from the Natural Sciences
and Engineering Research Council of Canada (NSERC). P. Payeur is also
supported by a NSERC graduate scholarship.

P. Payeur and H. Le-Huy are with the Department of Electrical Engineering,
Laval University, Ste-Foy, Québec G1K 7P4, Canada.

C. M. Gosselin is with the Department of Mechanical Engineering, Laval
University, Ste-Foy, Québec G1K 7P4, Canada.

IEEE Log Number 9408819.

example of an object describing an unknown trajectory in a
robotic workcell.

In such an application, the manipulator control system has
to anticipate, at any instant, the part’s position, orientation,
velocity, and acceleration with the highest possible accuracy
in order to plan an appropriate path for the manipulator to
successfully grasp and pick up the part without collision
or sliding. Of course, trajectory prediction would require
movement measurements from external sensors or information
extracted from the scanned images of the scene provided by
2D or 3D cameras. Other application examples are provided
in Section VI of this paper.

In most cases for which the trajectory is known in advance
within certain limits, the path planning process can be done
off-line. In [6] for example, an optimum off-line path planning
method based on cubic polynomials has been proposed in
which knot points are used along the trajectory. In [10],
dynamics have been introduced to eliminate knot points but the
implementation requires a large amount of computation time
such that on-line planning is possible only with a low sampling
rate. However, when the object trajectory is mot known in
advance, it is required to predict it in real-time to allow the
manipulator path planning to perform correctly.

The purpose of this paper is to propose a solution to the

problem of real-time trajectory prediction in a robotic context

where a manipulator has to grasp a moving object which
follows an unknown path. In this approach, the position,
velocity, and acceleration of the object are predicted by several
neural networks using the trajectory past history as inputs. If
the object’s movement is continuous and not at random, its
trajectory could be predicted with acceptable accuracy using
an analytical approach such as a cubic model which establishes
an expression for the trajectory based on the past values of
the object’s coordinates. Even though this computation can be
reduced to a linear operation, it has relatively long computation
time requirements for the case of a 6-DOF movement for
which position, velocity, and acceleration must be predicted.
Moreover, if the cubic model happens to be inaccurate, a
higher order model has to be used and the computational
complexity is proportionally increased.

On the other hand, a neural network can be trained to
reproduce this new model without expanding its architecture
considerably, since it only memorizes the relationship between
inputs and outputs. Neural networks then provide the pre-
dictor with greater flexibility. Furthermore, one of the main

0278-0046/95$04.00 © 1995 IEEE

148 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 42, NO. 2, APRIL 1995

advantages of neural networks is that they are capable of
classifying correctly data submitted to slight variations. This
approach is then less sensitive to measurement noise than an
exact polynomial calculation.

In the first part of this paper, the prediction problem
is formulated and the neural network approach is detailed.
The neural network structure and training method are then
considered. Simulation results are presented to illustrate the
performances of this prediction technique. Real-time imple-
mentation of neural networks using specialized IC’s or DSP’s
is examined. Finally, the potential of the proposed trajectory
prediction method in various applications is discussed.

II. PROBLEM FORMULATION

This paper considers the trajectory prediction for moving
objects in the context of a robotic workcell. The problem can
be formulated as follows: Given an object moving along some
arbitrary path, it is required to predict its trajectory in real-
time and with minimum error in order to plan the manipulator
movement to grasp the object without any collision. The
prediction is based on past values of the object coordinates
which are assumed to be provided by a vision system using
2D and 3D cameras. In order to limit the complexity of the
vision system, it is assumed that the moving object is of simple
shape (polyhedral object). The object does not move totally at
random but follows an unknown path which is assumed to be
continuous. At regular intervals, the position and orientation
of the object (z, y, 2, 6, ¢, 1) are provided by the vision
system which processes the scanned images of the scene. It
is also assumed that the object velocity and acceleration are
within an acceptable range compared to the manipulator joints
limitations.

In the present context where the manipulator has to track
and grasp a moving object, it is not sufficient to direct
the manipulator toward the latest known position. Such a
procedure would result in a tracking behavior ended only
when the object leaves the working space and the grasping
would be very difficult. To avoid this situation, the object’s
trajectory must be predicted and the manipulator has to move
towards a position located in front of the object. Thereby,
convergence between the real object’s trajectory and the end
effector position can be achieved, provided that the object
crosses the working space at one time or another.

The predictor outputs are the anticipated values of the
object position, orientation, velocity, and acceleration at the
end of the next sampling period. This information can then
be exploited by the path planning algorithm to elaborate a
catching strategy.

III. TRAJECTORY PREDICTION USING
ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) or, more simply, neural
nets are computing systems which can be trained to learn
a complex relationship between two or many variables or
data sets. Basically, they are parallel computing systems
composed. of interconnected simple processing nodes, [51,
[8], [11]. Neural net techniques are successfully applied in

manipulator’s
end effector i

anticipated trajectory /

Fig. 1. Sequential anticipation of the object’s trajectory.

various fields such as pattern recognition, control systems and
signal processing, [3], [9]. In the present application where
a certain relationship exists between the past history of the
object movement and its future behavior, neural nets can be
used to efficiently predict the object position, velocity, and
acceleration. The data set needed for the neural nets training
can be an actual trajectory previously recorded or a generic
one provided by an analytical model.

A. A Trajectory Model

Fig. 1 illustrates a typical catching situation where a manip-
ulator has to track the moving object trajectory. At time ¢, the
manipulator begins to move toward the selected catching point
and the end effector is rotated to match the object’s orientation
at time (o + 7). The catching point coordinates are updated
at each sampling period, 7', based on the latest measurements.

In this work, in order to ensure that the trained networks can
be used for different applications, a generic trajectory is se-
lected for the training of the neural nets. This trajectory model
is a cubic equation with continuously updated coefficients
which can be written as

1 1
x(t) = —agt® + §ﬂot2 + %t + Xo ()

6

where x represents position, orientation, velocity, or acceler-
ation depending on the considered variable. x is the initial
value and ¢ is time. The coefficients ap, 8y and v are updated
at each sampling instant in order to always use the cubic curve
which best fits with the latest measured points, as detailed in
Appendix A. Using this cubic model, the position, velocity,
and acceleration of the object can be predicted. With a simpler
model, such as a quadratic function, it would be impossible to
track the acceleration. Indeed, when the motion is described
by a quadratic equation, the acceleration must be considered
constant. Moreover, the cubic model can represent rather
complex nonlinear trajectories with low risk of overmodeling.

B. The Neural Net Approach

The approach proposed here is to make neural networks
learn the relationship between successive coordinate points
involved in a generic continuous cubic movement and sepa-
rated by one sampling period, 7. Once trained, the neural nets

PAYEUR e al.: TRAJECTORY PREDICTION FOR MOVING OBJECTS USING ARTIFICIAL NEURAL NETWORKS 149

can then process very efficiently the computation of both the
coefficients oy, Bp, and 7y, and the cubic equation (1) starting
on the actual value xg. The inherent parallelism of neural nets
is exploited to obtain a significant gain in processing speed.
Since the nets are made capable of relating the object’s future
behavior to its past history, it is then possible to use these nets
to predict the object’s displacement during the next sampling
period.

However, in order to track and grasp moving objects without
any collision, the position and the orientation are not the only
variables to match. The end effector velocity and acceleration
must also match those of the object in order to avoid any
abrupt collision at the grasping time. Since position, orien-
tation, velocity, and acceleration are directly related in any
movement, they can be simultaneously predicted by networks
trained on the same model. Only pre- and postconditioning
stages have to be added to adapt the predictor modules to the
given variables as described in the next section. The advantage
of this approach is to eliminate the need for a long and
exhaustive neural network training on each of the 18 variables
contained in the problem for a 6-DOF manipulator. Instead,
only one generic neural network which could work equally
well with position, orientation, velocity, or acceleration has to
be trained.

IV. NEURAL NETWORK STRUCTURE AND TRAINING SCHEME

The basic predictor structure consists of a multilayer per-
ceptron neural network composed of three inputs, two layers
of 20 hidden cells each, and one output cell, surrounded by
pre- and postconditioning modules as shown in Fig. 2. Once
the basic topologies for position (orientation), velocity, and
acceleration are described, systems of any dimension can be
considered. In this paper, we first examine the case of planar
motions composed of two degrees of freedom in position and
one degree of freedom in orientation. Then, the approach
is extended to the case of a general spatial motion with
six degrees of freedom. The global predictive structure is a
multiplication of the basic topology for as many degrees of
freedom as the problem requires. For example, for the planar
trajectory there are nine neural networks (two for the position
coordinates, one for the orientation, three for the velocity, and
three for the acceleration). In a similar manner, there will be
18 neural networks working in parallel for a 3D task with 6
DOF’s.

A. Neural Net Structure

The most straightforward approach for training the neural
network would be to use directly the few latest absolute
positions or orientations measured as its inputs, and the
corresponding values predicted by the cubic polynomial model
as the outputs. Unfortunately, this approach requires the neural
network to learn not only the cubic model but also the
dependency of the data on the absolute position or orientation
on the entire workspace. To obtain precision with such a
network, a tremendous amount of training data would be
required.

T

Latest object’s coordinates

20 hidden cells

20 hidden cells

Postconditioning

A gt ™

d object’s
Fig. 2. Neural network structure.

To avoid this difficulty and reduce the training time, only
the variations of the considered movement parameter (position,
velocity, or acceleration) are fed into the network inputs [7].
As mentioned above, the preconditioning module is inserted
between the sensors and the network inputs. For position
or orientation prediction, this additional stage computes the
position or orientation variations between the latest sampled
data. Hence, the neural network is totally independent of the
real position (orientation) of the object and memorizes only
the fundamental relationship contained in the cubic model,
including the update of each coefficient. The network output
is then the predicted relative displacement which should occur
during the next sampling period. Obviously, a postconditioning
module is also needed to add the actual position p(¢g) to the
anticipated displacement, as shown in Fig. 3(a).

Similar structures are used for the prediction of velocity and
acceleration. Since the sensors provide only absolute position
or orientation, pre- and postconditioners also have to evaluate
the object real velocity or acceleration on the basis of the
five or six latest measurements. Details on the contents of
conditioning modules are given in Appendix B. Since the cubic
model is applied to position, velocity, and acceleration, the
six latest measured coordinates must be memorized. The last
four points are needed as an input to the system if it is used
to predict a position or an orientation. For linear or angular
velocity, the five last known positions and the sampling
period are required. Finally, for predicting an acceleration, six
measurements are used.

To avoid dividing by the sampling period 7' too many times,
the preconditioning module simply computes the differences
between known positions and feed the network with a pseudo-
displacement value, as shown in Fig. 3(b) and (c). The network
then processes this pseudo-displacement value and generates
a corresponding anticipated pseudo-variation of the object’s
position or orientation. Finally, the postconditioning module
reconstitutes the absolute velocity or acceleration with the two
or three latest measurements, as required, and the predicted
pseudo-displacement. It also carries out the division by the
sampling period, resulting in a reduction of the number of
divisions to be performed from three to one. Therefore, the

150

Pt
A

plto)

Ay B:
(A-B (A -B)/p,

AlAp(to) BlAp(to-T) clAP“«m
‘Neu:al Network (cubic model) |

P(tg-2T) p(to-3T)

Ay B
A -

plto)

po'T) p(io-2T) plte-3T) p(to4T)

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 42, NO. 2, APRIL 1995

p(to) pto-2T) plig-3T) p(to4T)

| | l
Al BY cf " Ay B cy At Blc
[a-2B+ O, [(a- 2B + Cyip, | [(A - 2B+ C)ip, |

plto'T)

lTAv(lo) lTAv(to-T) JL1'Av(:0-21')
ﬁeuml Netwaork (cubic model)J
TAV(tg+T)
A C.
pto)

Pty B |(A-B+p,C)/T
v(to+T)
(b)
p(to-5T)

apclop s AL s

[

NERar

[(A-3B+3C-D)p, | [(A-3B+3C-Dlp,| [(A-3B+3C-Dip, |

T?Aa(ty)

T?Aa(teT) T?Aa(ty-2T)

| Neural Network (cubic model)]

D] T?Aa(ig+T)

(A-2B+C+p,D)/T?

a(tg+T)

©

Fig. 3. Basic predicting system topologies. (a) Anticipating position or orientation. (b) Anticipating linear or angular velocity. (c) Anticipating linear

or angular acceleration.

computing time outside of the neural network is reduced.
Moreover, avoiding very small or very large data that could
result from a division in the preconditioning module provides
a greater numerical stability for the network processing.

Furthermore, the data processed by neural nets should
be normalized such that the maximum normalized value is
lower or equal to the activation function maxima. For the
present application, a bipolar sigmoidal activation function
[4] covering the range from —1.0 to 1.0 is used. Then each
displacement computed by the preconditioners is divided by a
normalization factor, p, before being presented to the neu-
ral network inputs. The same normalization factor is used
in the postconditioning module to convert the result back
to the real world amplitude. Therefore, only this normal-
ization factor has to be selected in accordance with the
sampling rate and the object’s maximum velocity and ac-
celeration. This adjustment depends on the specific applica-
tion.

It is important here to note that the network has no “idea”
of what it is computing. The only pattern that is learned is the
cubic model as presented during training. No matter what is
placed at its inputs, the network simply processes these values
and generates a predicted one of the same nature as a cubic
polynomial equation would do. This structure provides a very
simple and efficient way to anticipate position and orientation,
as well as linear and angular velocity and acceleration with
only one neural topology and training. The only adjustment to

be performed is the adaptation of the pre- and postconditioners
to match the nature of the measured data.

B. Training Scheme

In order to generate training data files of reasonable size, the
object’s maximum velocity and acceleration have been limited
to “realistic” values in the working range of the manipulator.
The sampling period T is also assumed to be known and
constant as it will depend mainly on the processing speed.

In a given application, we can consider that there is a
maximum coordinate variation along one axis, Apmax Which
can occur between two successive sampling times. Sensors are
also limited on their resolution. Therefore, there is a minimum
coordinate variation, Apresolution. that can be sensed. If a
training data set covering the entire range of variations has
to be built for a bipolar movement, i.e., an object which can
move both in the positive or negative direction, the number of
possible steps to consider, St, is the following:

ingle ?
2APmax
Tsingle —

= —+1
Apresolution

)

For example, if the maximum possible coordinate variation,
ApPmax, is five units and the resolution is one unit, there
will be 11 lines in the training data file, as illustrated in
Fig. 4. However, siuce the application considered here requires
three independent inputs to the neural net, the complete data
set should contain every possible permutation of these three

PAYEUR et al.: TRAJECTORY PREDICTION FOR MOVING OBJECTS USING ARTIFICIAL NEURAL NETWORKS 151

Bpres !
0 7 8 9 1011

1 23 456

—® Number of steps

_Ap maxt

Fig. 4. Number of steps in the training data file.

coordinate variations. The global training data set then contains

STyobs 1IDES
2Ap 2Ap,
ST.,R=(max +1)X(max +1
global Apl‘esolu(‘.ion Apresolution
2Apmax)
X|{————+1). 3
(Apresolution ()

In practice, it is possible to further reduce the size of the data
set composing the training file. In fact, we can consider that
two successive position or orientation variations are always of
similar amplitude if sampling is made at a constant rate. We
can then assume that there is a maximum possible difference
between two successive position or orientation variations,
A(Ap)max- This can be summarized as follows:

|Ap(to) — Ap(to — T)| < |A(AP)max! C))
[Ap(to — T) — Ap(to — 2T)| < |A(AP)max]|)
IAp(tO) - Ap(tO - 2T)| S |2 : A(Ap)max‘- (6)

This assumption is valid for continuous trajectories. Since a
cubic model is used for the prediction, it is justified to restrict
training data set according to this simplification.

It is interesting here to note that since the preconditioning
module normalizes all the data to values contained between the
sigmoidal activation function maxima, as already explained,
only one training data set is required. Indeed, there is need for
only one training for the neural network to learn to reproduce
the relationship of a cubic function. The training data set used
in this work contains orientation values in degrees, but it could
as well have contained position, velocity, or acceleration data.
This choice has been made simply because of the ease with
which angles are handled and their fixed range independently
of the application.

An input training data file is then built by selecting a
maximum possible orientation variation, Apmay, of 18° for
the considered application of a mobile object catching. The
resolution is selected as one degree. Considering that two
successive variations should not differ by more than one
degree, nine permutations are possible for each triplets of the
37 values that could occur on the first input according to (2).
Appendix C illustrates these permutations for a sample of the
input training data file.

Using the suggested simplifications, only 37 x 3 x 3 = 333
triplets are needed in the training file instead of 37 x 37 x 37
= 50 653. The training time can thus be significantly reduced.
To produce the output training data file, each input triplet is
processed using the cubic model presented in Section III to
ensure that the output data presented to the network are exact.
Note that all these training data are normalized between —0.8
and 0.8 to avoid using the extreme values of the sigmoidal
function. This rule of thumb proves to be helpful in reducing
the number of epochs required to converge to a low error level.

Finally, the neural network is trained using the backpropa-
gation algorithm and a pseudo-random presentation order. This
means that triplets in the training data set are not presented
in a fixed order at each epoch. They are rather presented to
the network randomly. However, the entire set must be used,
each triplet once only, before a new epoch begins. Training
of the proposed neural net with the described data set requires
about 22 000 epochs to obtain the acceptable normalized error
level of 0.02 over the normalized range contained between
—0.8 and 0.8. This error level corresponds to half of the lower
graduation, Apresolution = 1°, with the normalization factor of
22.5 used for this application, or about 1% over the entire data
range. This is generally an acceptable error level. Of course,
it could be further refined by pursuing the training procedure
as long as required.

V. SIMULATION RESULTS

The first results illustrate a simulation of the application
proposed as an example at the beginning of this paper. It
consists of the trajectory of an object sliding on an inclined
plane before being caught by a manipulator which will put it
into a box. If the sliding plane is not installed to be perfectly
level and the object has a nonuniform mass distribution, it
will typically describe a slightly curving path and rotate at a
constant rate.

Fig. 5 shows such a path for a rectangular object. It allows
the evaluation of the accuracy of the prediction obtained by
neural networks (drawn in solid line) with respect to the real
path (drawn in dotted line). It can be noticed that there is no
significant difference between the real position and orientation
of the object and the predicted values since dotted lines and
solid lines are superimposed. The reason why there are no
solid line rectangles superimposed to the first four dotted line
rectangles is simply that the anticipator needs to know the
four latest measured coordinates of the object (separated by
one sampling period T') before beginning to anticipate the
next ones.

To confirm the accuracy of this predictor in general, it has
been tested on a more complex planar movement generated
artificially. The shape of the path followed by the object can
be seen in Fig. 6. The parametric equations used to generate
the trajectory are as follows:

z(t) = r(t) - cos(8(t)) @)

y(t) = r(t) - sin(6(2)) ®)
with

r(t) = R-cos(2-6(t)) ()]

1

152 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 42, NO. 2, APRIL 1995

Fig. 5. Trajectory of the sliding object in the packaging process.

----- Real tra
— Wm by neural networks

-+~ Real trajectory
— Predicted trajectory by cubic equation

Fig. 6. Comparison of the planar generic trajectory anticipation.

where ¢ is time and R is the radius of the main circle
supporting a sinusoidal function which depends on the angular
position 6(t) on this circle. The circle is drawn on a plane
orthogonal to the Z-axis. The object is assumed to rotate at a
constant rate around this axis.

This trajectory has been chosen because of its generality.
It provides a highly nonlinear motion with a large variation
rate at the extremities and a smaller range in the central
part. Therefore, it covers the most complex trajectories that
an object could follow in a potential application.

Fig. 6 allows a comparison between the neural network pre-
dictor performances and those of a standard cubic polynomial
approach. These results demonstrate that the neural network
predictor is as reliable as the standard technique since the
error level between the predicted path and the real one is
almost the same for both methods. This is confirmed by Fig. 7
which shows position, velocity, and acceleration anticipation
along the X-axis and around the Z-axis. Projections on
all axes are not presented here for purposes of conciseness
and because of the similarities of the results obtained in all
directions.

In order to verify and illustrate the flexibility of the proposed
anticipating system, it has been extended to a generic 3D
movement. The object motion considered is similar to the
one used in the preceding example except that there is a

Translation along X-axis Rotation around Z-axis

EVAVEEE/AN
T\ W

I R \\/ B

=) zo Y=Y) B0 100) 20 «0 e0 B0O 100

@

Linear velocity along X-axis Angular velocity around Z-axis

. VAV .
AN

W AVENY
ViV

20 40 &0 &o 100 20 40 6o 80 100

(b)

Acceleration along X-axis Acceleration around Z-axis

R, WO AN I . O

WA
[BLVER ViR

o

/A Y/ I VAR BN

e e
©

Fig. 7. Numerical simulation results for a 2D generic trajectory. Dotted line:
real trajectory. Dashed line: predicted trajectory by cubic equation. Solid line:
predicted trajectory by neural networks.

supplementary translational displacement along the Z-axis
given by the following equation:

#(t) = —r(t) - sin(6(t)). (10)

Moreover, the 3D object also rotates at a constant rate around
the three orthogonal axes instead of only one (Z-axis).

The neural structure has been upgraded, as described in
Section IV, to allow anticipation of position (three modules
for z,y, and 2), orientation (three modules for 6, ¢, and),
velocity (six modules for i, 9, Z, éz_gb, and), and acceleration
(6 modules for z, 4, 2,0, ¢, and ¥).

Fig. 8 shows this generic 3D trajectory and the quality of
the results. The comparison of the neural network technique
with the cubic polynomial one is again possible. It is supported
by Fig. 9 which shows projections of the translational motion
along the X-axis and projections of the rotational evolution
around the Z-axis.

According to these results, it is clear that the prediction
accuracy is totally independent of the system and path com-
plexity. It can be concluded then that the neural network
trajectory prediction is a very accurate technique which could
eventually speed up the solution to trajectory anticipation prob-
lems encountered in a large number of robotic applications.

It must be noted here that the anticipation is performed for
only one sampling period at a time. This means that at a given
sampling instant, the anticipator computes the predicted object
position, orientation, velocity, and acceleration values at the

T

PAYEUR et al.: TRAJECTORY PREDICTION FOR MOVING OBJECTS USING ARTIFICIAL NEURAL NETWORKS 153

Fig. 8. Comparison of the spatial generic trajectory anticipation.

end of the next sampling period. Depending on the applica-
tion requirements, the algorithm can be executed iteratively
to provide predicted values for several sampling periods in
advance.

When the object follows a linear evolution along one of its
degrees of freedom, its motion can be almost perfectly pre-
dicted because of the overmodeling produced by the selected
cubic model. This explains why the sliding object’s trajectory
anticipation is almost perfect since the components of motion
are, in this case, linear all over the trajectory. This is also why
the angular acceleration is always zero.

However, if the result curves, especially Figs. 6 and 8, are
carefully examined, it can be concluded that the main part
of the error originates from the chosen cubic model rather
than from the implementation with neural networks. It can
be seen if we note that the error between the real trajectory
and the predicted one is almost the same everywhere for the
neural network technique and for the cubic polynomial one.
It means that the predicted trajectory is very similar for both
techniques. Therefore the main source of error is the basis of
the prediction which is actually the cubic model. It confirms
that the movement model selection is of prime importance.
This choice has been justified. in Section III of this paper. The

- sampling rate is also an important consideration. It must be
high enough to avoid important divergence of the object from
a cubic trajectory before the latest measured coordinates can
be updated. It will depend mostly on the maximum object
velocity in a given application.

Furthermore, tests have been conducted to verify the sensi-
tivity of this approach to measurement noise. To achieve this,
a random noise is added to the object coordinates before they
reach the trajectory predictor to simulate vision sensors noise
with which the system will undoubtedly have to deal. The same
noisy coordinates are processed with the cubic polynomial
to allow a comparison between the noise sensitivity of both
anticipation techniques. Fig. 10 shows the results obtained
with a noisy trajectory for the example of the packaging
process. The left-hand side curves show the projections on
each axis of the object’s real trajectory superimposed to the
anticipated path by both techniques. The right-hand side curves
emphasize the error between the real noisy coordinates and the
anticipated ones. At first glance, it appears that the mean error
is approximately the same with a cubic polynomial predictor or

Translation along X-axis Rotation around Z-axis

(a)

Linear velocity along X-axis Angular velocity around Z-axis

NN

LAV
° (VA -

L)) ac ao 20 20 &0 ao

®)

1

Acceleration along X-axis Acceleration around Z-axis

A A

20 -0 13 a0 N 20 -0 L1-] 80
©)

Fig. 9. Numerical simulation results for a 3D generic trajectory. Dotted line:
real trajectory. Dashed line: predicted trajectory by cubic equation. Solid line:
predicted trajectory by neural networks.

with a neural network implementation. However, it can also be
seen that the neural network approach tends to produce smaller
peak instantaneous errors than the polynomial technique.

In order to ensure that these observations can be generalized
to a large number of situations, the mean error and its
variance are computed for a wide group of different noisy
trajectories including a modulated circle (which is in fact the
trajectory illustrated in Fig. 6) a sinusoid, a simple circle, a
straight line, and the trajectory resulting from the packaging
application example. These results are summarized in Table I
and the following conclusions are found: First of all, the mean
error of the predictor applied to noisy trajectories is similar
independently of the anticipation technique. This confirms the
results obtained above for unnoisy trajectories which show that
the main source of error is the selected path model and not
the implementation technique. Therefore, neural networks are
as accurate as the polynomial approach.

Furthermore, the error variance resulting from a cubic
polynomial anticipation is always larger than the error variance
resulting from the neural net implementation of the same cubic
model. It means that neural networks are less sensitive to
measurement noise than an exact polynomial computation.
This was predictable since when neural nets are applied to
pattern classification, they have the capability to associate
slightly deviating patterns to the proper category. It is then
normal that they contribute to reduce the effect of noise on
input data. The fact that the mean error variance is smaller
with neural networks is of great interest because it means

154 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 42, NO. 2, APRIL 1995

Position along X-axis Position error along X-axis

TABLE I
COMPARISON OF THE MEAN ERROR AND
VARIANCE FOR BOTH ANTICIPATION TECHNIQUES

B ATAAL : 2
& /J,_.j VN -.Y\ 1 3 ¥ Mean Error (% of working range) Error Variance (% of working range)
] - 5 . -
M /. N POE IR WO I . along X along Y arcund Z along X alongY | isvoundZ
- z] ol N SN TR TR R T -
bE Y o TX b I Sl T VIR cc[nw [[w|eelwelw|ew|[elw
£ ; ’*\ LIS ‘{ g1 Modulated circle
. -t : : Noise (max.): Position = 3.1% ; Orientation = 2.8%
N PR AR ARRRSARRRNA N PARREPARRASARRESARRRNA 005 | 005 [001 [001 [-0004]0004[12 ["08] 1.1 [08 [02 [o1
Modulated circle
Noise (max.): Position = 6.3% ; Orientation = 5.5%
Position along Y-axis Position error along Y-axis 001 I 004 |-0.004|-0.008 00081 0.002][35 | 28 | 45 l 2.8 [9.4 { 0.3
: Al CLT AT P! Modulated circle
AJA“IJV 15 s f vy Noise (max.): P onmonslzs% Onemnon 55%
? i I S O h‘ {12 us [os [oo
: A T I
+ Pl o [AVREAYAtRERIEENS TS RVAV)
£ ot IR AN DR SIS
NP s ot ¥ t ion = 5.5%
o 2 T T ; 15335 [os [04
0 10) % © %0] 10) % © 0
" Circle
Orientation around Z-axis Orientation error
? 08 Straight line
[04 Fa— Noise (max.): Position = 11.1% ; Orientation = 5.5%
s E VIS T YT T 0018[0059[0.1 [0.059 [0005] 0011] 92
1 R
Y 0 oMIN N AT Packaging process
/,.,""ﬁ DOE I TEIL 00 b V ! V Noise (max.): Position = 2.8% ; Orientation = 2.8%
st s : 5004 | 0615 | <004] 0013 [0 femee [37 [768 | 1o [os [e3
[} 10 ® » w0 0 0 10 » x © %
N N . Packaging process
Real.u'a)ectm_'y w‘mgm::hic s e Error with a cubic equation predictor Noise (mnx) Position =5.5% ; Onenumon 5.5%
¢ rajectory 0y —— Exror with a neural network predictor 0

)

Fig. 10. Comparison of the errors resulting from measurement noise.

that the anticipated coordinates are more reliable than those
produced by a polynomial computation technique. If the mean
error is known, it will then be easier to compensate this error
and obtain a more accurate path prediction.

Finally, there is an interesting phenomenon that can be
observed in Table I. It appears that the error variance of
the neural network anticipated coordinates are always similar
along- the X-axis and the Y-axis. On the other hand, the
error variance along the X-axis and the Y-axis resulting
from polynomial anticipation is generally different. It can be
concluded that the neural net anticipator produces results of
the same quality along every degree of freedom comparatively
to the polynomial anticipation for which accuracy varies
depending on the direction.

VI. REAL-TIME IMPLEMENTATION AND APPLICATIONS
OF THE PROPOSED PREDICTION METHOD

A. Real-Time Implementation

As seen in Section IV, the proposed trajectory predictor
contains several identical processing blocks consisting each of
a neural network and its pre- and postconditioning modules. It
has been developed and trained using simulation packages.
To be used in real-time applications, the predictor can be
implemented using one of two approaches: hardware and
software implementation.

CP = Cubic Polynomial anticipator NN = Neural Network anticipator

In a hardware approach, the trained neural networks are
implemented by VLSI neural network chips while the pre-
and postprocessing functions can be taken in charge by mi-
croprocessors or hardwired circuits. Examples of neural chips
include the 80170NX Electrically Trainable Analog Neural
Network (ETANN) offered by Intel Neural Network Group.
This chip can accommodate up to 128 inputs and compute
64 dot products in parallel every 3 ms. Another neural chip is
the CNU3232S Cascadable Neural Unit from Neural Semicon-
ductor. This chip has 32 inputs, 1024 synaptic weights, and
32 nodes supporting several activation functions. Large and
fully parallel networks can be constructed using interconnected
CNU chips. The CNU3232S processes 100 000 patterns per
second. The main advantage of a hardware implementation
resides in the high processing speed. Since several neural chips
operate in parallel, the processing delay is limited only by
the propagation time through one block. However, the system
implementation cost may be relatively high, at least for the
present time.

In a software approach, high-performance digital signal
processors (DSP’s) such as the 96000 (Motorola) or the
TMS320C30 or C40 (Texas Instruments) can be used to
implement both neural networks and pre- and postconditioning
modules. DSP’s are particularly suited for neural network
implementation because the mathematical operations needed
by digital filters are similar to the algorithms used for neural
networks. Indeed, in both cases the basic operation required

PAYEUR et al.: TRAJECTORY PREDICTION FOR MOVING OBJECTS USING ARTIFICIAL NEURAL NETWORKS 155

is under the form of the sum of products: ¥a;z;. Software
implementation of the predictor on a single DSP is obviously
slower than with the hardware approach because the operations
are not processed in parallel. However, because of the reduced
operation set required, the processing speed is expected to be
compatible with a real-time operation. If higher processing
speed is required, a multiprocessor structure consisting of
several DSP’s working in parallel can be considered. However,
the system cost will increase accordingly.

At the time of writing, considering the development state
of VLSI neural chips and their high cost, the software imple-
mentation approach appears to be more advantageous.

B. Applications

The trajectory prediction method using - artificial neural
networks described in the preceding sections has numerous
potential applications. As mentioned above, it has been de-
veloped in the context of a robotic application in which it
is desired to plan the trajectory of a manipulator to track
and catch a moving object entering its workspace. In this
case, the algorithm must run in real time and, therefore, the
computational speed is very critical. Indeed, several operations
are involved in such a task. The position and orientation of
the object must first be determined from range data obtained
via a 3D camera. Then, the trajectory of the object must be
extrapolated and, finally, the trajectory of the manipulator
must be computed and its motion initiated. Examples of
the kinematic algorithms that can be used for the trajectory
planning are given in [1] and [2]. The present algorithm is
designed to be used at the second stage, i.e., the extrapolation
of the motion of the object. Since the other stages (especially
the vision one) are known to be rather slow, a fast algorithm
such as the one presented here is of great help to enhance the
global processing speed.

Another interesting application of this algorithm is the
tracking of a moving target such as the end effector of a tele-
operated manipulator. In such an application, a set of cameras
are used to send visual feedback to the human operator.
However, if fixed cameras are used, occlusions from the
environment or from the manipulator itself can seriously affect
the quality of this feedback. Hence, a camera mounted on an
orientable platform can be used to follow the end effector
and always provide a good view of the scene. The camera
has to track the end effector which can be identified with a
special marker. In a similar context, the trajectory predictor can
be used to dynamically orientate an antenna toward a mobile
target in teledetection or telemetric applications.

Furthermore, the proposed anticipating technique can be
of high interest in the development of autonomous mobile
vehicles. Until now, researches in this field have conducted
to the creation of autoguided vehicles which always require
monitoring from a central controller. However, to confer com-
plete autonomy to these vehicles, the central controller must be
eliminated. And since one of these vehicles will be obliged to
localize the other ones by itself, it will then require an efficient
real-time trajectory predictor to guarantee a safe operation and
to avoid any collision between two or more vehicles.

VII. CONCLUSION

A method using artificial neural networks to predict the
trajectory of moving objects in 2D and 3D space has been
presented and studied. This approach has been developed
in the context of an industrial robotic application which
consists in tracking and catching a moving object. It is shown
that perceptron-type neural networks can be organized in an
original structure well suited for simultaneous anticipation of
position, orientation, velocity, and acceleration of the object.
An interesting principle which consists in making the neural
networks process only relative variations instead of absolute
coordinates is also applied. It has proved to be very effective
in reducing the training effort drastically, and in limiting the
size of training data files.

The simulation results obtained for a typical object trajec-
tory found in industrial applications clearly shows that this
neural network system can predict with very good accuracy a
continuous movement including position, orientation, velocity,
and acceleration. The approach is also tested on a more
complex and general 2D path to demonstrate its robustness.
Finally, the path predicting structure is extended to a 3D
generic motion to illustrate the flexibility of the proposed
technique. All simulation results show that the neural network
predictor can achieve as good performance as a standard cubic
polynomial. Furthermore, a study of the predictor behavior
when working with noisy data proved that the neural network
implementation is less sensitive to measurement noise than
the polynomial approach. This is of prime importance for an
application using vision sensing.

Hardware implementation of the predictor using neural
network chips is expected to provide fast computation for
most real-time applications such as automated object catch-
ing, moving target tracking, or collision avoidance between
autonomous mobile vehicles. On the other hand, the learning
capability of neural networks allows an easy adaptation of the
prediction system to the environment and operating conditions
for a particular application. This alternative computing tech-
nique then provides significant advantages for dealing with
the object trajectory prediction problem in industrial robotic
applications.

APPENDIX A
CUBIC POLYNOMINAL COEFFICIENTS CALCULATION

The calculation of the cubic model coefficients is based on
the measured object position or orientation and is detailed here.
The equation used to generate the training values is

1 1
x(t) = gaota + §ﬁ0t2 + Yot + Xo

an
where o is the object initial position, orientation, velocity,
or acceleration, and x(¢) is the predicted corresponding value
after one sampling period 7'

Considering that the vision sensors measure only absolute
position and orientation given by p(to — nT'), the coefficients
will be calculated differently depending on which variable the
cubic model is applied to.

156 ‘ IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 42, NO. 2, APRIL 1995

A. For Position or Orientation

(x = poré):
to) —p(to—T
o = Pto) 1}(0o—T) W
to) —p(to —T)| — |p(to — T) — p(to — 2T
Bo = |p(to) — p(to) 111115 0) = p(to)l (13)
_Ip(to) = p(to — 7))
=T
_ 2lp(to = T) — p(to — 2T))
T3
p(to — 2T)) — p(to — 37)]
+ T3 . 14
B. For Linear or Angular Velocity
(x = p or 6):
A
Yo = Tz (15)
A-B
Bo = 73 (16)
A-2B+C
Qg = T a7n
where
A = |p(to) - 2p(to — T) + p(to — 2T)|
B = [p(to — T) — 2p(to — 2T") + p(ty — 3T)|
C = |p(to — 2T') - 2p(to — 3T) + p(to — 4T)|.
C. For Linear or Angular Acceleration
(x = por 5):
D
Yo = 3 (18)
D-F
Bo = =5 (19)
D-2E+F
Qg = 7 20)
where

D = |p(to) — 3p(to — T) + 3p(to — 2T) — p(to — 3T)|
E = |p(to — T) — 3p(to — 2T) + 3p(to — 3T) — p(to — 4T))|
F = |p(to — 2T') — 3p(to — 3T) + 3p(to — 4T)

- p(to - 5T)|

APPENDIX B
CONDITIONING MODULES FOR VELOCITY AND ACCELERATION

Given the sampling period, 7', and the latest measured
positions p(typ — nT).

A. For Linear or Angular Velocity

Preconditioning:

A’U(to) = ’U(to) - ’U(to - T) (21)
—p(to =T
Av(ty) = p_—_(to) IT)'(0)
Similarly
to—T)—2p(to — 2T to — 3T
Av(ty— 1) = Plo = T) p(oT) + p(to — 3T)
(24)
—2T) — 2p(to — 3T to — AT
Au(to — 21) = Pto=2T) p("T)+ plto = 4T)
(25)
Postconditioning:
T TAv(to+ T
olto +T) = v + T”(o)

T
B. For Linear or Angular Acceleration

Preconditioning:

Aﬂ.(to) = a(to) - a(t() - T)
_ ’U(to) - ’U(to - T) . ’U(to - T) - U(to — 2T)

T T
o2
aft = PU0) =2lto =) + (i = 20)
_ p(to - T) — 2p(t07; 2T) + p(t() — 3T) (28)
(29
Similarly
Aa(to - T)
_ Plto = T) — 3p(to — 2T) + 3p(to — 3T) — p(to — 4T)
= T
(30)
Aa(tg - 2T)
_ P(to — 2T) — 3p(to — 3T) + 3p(to — 4T) — p(to — 5T)
= Iz
3D

PAYEUR et al.: TRAJECTORY PREDICTION FOR MOVING OBJECTS USING ARTIFICIAL NEURAL NETWORKS 157

Postconditioning:

a(to+T) =

a(to +T)

T2a0 + T?Aa(to + T)

T2

2 leted=plto=T)) 4 T2Aq(tg + T)
- 2

T

(32)

_ plto) — 2p(to — T) + p(to — 2T) + T?Aa(ty + T)

T2

APPENDIX C

NEURAL NETWORK TRAINING DATA

(33)

A sample of the input training data file is reproduced here
to illustrate the simplifications considered to reduce the size
of the training data set.

Ap(to)

8.0
8.0
8.0
8.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
6.0
6.0
6.0
6.0
1.0
1.0
1.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-1.0
-1.0
-1.0
-1.0

Ap(to —T)
8.0
7.0
7.0
7.0
8.0
8.0
8.0
7.0
7.0
7.0
6.0
6.0
6.0
7.0
7.0
7.0
6.0
1.0
0.0

0.0
0.0
1.0
1.0
1.0
0.0
0.0
0.0

-1.0

-1.0

-1.0
0.0
0.0
0.0

-1.0

Ap(to — 2T)

7.0
8.0
7.0
6.0
9.0
8.0
7.0
8.0
7.0
6.0
7.0
6.0
5.0
8.0
7.0
6.0
7.0
0.0
1.0
0.0
-1.0
2.0
1.0
0.0
1.0
0.0
-1.0
0.0
-1.0
-2.0
1.0
0.0
-1.0
0.0

(11

[21

[31

[4
[5]
(6]

-6.0 -6.0 -7.0
—-6.0 -7.0 —-6.0
-6.0 -7.0 -7.0
-6.0 -7.0 -8.0
-7.0 —-6.0 -5.0
-7.0 —6.0 -6.0
-7.0 -6.0 -7.0
-7.0 -7.0 —-6.0
-7.0 -7.0 -7.0
-7.0 -7.0 -8.0
-7.0 —-8.0 -7.0
-7.0 -8.0 —-8.0
-7.0 -8.0 -9.0
—-8.0 -7.0 —6.0
-8.0 -7.0 -7.0
—8.0 -7.0 —-8.0
-8.0 -8.0 -7.0
REFERENCES

Y. H. Chang, T. T. Lee, and C. H. Liu, “On-line Cartesian path planning
for robotic manipulators,” in Proc. IEEE Int. Conf. on Robotics and
Automat., Apr. 24-29, 1988, vol. 1, pp. 62-67.

J. Cot, C. Gosselin, and D. Laurendeau, “Tracking a moving object
with a 6-DOF manipulator,” in Proc. SPIE Machine Vision and Robotics
Conf., Orlando, FL, Apr. 14-16, 1993, pp. 300-308.

H. Hashimoto, T. Kubota, M. Sato, and F. Harashima, “Visual control
of robotic manipulator based on neural networks,” JEEE Trans. Ind.
Electron., vol. 39, no. 6, pp. 490-496, Dec. 1992.

B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

C. Lau, Neural Networks: Theoretical Foundation and Analysis. New
York: IEEE Press, 1992.

C. S. Lin, P. R. Chang, and J. Y. S. Luh, “Formulation and optimization
of cubic polynomial trajectories for industrial robots,” IEEE Trans.
Automatic Contr., vol. 28, pp. 1066-1074, 1983.

Z. Lin, V. Zeman, and R. V. Patel, “On-line trajectory planning for
catching a moving object,” in Proc. IEEE Int. Conf. on Robotics and
Automat., vol. 3, pp. 1726-1731, 1989.

R. P. Lippmann, “An introduction to computing with neural nets,” [EEE
ASSP Mag., pp. 4-22, Apr. 1987.

Y. Pao, Adaptive Pattern Recognition and Neural Networks. Reading,
MA: Addison-Wesley, 1989.

G. Sahar and S. M. Hollerbach, “Planning of minimum-time trajectories
for robots arms,” Int. J. Robotics Res., vol. 5, no. 3, pp. 90-100, 1986.
J. M. Zurada, Introduction to Artificial Neural Systems. St. Paul, MN:
West, 1992.

Pierre Payeur (S'91) received the B.Sc.A. and the
M.Sc. degrees in electrical engineering from Laval
University, Ste-Foy, Québec, Canada, in 1992 and
1994, respectively.

He is currently pursuing the Ph.D. degree at
Laval University’s Computer Vision and Digital
Systems Laboratory, with a dissertation on robot
path planning with collision avaoidance guided by
computer vision. His research interests include robot
motion planning in complex environments, arti-
ficial intelligence, industrial process control, and

automation.

Mr. Payeur is a member of the Institute for Robotics and Intelligent Systems
(IRIS), on of the networks of the Centres of Excellence of the Government
of Canada.

158 [EEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 42, NO. 2, APRIL 1995

Hoang Le-Huy (S’72-M’'74-SM’87) received the
B.S. and M.S. degrees in electrical engineering from
Laval University, Ste-Foy, Québec, Canada, in 1969
and 1972, respectively. He received the Dr. Eng.
degree in electrical engineering from the Institut
National Polytechnique, Grenoble, France, in 1980.

He was a Professor of Electrical Engineering at
the University of Québec, Trois-Rividres, from 1973
to 1987, where he worked on microprocessor control
of power electronics systems. He is presently a Pro-
fessor in the Department of Electrical Engineering
at Laval University, where he is engaged in teaching and research in the
areas of power electronics and real-time digital systems in the Laboratoire
d’Electrotechnique, d’Electronique de Puissance et de Commande Industrielle
(LEEPCI). His research interests include electronically commutated motors,
static power converters, and real-time microprocessor systems.

Dr. Le-Huy is a Registered Professional Engineer in the province of Québec.

Clément M. Gosselin (M’89) received the B.Eng.
degree in mechanical engineering from Université
de Sherbrooke, Québec, Canada, in 1985, and the
Ph.D. degree from McGill University, Montréal,
Québec, in 1988.

In 1988, he accepted a postdoctoral fellowship
from the French government in order to pursue work
at Institut National de Recherche en Informatique
et en Automatique (INRIA) in Sophia-Antipolis,
France, for a year. In 1989, he was appointed by
the Department of Mechanical Engineering at Laval
University, Ste-Foy, Québec, as an Assistant Professor. In 1993, he was
promoted to Associate Professor and given tenure. His research interests
are kinematics, dynamics, and control of robotic mechanical systems with
a particular emphasis on the mechanics of grasping, the kinematics and
dynamics of parallel manipulators, and the trajectory planning associated with
robotic tracking and catching maneuvers. His work in the aforementioned
areas has been the subject of several publications in international conferences
and journals.

Dr. Gosselin is a member of ASME, AIAA, CSME, CCToMM, and the
Institute for Robotics and Intelligent Systems (IRIS), one of the networks
of the Canadian Centres of Excellence. He received the Gold Medal of the
Governor General of Canada in 1985, the D. W. Ambridge Award from McGill
University for the best thesis of the year in physical sciences and engineering
in 1988, and the 1. 2. Smith award from the Canadian Society of Mechanical
Engineering for creative engineering.

